Laout Jahresbericht IFN 02/03 - Leibniz Institut für Neurobiologie

Werbung
Gastgruppe
Institut für Biologie (i.G.), Fakultät für Naturwissenschaften der Otto-von-GuerickeUniversität Magdeburg, Abteilung Zoologie/Entwicklungsneurobiologie
Guest Group
Institute of Biology, Faculty of Natural Sciences of the Otto von Guericke University
Magdeburg, Department of Zoology/Developmental Neurobiology
Leiter/Head: Prof. Dr. ANNA KATHARINA BRAUN
Institute of Biology
Scientific and teaching activities at the Institute of Biology
started in April 2001 with the establishment of the
Department of Zoology / Developmental Neurobiology
headed by Prof. K. Braun. In 2003, Prof. Siegrid Löwel
(Head of the Project Group "Visual Development and
Plasticity" of the IfN) was awarded the Dorothea Erxleben
Guestprofessorship of the Otto von Guericke University
and joined the Institute of Biology. In 2004 the
Departments of Neurogenetics and of Cognitive Science
will start their scientific activities. The Institute of Biology
coordinates teaching activities for the advanced study programs "Neurobiology/Neurosciences” and the course
"Neurosciences” for medical students, interdisciplinary
teaching programs held in collaboration with the Medical
Faculty and the Leibniz Institute for Neurobiology. The
Institute of Biology serves as a platform for interdisciplinary research activities within many faculties of the university and it is involved in a variety of joint projects in neuroscience. Research at the Institute of Biology is currently
focused on the cellular principles of emotional and cognitive development.
Anna Katharina Braun
Department of Zoology/Developmental Neurobiology
Zusammenfassung/German Abstract
Einfluss früher emotionaler Erfahrungs- und Lernprozesse
auf die funktionelle Entwicklung des limbischen Systems
Lernen in frühester Jugend unterscheidet sich vom Lernen
bei Erwachsenen darin, dass Erfahrungen und Lernprozesse im kindlichen Gehirn viel massivere und auch dauerhaftere Spuren hinterlassen als im erwachsenen Gehirn, wo
es nur noch zu vergleichsweise geringfügigen Veränderungen beim Lernen kommt. Diese starke Veränderbarkeit oder „Plastizität“ des kindlichen Gehirns ist
vermutlich auch der Grund dafür, dass Kinder viele Dinge
so viel schneller und effizienter lernen können als Erwachsene. Unsere bisherigen Forschungsergebnisse weisen darauf hin, dass frühe Sinneseindrücke, Erfahrungen
und Lernprozesse hirnbiologisch betrachtet dazu „benutzt“
werden, die Ausreifung der noch unreifen funktionellen
Schaltkreise, insbesondere im limbischen „Belohnungs“System zu optimieren. Salopp ausgedrückt könnte man
dies in der Computersprache mit der „Formatierung der
Festplatte“ bezeichnen. Somit werden in der „Hardware“ –
dem Gehirn – schon relativ früh im Leben prinzipielle
Konzepte für späteres Lernen, und auch für die mit jedem
Lernprozess untrennbar verknüpfte emotionale Erlebnis-
welt angelegt. Mit dieser sich in den frühen Lebensjahren
selbst ausformenden „Hardware“ werden wir dann zeitlebens fühlen, denken und Gedächtnisinhalte abspeichern.
Während bei der frühen Hirnentwicklung die Grundprinzipien der neuronalen Verschaltungen überwiegend
durch genetische Faktoren bestimmt werden, spielen bei
der Feinabstimmung der synaptischen Verknüpfungen
zwischen den Neuronen im limbischen „Belohnungs“System Erfahrungs- und Lernprozesse eine fundamentale
Rolle. So zeigen unsere Arbeiten an jungen Strauch- und
Laborratten, dass Negativerlebnisse, z.B. die wiederholte
oder chronische Trennung von den Eltern, zu einer akuten
Senkung der metabolischen Aktivität (gemessen über die
Traubenzucker-Aufnahme) in limbischen Regionen führt.
Diese durch Stress und Angst ausgelöste Deaktivierung
des Gehirns kann teilweise „abgepuffert“ werden durch die
Anwesenheit von positiven emotionalen Reizen, z.B. die
Anwesenheit der Geschwister oder die vertraute Stimme
der Mutter. Die Langzeitfolgen solcher frühen Negativerlebnisse sind hirnstrukturelle Veränderungen. Es finden
sich z.B. Veränderungen der neurochemischen „Modulatorsysteme“, wie z.B. eine Erhöhung von serotonergen
5HT1A- und dopaminergen D1-Rezeptoren, und eine
Verminderung des dopaminergen Fasersystems im
Präfrontalcortex („Belohnungssystem“). Auch die Ver-
70
schaltungsmuster zwischen den Neuronen verändern sich,
die früh „gestressten“ Tiere zeigen z.B. veränderte Dichten
von Spinesynapsen im Präfrontalcortex, Hippocampus und
in der lateralen Amygdala. Einige dieser synaptischen Veränderungen werden vermutlich über die Ausschüttung von
Stresshormonen wie Cortisol bzw. Corticosteroiden vermittelt, d.h. im juvenilen Gehirn existiert eine enge
Kopplung zwischen den durch Stress oder Angst ausgelösten endokrinen/hormonellen Reaktionen und der Ausreifung der Informationskanäle zwischen den Nervenzellen. Zukünftiges Ziel wird es sein, die erfahrungs- und
lerninduzierten hormonellen Wechselwirkungen und die
daran gekoppelten biochemischen und molekularen
Reaktionskaskaden weiter aufzuschlüsseln, die in die
Entwicklung der Nervenzellen des limbischen Systems
eingreifen. Ihre genaue Kenntnis kann zur Beantwortung
der Frage beitragen, inwieweit Verhaltens- und Lernstörungen und psychische Erkrankungen als hirnbiologische Funktionsstörungen betrachtet werden können.
Darüber hinaus ergibt sich die Perspektive, das Grundlagenwissen zur erfahrungsgesteuerten Plastizität des
Gehirns für den Bereich der Früherziehung zu nutzen, d.h.
die Erkenntnisse aus der Lernforschung im Zusammenhang mit pädagogischen Konzepten zu betrachten.
Research Report
Juvenile emotional experience modulates the
functional maturation of the limbic system
Whereas the basic wiring diagram of the brain is genetically preprogrammed, its fine tuning throughout different
phases of infancy, childhood, and adulthood are highly
experience dependent. Normal brain development requires
the precise interactions of environmental signals with
genes and molecules that drive cellular differentiation and
circuit formation. A critical regulator of these events is the
dyadic interaction between the newborn and its parents,
which controls the sensory and the socio-emotional environment of the developing individual and thereby interferes
with brain development. The dyadic interaction between
the newborn and its parents, carried by the reciprocal exhibition of parental/maternal behavior and newborn signaling, promotes physiological and immunological resilience,
physical maturation and species-typical social and emotional development in the young individual. Such continued,
adequate and well balanced stimulation contributes to the
formation of a normally functioning limbic system. In contrast, disturbances or the interruption of the parent/motherinfant interactions may result in the formation of defective
synaptic circuits, being responsible for the retarded or
disturbed behavioral outcome which is observed in deprived individuals. Although on the behavioral level there is
considerable evidence for rodents and primates including
man that parental/maternal deprivation impairs the development of mental capacities and socio-emotional competence,
systematic and multidisciplinary investigations are lacking
to clarify causal relationships between behavioral pathology
and abnormal brain cytoarchitecture and function. Thus,
the aim of our research is to identify and characterize the
cellular principles, the endocrine/hormonal, neurochemical
Gastgruppe Institut für Biologie
and molecular mechanisms which underlie learning- and
experience-induced brain maturation and to evaluate the
behavioral effects of socio-emotional deprivation and early
life stress. Our experiments in different animal models
unveiled the remarkable influence of the parent-infant
contact on brain development and are in line with our working hypothesis that juvenile learning events and emotional
experience have a strong impact on the functional maturation of the limbic pathway. The detailed knowledge of the
neurobiology of such self-organizing plastic systems may
begin to change our conceptual approaches to psychopathology and open new avenues of therapeutics for the
major psychiatric illnesses that are critically dependent on
such learning and memory mechanisms. Furthermore, the
knowledge of the basic principles of learning- and
memory-related neuronal plasticity may in the future be
applied for innovative neuropaedagogic concepts for the
preschool/elementary school levels.
Changing the "wiring": cellular mechanisms of
experience-induced synaptic plasticity
C. Helmeke, J. Bock, W. Ovtscharoff jr, A. Abraham,
R. Schnabel, U. Kreher, S. Becker
Our studies in rodents (Octodon degus, Rattus rattus norwegicus) revealed that early traumatic emotional experience,
such as stress during pregnancy, parental separation and
chronic social isolation and early weaning, modifies the
excitatory as well as monoaminergic modulatory synaptic
input in cortical and subcortical limbic areas in a timedependent manner. A quantitative anatomical study in the
rodent anterior cingulate cortex, hippocampus, and lateral
amygdala revealed region-, cell-, and dendrite-specific
changes of spine densities in 3-week-old Octodon degus
after repeated parental separation (Poeggel et al., 2003). In
parentally separated animals significantly higher spine
densities were found in the cingulate cortex and in the hippocampal CA1 region, whereas reduced spine densities
were observed on the granule cell dendrites in the dentate
gyrus and on the apical dendrites in the medial nucleus of
the lateral amygdala. Pharmacological blockade of 5HT1A
receptors (1mg/kg) of the 5-HT1A antagonist Way-100,
635) during parental separation was able to prevent the
stress-induced elevation of dendritic spines in the cingulate
cortex. Interestingly, emotional and physical stress altersynaptic development in the anterior cingulate cortex in a
different manner: Emotional stress elevates spine densities,
whereas physical stress (daily saline injections) reduces
spine densities. These results confirm that early socioemotional environment interferes with synaptic development in the prefrontal cortex and other limbic areas. Since
the limbic system is critical for a variety of emotional
behaviors and associative aspects of learning, such experience-induced morphological changes may lead to altered
behavioral and cognitive capacities in later life.
Collaborations: Prof. Gerd Poeggel, Zoologisches Institut
Universität Leipzig; Prof. Micah, Leshem, Dept.
Psychology, Haifa University, Prof. Marta Weinstock,
Dept. Pharmacology, Hebrew University Medical Center,
Jerusalem
Funding: SFB 426 and the German-Israeli Science
Foundation
71
Guest Group Institute of Biology
Fig. 1: Different histological techniques for staining and 3D reconstruction of neurons and their synaptic connections. Left: Camillo
Golgi´s "reazione nera" (1873), the traditional (and still unbeatable!) impregnation method for neurons, dendrites and postsynaptic
dendritic spines. Top right: Dendrite labelled by injection of the fluorescent dye "Lucifer Yellow". In this 3D reconstruction from serial
confocal laserscan image stacks the various shapes and sizes of postsynaptic dendritic spines can be particularly appreciated. Bottom
right: Computer system, with which dendrites and spines can be automatically traced, and from which their volumes, surface and shape
factors can be calculated.
Fine-tuning of information channels: quantitative
ultrastructural synaptic changes induced by early
experience
W. Ovtscharoff jr, R. Schnabel, U. Kreher
In order to identify changes of ultrastructural parameters in
relation to early experience we developed techniques for
the three dimensional reconstruction of dendrites and spines
from confocal laserscan image stacks and from ultrathin
sections, in which synaptic parameters such as the surface,
volume, curvatures, shape of the PSD etc can be measured.
An indicator for experience induced changes of synaptic
efficacy may be alterations of synaptic shape. The analysis
of fine morphological parameters of dendritic spines was
analysed on the basal dendrites of Lucifer Yellow-injected
layer III pyramidal neurons in the anterior cingulate cortex
of parentally deprived 45 days-old degus in comparison
with age-matched socially undisturbed control pups. The
3D measurements of spines were performed in image
stacks produced by a confocal laser scanning microscope
applying a newly developed image analysis software
(Herzog et al., SPIE 2984, 146-158, 1997). Although the
spine volumes remained unchanged, a significant reduction of spine length, accompanied by a significant increase
of mean spine diameters was observed in the parentally
deprived animals. These overall effects were due to a
reduction of spine length on dendritic branch 2 and 4, and
a significant increase of spine diameter on branch 3. This
is the first evidence that the disturbance of the parent-child
contact during an early postnatal phase results in lasting
changes of distinct shape parameters of presumed excitatory spine synapses, which most likely reflect an experiencerelated fine-tuning of synaptic strength within limbic cortical circuits.
Collaborations: Prof. Dr. B. Michaelis, Institut für
Elektronik, Signalverarbeitung und Kommunikationstechnik, Otto-von-Guericke-Universität Magdeburg
Funding: VW-Stiftung
Putting the brakes on excitation: early life time
experience modulates inhibition in the limbic anterior
cingulate cortex
C. Helmeke, K. Becker, P. Kremz
In addition to changes of excitatory spine synapses after
early stress exposure we found changes in the GABAergic
inhibitory interneurons, characterized by their content of
either Ca2+-binding protein parvalbumin (PV), calbindin-D
28K (CaBP-D 28k) and calretinin (CaR). At the age of 45
days (puberty) lower densities of CaBP-D28K-immunoreactive cells were found in the anterior cingulate and in the
precentral medial areas of the medial prefrontal cortex of
deprived animals compared to controls. No differences
were observed for the other two GABAergic subpopula-
72
Gastgruppe Institut für Biologie
Fig 2: Electron microscopic reconstruction of identified neurons connections in in vitro hippocampal synaptic networks.
A: Single ultrathin (90 nm) section of a cultured hippocampal neuron (large arrow), transfected with "Green fluorescent protein” (GFP),
and immunostained with DAB and embedded for EM. Small arrows point to dendritic segments.
B: Cell from A shown as 3D reconstruction from serial ultrathin sections, small arrows point to the same dendritic segmentsas shown in A.
C: Higher magnification of a dendrite with postsynaptic spines (asterisks) and presynaptic terminals (triangles) that innervate spines or
the dendritic shaft.
D: Dendrite from C shown as 3D reconstruction from serial ultrathin sections, asterisks and triangles label identical structures as seen
in C.
tions. At the age of 90 days (adulthood) significantly higher
densities of PV-immunoreactive cells were found in the
anterior cingulate and in the precentral medial cortices of
deprived animals, whereas the density of CaBP-D28Kimmunoreactive and of CaR-positive neurons were
unchanged at this age. The altered numbers of CaBP-D
28k- and PV-immunoreactive inhibitory interneurons in
the prefrontal cortex may counterbalance the excitability
of the principal neurons, caused by their elevated spine
densities.
Collaborations: Prof. Dr. B. Michaelis, Institut für
Elektronik, Signalverarbeitung und Kommunikationstechnik, Otto-von-Guericke-Universität Magdeburg;
Prof. T. Voigt, Abteilung für Entwicklungsphysiologie,
Medizinische Fakultät Otto-von-Guericke-Universität;
Prof. A. Krost, Abt. Halbleiterepitaxie, OvGU
Magdeburg
Funding: LSA
Fragile X mental retardation: Synaptic, neurochemical
and metabolic dysfunctions in a genetic mouse model
K. Braun, U. Kreher, M. Gruss, J. Bock
To study the mechanisms underlying the formation of spines, their morphology and function under controlled conditions we used a model system for an inherited mental disorder, the fragile X mental retardation syndrome. FragileX, the main cause of inherited human mental retardation is
associated with the absence of a recently identified FragileX mental retardation protein (FMRP), which was suggested to be involved in spine formation, elimination and
stabilization during brain maturation. Biochemical studies
provided the first evidence that the lack of FMRP expression in FMRP knockout mice is accompanied by agedependent, region-specific alterations in neurotransmission.
Mice, which lack this protein due to a knockout (FMR1-/-)
mutation, display altered levels of amino acids, monoamines and their metabolites (Gruss et al. 2003, Gruss and
Guest Group Institute of Biology
Braun, 2004). Significant region-specific differences of
basal neurotransmitter and metabolite levels were found
between wildtype and Fmr1 knockout animals, predominantly in juveniles (postnatal days 28 to 31) and less in
adults. In juvenile knockout mice, aspartate and taurine
were especially increased in cortical regions, striatum,
hippocampus, cerebellum, and brainstem, and an altered
balance between excitatory and inhibitory amino acids was
found in the caudal cortex, hippocampus, and brainstem.
The neurochemical alterations are paralleled by (and
causally linked to?) structural and functional differences in
the FMR1-/- mouse (Braun and Segal 2000, Cerebral
Cortex 10,1045; Segal et al., 2003). The comparison of
dendritic morphology of 2-week-old cultured neurons,
taken from postnatal day 1 fragile X mental retardation
gene1 knock out (FMR1-/-) mice hippocampus with cells
taken from wild type mice revealed under control conditions that the FMR1-/- neurons displayed significantly
lower spine densities compared to wild type neurons.
Pharmacological stimulation of electrical activity, induced
by bicuculline, caused a reduction in dendritic spine density
in both the FMR1-/- and the wild type cells. In both
groups, bicuculline induced a significant shrinkage of
spines that were occupied by one or more synaptophysinimmunoreactive presynaptic terminals. The concentration
of FMR1 in the wild type cultures was not affected by
bicuculline treatment. These experiments indicate that
FMR1 is not likely to be an essential factor in activitymodulated morphological plasticity of dendritic spines in
cultured hippocampal neurons.
Collaborations: Prof. M. Segal, The Weizmann Institute,
Rehovot, Israel
Funding: FRAXA Foundation and VW-Stiftung
Publications of the Department
Peer-reviewed original publications
2002
Metzger M, Jiang S, Braun K (2002) A quantitative immuno-electron microscopic study of dopamine terminals in
forebrain regions of the domestic chick involved in filial
imprinting. Neuroscience 111, 611-623
Metzger M, Toledo C, and Braun K (2002) Serotonergic
innervation of the telencephalon in the domestic chick.
Brain Res. Bull. 57, 547-551
2003
Braun K, Kremz P, Wetzel W, Wagner T, Poeggel G
(2003) Influence of parental deprivation on the behavioral development in Octodon degus: Modulation by
maternal vocalizations. Dev Psychobiol 42, 237-245
Poeggel G, Nowicki L, Braun K (2003) Early social deprivation alters monoaminergic afferents in the orbital prefrontal cortex of Octodon degus. Neuroscience 116,
617-620
73
Segal M, Kreher U, Greenberger V, Braun K (2003) Is
Fragile X Mental Retardation Protein involved in activityinduced plasticity of dendritic spines? Brain Res. 972/12, 9-15
Ziabreva, I, Schnabel R, Poeggel G, Braun K (2003)
Mother’s voice "buffers" separation-induced receptor
changes in the prefrontal cortex of Octodon degus.
Neuroscience 119, 433-441
Ziabreva, I, Poeggel G, Schnabel R, Braun K (2003)
Separation-induced receptor changes in the hippocampus and amygdala of Octodon degus: Influence of
maternal vocalizations. J. Neurosci. 23(12), 5329-5336
Dahlem Y, Dahlem M, Mair T, Braun K, Müller SC (2003)
Extracellular potassium alters frequency and profile of
retinal spreading depression waves. Exp Brain Res. 152,
221-228
Gruss M, Bock J, Braun K (2003) Haloperidol impairs
auditory filial imprinting and modulates monoaminergic
neurotransmission in an imprinting-relevant forebrain
area of the domestic chick. J. Neurochem. 87, 686-696
Poeggel, G, Helmeke C, Abraham A, Schwabe T,
Friedrich P, Braun, K (2003) Juvenile emotional experience alters synaptic composition in the rodent prefrontal cortex, hippocampus and lateral amygdala. Proc.
Natl. Acad. Sci. USA 100, 16137-42
2004 / In press
Gruss M, Braun K (2004) Age- and region-specific imbalances of basal amino acids and monoamine metabolism
in limbic regions of female Fmr1 knock out mice.
Neurochem. Int. (in press)
Book chapters and other publications
2002
Braun K, Bock J, Gruss M, Helmeke C, Ovtscharoff jr W,
Schnabel R, Ziabreva I, Poeggel G (2002) Frühe emotionale Erfahrungen und ihre Relevanz für die Entstehung und Therapie psychischer Erkrankungen. In:
Strauss B, Buchheim A, Kächele H (Hrsg.) "Klinische
Bindungsforschung–Theorien-Methoden-Ergebnisse",
Schattauer Verlag für Medizin und Naturwissenschaften, Stuttgart
Bock J, Braun K (2002) Juvenile emotions modulate the
functional maturation of the brain: animal studies and
their possible relevance for psychotherapy/ Frühkindliche Emotionen steuern die funktionelle Reifung des
Gehirns: tierexperimentelle Befunde und ihre mögliche
Relevanz für die Psychotherapie. Psychotherapie 7 (2),
190-194
2003
Braun K, Bock J (2003) Die Narben der Kindheit.
Gehirn&Geist, 1/2003 Spektrum der Wissenschaften, S.
50-53
Bock, J, Helmeke, C, Ovtscharoff jr W, Gruss M, Braun K
(2003) Frühkindliche emotionale Erfahrungen beeinflussen die funktionelle Entwicklung des Gehirns.
Neuroforum 2/03, 51-57
Gruss M, Segal M, Braun K (2003) Das Fragile XSyndrom als Herausforderung für die Neurowissenschaften. FRAX-Info, 11 1/2003, 2-5
Braun K (2003) Wie Gefühle unser Gehirn verändern.
Oder: Was Hänschen nicht lernt, lernt Hans nimmermehr? Forum Loccum Nr. 4, 7-11
74
Abstracts (selection)
2002
Helmeke, C, Ovtscharoff jr. W, Poeggel G, Braun K
(2002) Lack of paternal care reduces spine density in
the limbic cortex. Soc. Neurosci. 32, p59, 130.4
Ovtscharoff Jr. W, Helmeke C, Braun K (2002) Does
paternal care affect the development of the prefrontal
cortex? Developmental Psychobiology. Volume 41.
Number 3. p318
Schnabel, R, Herzog, A, Michaelis, B, Braun, K (2002)
Parental deprivation induces changes of distinct shape
parameters of dendritic spines in the anterior cingulate
cortex of Octodon degus. Soc. Neurosci. 32, p59. 130.5
2003
Gruss M, Westphal S, Luley C, Braun K (2003)
Consequences of maternal separation during different
stages of early development on HPA axis activity in
three week old rats. Proc. of the 29th Göttingen
Neurobiol. Conf., 151
Abraham A, Gruss M, Bock J, Braun AK (2003) Early
parental separation induces more frequent play fighting
but less seriouos fighting in degus (Octodon degus).
Soc. Neurosci. 21/2, 481.6
Becker, K, Bock, J, Braun, K (2003) Changes of parental
behavior after acute and repeated separation from the
offspring in the precocious species Octodon degus.
Proc. of the 29th Göttingen Neurobiol. Conf., 652
Helmeke, C, Abraham, A, Braun, K (2003) Differential
effect of emotional and physical stress on cortical dendritic spine development and possible role of 5-HT1Areceptor blockade. Soc. Neurosci. 33, p22, 809.14
Braun, K, Bock, J (2003) Early traumatic experience alters
metabolic brain activity in thalamic, hypothalamic and
prefrontal cortical brain areas of Octodon degus. Soc.
Neurosci. 33, p22, 376.2
Theses
Diploma Theses
Dipl. Biol. Tina Schwabe: Der Einfluß frühkindlicher
sozio-emotionaler Erfahrungen auf die Morphologie
von Neuronen im Hippocampus der Strauchratte
(Octodon degus). Juni 2002, Universität Leipzig
Dipl. Biol. Patricia Friedrich: Morphologische Veränderungen pyramidaler Neurone des lateralen amygdaloiden Kerns in Abhängigkeit von frühkindlichen emotionalen Erfahrungen bei der Strauchratte (Octodon
degus). Juli 2002, Universität Leipzig
Dipl. Psychol. Katja Becker: Einfluß von wiederholter und
chronischer Elterndeprivation auf die Entwicklung
emotionaler Verhaltensweisen bei heranwachsenden
Strauchratten (Octodon degus): ein neues Tiermodell
für Bindungs- und Aufmerksamkeitsstörungen? 2003,
Fachbereich Psychologie, Universität Jena
Ph.D. Theses
Dipl.-Med. Ovtscharoff, Wladimir jun. (2002): The influence of early postnatal social deprivation on the establishment of synaptic composition in limbic cortices:
quantitative electronmicroscopic studies in Octodon
degus. Medizinische Fakultät der Otto-von-GuerickeUniversität Magdeburg
Gastgruppe Institut für Biologie
Helmeke, Carina (2003): Einfluss frühkindlicher
Sozialerfahrung auf die funktionelle Reifung des limbischen Systems der Strauchratte (Octodon degus).
Fakultät für Naturwissenschaften, Institut für Biologie
der Otto-von-Guericke-Universität Magdeburg
Structure of the Department
Head
Prof. Dr. Anna Katharina Braun
Scientific Staff and Postdoctoral Fellows
Dr. Michael Gruß
Dr. Jörg Bock
Dr. Reinhild Schnabel
Dr. Wladimir Ovtscharoff
Dr. Carina Helmeke
Doctoral and Diploma Students
Andreas Abraham
Stoyan Stoyanov (since 06/2003)
Meena Sriti Murmu (since 06/2003)
Stefanie Zehle (since 04/2003)
Grzegorz Jezierski (since 01/2003)
Katja Becker
Rowena Antemano (since 10/2003)
Technicians
Petra Kremz
Ute Kreher
Susann Becker
Secretary
Heike Corodonnoff-Reinhardt (since 12/2002)
Herunterladen