3. Tag: Aggregatszustände und Redoxreaktionen 1. Aggregatzustände

Werbung
3. Tag: Aggregatzustände und Redoxreaktionen
1
3. Tag: Aggregatszustände und Redoxreaktionen
1. Aggregatzustände
Materie begegnet uns in drei Aggregatzuständen: fest, flüssig und gasförmig. Elemente und
Verbindungen können in allen drei Aggregatzuständen auftreten. Zum Beispiel kommt H2O als festes
Eis, als flüssiges Wasser und als Wasserdampf vor. In welchem Aggregatzustand ein Stoff auftritt,
hängt vom Druck und von der Temperatur ab.
Abbildung 1: Die Aggregatzustände und ihre Übergänge
Feste Stoffe zeichnen sich durch eine stabile äußere Form und definiertes Volumen aus. Flüssigkeiten
besitzen ebenfalls ein definiertes Volumen, aber keine stabile Form. Gase besitzen weder ein
definiertes Volumen noch eine Form; sie füllen den zur Verfügung stehenden Raum ganz aus.
2. Stöchiometrie
Die Stöchiometrie (griech. stoicheion = Element; metron = messen) befaßt sich mit den
Mengenverhältnissen der Elemente in Verbindungen und mit den quantitativen Beziehungen zwischen
Verbindungen oder Elementen, die an chemischen Reaktionen beteiligt sind. (Die Atomtheorie der
Materie ist die Grundlage dazu.)
Stoffmenge n:
Die Stoffmenge, die aus 6,023 * 1023 Teilchen besteht, nennt man ein Mol
(SI-Symbol: mol). Der Chemiker rechnet vorzugweise mit der Stoffmenge und nicht mit der Masse.
Der Vorteil ist, dass gleiche Stoffmengen verschiedener Stoffe die gleiche Teilchenanzahl enthalten
und bei chemischen Reaktionen die Teilchenanzahl wichtig ist. (Die Zahl 6,023 * 1023 wird als
Avogadrosche Zahl NA bezeichnet (im deutschen Schrifttum auch Loschmidtsche Zahl).)
3. Tag: Aggeratzustände und Redoxreaktioen
Relative Molmasse M r :
2
Die relative Molekülmasse Mr ergibt sich aus der Summe der
relativen Atommassen Ar aller Atome des Moleküls. (Die relativen Atom- und Molekülmassen
haben keine Einheit.) Ein Mol einer molekularen Substanz aus 6,023 * 1023 Molekülen hat die
Masse in Gramm, deren Zahlenwert der relativen Molekülmasse entspricht.
z.B.
Mr (NaCl) = Ar(Na) + Ar (Cl) = 22,99 + 35,45 = 58,44
Molare Masse M :
Die molare Masse M eines Stoffes ist der Quotient aus der Masse m
und der Stoffmenge n dieses Stoffes:
M
=
m
n
 g 
 mol 
Der einzige Unterschied zur relativen Molmasse besteht also in der Einheit g/mol, während die
relativen Molmassen stets dimensionslos sind. Die molare Masse wird auch als Molmasse
bezeichnet. z.B. M(NaCl) = 58,44 g/mol
Konzentration c :
Die Konzentration c (oder genauer: Stoffmengenkonzentration) ist die
Stoffmenge n, die in einem Volumen V vorhanden ist:
c
=
n
V
 mol 
 L 
Es ist üblich, mit der Einheit mol/L zu arbeiten. Mit wachsender Teilchenzahl pro Volumen wächst
also die Konzentration. c(HCl) = 0,1 mol/L bedeutet beispielsweise, dass in 1L Wasser 0,1 mol
(gasförmiges) HCl gelöst ist.
Normalität:
Die Normalität (oder genauer: Äquivalentkonzentration) ist die
Stoffmengenkonzentration bezogen auf Äquivalente, d.h. die Anzahl der Mole von Äquivalentteilchen pro Liter Lösung.
So hat z.B. Schwefelsäure H2SO4 bezüglich der H+-Ionenkonzentration eine Äquivalentzahl von z =
2, da Schwefelsäure 2 H+-Teilchen abgeben kann. Für eine Normallösung von Schwefelsäure mit
einer Normalität von 0,1 mol/L schreiben wir c(½H2SO4) = 0,1 mol/L oder einfacher 0,1N H2SO4.
Diese
Lösung
hat
eine
H+-Ionenkonzentration von c(H+) = 0,1 mol/L und eine
Stoffmengenkonzentration von c(H2SO4) = 0,05 mol/L! Die Normalität soll nicht mehr verwendet
werden!
0,1N H2SO4
=>
c(H2SO4) = 0,05 mol/L
(z = 2; c(H+) = 0,1 mol/L)
0,1N HCl
=>
c(HCl) = 0,1 mol/L
(z = 1; c(H+) = 0,1 mol/L)
3. Tag: Aggregatzustände und Redoxreaktionen
3
3. Oxidationszahlen
Oxidationszahlen sind Ladungen oder fiktive Ladungen, die den Atomen einer Verbindung nach
bestimmten Regeln zugewiesen werden.
•
Die Oxidationszahl eines Atoms im elementaren Zustand ist null. (z.B. H2, S8)
•
In Ionenverbindungen ist die Oxidationszahl eines Elements identisch mit der Ionenladung. (z.B.
NaCl: Die Oxidationszahl des Natriumions ist +I, die des Chloridions –I)
•
Bei kovalenten Verbindungen wird die Verbindung gedanklich in Ionen aufgeteilt. Die Aufteilung
erfolgt so, dass die Bindungselektronen dem elektronegativeren Partner zugeteilt werden. Bei
gleichen Bindungspartnern erhalten beide die Hälfte der Bindungselektronen. Die Oxidationszahl
ist dann identisch mit der erhaltenen Ionenladung. Aus diesem Grund hat Sauerstoff als sehr
elektronegatives Element fast immer die Oxidationszahl –II und Wasserstoff (relativ geringe
Elektronegativität) die Oxidationszahl +I.
4. Oxidation und Reduktion
Der Begriff Oxidation wurde ursprünglich für Reaktionen verwendet, bei denen sich Sauerstoff
(Lat.: oxygenium) mit anderen Substanzen verbindet, und unter Reduktion verstand man die
Entfernung von gebundenem Sauerstoff aus einer Verbindung. (Lat. reducere = zurückführen)
z.B.
→
S + O2
Fe2O3 + 3 C
SO2
→
„Oxidation“
2 Fe + 3 CO
„Reduktion“
Die heutige Definition ist allgemeiner und ist nicht mehr an den Sauerstoff gebunden:
•
Bei einer Oxidation werden Elektronen abgegeben, die Oxidationszahl erhöht sich.
•
Bei einer Reduktion werden Elektronen aufgenommen, die Oxidationszahl erniedrigt sich.
±0
z.B.
→
Fe
±0
z.B.
Cl2
+ II
Fe2+
+ 2e-
Oxidations-Gleichung
-I
-
+ 2e
→
2 Cl-
Reduktions-Gleichung
Schreibt man diese Reaktionen als Gleichgewichtsreaktionen, dann erfolgt je nach der Richtung, in
der Reaktion abläuft, eine Oxidation oder Reduktion.
z.B.
Oxidation
Na+
Na
+
e-
Reduktion
reduzierte Form
oxidierte Form
Die oxidierte Form und die reduzierte Form bilden zusammen ein korrespondierendes
Redoxpaar. Na/Na+, Fe2+/Fe3+, 2Cl-/Cl2 sind solche Redoxpaare.
3. Tag: Aggeratzustände und Redoxreaktioen
4
Da bei chemischen Reaktionen keine freien Elektronen auftreten können, kann eine Oxidation oder
eine Reduktion nicht für sich alleine auftreten. Eine Oxidation muß stets mit einer Reduktion
gekoppelt sein, bei der diese Elektronen aufgenommen werden. Reaktionen mit gekoppelter
Oxidation und Reduktion nennt man Redox-Reaktionen (Reduktions-Oxidations-Reaktionen) An
einer Redoxreaktion sind also immer zwei Redoxpaare beteiligt. Dabei muß insgesamt die
Oxidationszahlerhöhung genauso groß sein wie die Oxidationszahlerniedrigung.
±0
z.B.
Fe
±0
+ Cl2 →
+ II
Fe2+
-I
+ 2 Cl-
Redox-Gleichung
5. Aufstellen von Redoxgleichungen
Beim Formulieren von Redox-Reaktionen kommt es darauf an, die Zahl der bei der Oxidation
abgegebenen und die Zahl der bei der Reduktion aufgenommenen Elektronen auszugleichen.
Anders ausgedrückt, es ist dafür zu sorgen, dass die gesamte Oxidationszahlzunahme der gesamten
Oxidationszahlabnahme entspricht. Zusätzlich muß, wie bei allen chemischen Reaktionen, die Anzahl
und Art der Atome sowie die Summe der Ionenladungen auf beiden Seiten der Gleichung gleich groß
sein. Um Redoxreaktionen zu formulieren, geht man wie folgt vor:
•
Reaktanten und Produkte, die an der Reduktion und Oxidation beteiligt sind, sind als erstes
alle anzugeben; für sie werden die betreffenden Oxidationszahlen ermittelt.
•
Die Oxidationsgleichung wird aufgestellt. Aus der Differenz der Oxidationszahlen erhält man
die Anzahl auftretender Elektronen.
•
Die Reduktionsgleichung wird aufgestellt. Aus der Differenz der Oxidationszahlen erhält man
die Anzahl auftretender Elektronen.
•
Prüfung der Elektroneutralität: Auf beiden Seiten muß die Summe der elektrischen Ladungen
gleich groß sein. Um die Ionenladungen in wäßriger Lösung auszugleichen, dienen H+- und OH—
Ionen (abhängig vom pH-Wert der Lösung).
•
Prüfung der Stoffbilanz: Auf beiden Seiten der Reaktionsgleichung muß die Anzahl der Atome
jeder Atomsorte gleich groß sein. Der Ausgleich erfolgt durch H2O.
•
Das Zahlenverhältnis, in dem die Reaktanten miteinander reagieren, wird bestimmt, indem die
Oxidationszahlzunahme und die Oxidationszahlabnahme balanciert werden.
•
Die Redoxgleichung wird aufgestellt.
[Übungsbeispiel:
Cu + NO3-
=>
Cu2+ + NO]
6. Literatur
[1]
E. Riedel: Anorganische Chemie. de Gruyter Verlag, Berlin, 2. Auflage (1990)
[2]
C.E. Mortimer: Chemie – Das Basiswissen der Chemie. Thieme Verlag, Stuttgart, 5. Auflage
(1987)
Herunterladen