IRTG-Seminar - April 25, 2012

Werbung
AG Genetik
IRTG-Seminar - April 25, 2012
Jürgen J. Heinisch
In vivo recombination and yeast
genetics as tools
for studying microcompartmentation
IRTG-Lecture
Jürgen J. Heinisch
April 25, 2012
AG Genetik
IRTG-Seminar - April 25, 2012
Jürgen J. Heinisch
Lecture overview
Shuttle vectors and use of yeast for in vivo cloning
Multiple deletions and tetrad analysis for combination
of desired traits
Substitution of deletion cassettes for in vivo mutated
genes
“Beyond the rim“: C- and N-terminal tags, yeast
display, gap-repair, and many more
AG Genetik
IRTG-Seminar - April 25, 2012
Jürgen J. Heinisch
Lecture overview
Shuttle vectors and use of yeast for in vivo cloning
Multiple deletions and tetrad analysis for combination
of desired traits
Substitution of deletion cassettes for in vivo mutated
genes
“Beyond the rim“: C- and N-terminal tags, yeast
display, gap-repair, and many more
IRTG-Seminar - April 25, 2012
AG Genetik
Jürgen J. Heinisch
Characteristics of shuttle vectors (2-way/double)
- maintenance and expression in YFO (= “Your Favorite Organism“)
- suitable cloning sites
- selection and amplification in E. coli
Yeast/E. coli
Eco RI 230
Sma I 246
Bam HI 251
Xba I 257
Sal I 263
Sph I 275
E. coli
replication
multiple
cloning
site
lacZα
bla
Bcl I 847
Nhe I 891
URA3
1000
YEp352
4000
5407 bps
Sca I 3910
2000
E. coli
selection
Spe I 252
Nde I 486
Sca I 9545
E. coli
replication
ori
5000
Lentivirus/E. coli
CMV
bla
LTR5'
Psi
ori
Nde I 1206
8000
yeast
selection
L22_eGFP
2000
9987 bps
SV40 ori
6000
4000
CamKII
3000
f1 ori
E. coli
selection
LTR3'
WPRE
2µm
yeast replication
mammalian
propagation
Xho I 5283
eGFP
expression
signals
Bam HI
cloning
site
YFG
Eco RI 4655
(= Your Favorite Gene)
AG Genetik
IRTG-Seminar - April 25, 2012
Jürgen J. Heinisch
Frequent problems with available shuttle vectors
- limited number of suitable cloning sites (e.g. only BamHI)
- problems with classical cloning by restriction/ligation
- restriction site may also appear within the gene of interest to
be expressed
BamHI
BglII BclI
YFG-ORF
- restriction site composition may interfere with translation
efficiency of mRNA generated from a cDNA clone
XmaI
mRNA
Protein
------ C C C G G G AUG -----Met – Aa – Aa – Aa ------
IRTG-Seminar - April 25, 2012
AG Genetik
Jürgen J. Heinisch
The solution: Cloning by in vivo recombination (IVR)
The principle:
target sequence linearized with BamHI
Spe I 252
NdeI 486
Sca I 9545
terminator
CamKII promoter
CMV
bla
LTR5'Psi
ori
8000
L22_eGFP
YFG
2000
9987 bps
PCR product
SV40 ori
6000
4000
CamKII
f1 ori
LTR3'
WPRE
Xho I 5283
eGFP
Bam HI
EcoRI 4655
CamKII promoter
YFG
terminator
gene cloned into expression vector
Yeast, Saccharomyces cerevisiae, is the best tool for IVR cloning
(fast, efficient, accurate)
IRTG-Seminar - April 25, 2012
AG Genetik
Jürgen J. Heinisch
A step-by-step procedure for the construction and
use of triple shuttle vectors
1. IVR cloning requires a replication origin and a selection marker for yeast
EcoRI 230
SmaI 246
BamHI 251
XbaI 257
SalI 263
SphI 275
Oligo 2
300 bp
lacZα
5000
YEp352
4000
5407
pUC ori
2µm
BclI 847
NheI 891
URA3
bla
ScaI 3910
URA3
bla 5‘
ori
bla
2µm
1000
bps
Nde I 1165
NdeI 1206
URA3
Spe I 2257
Nde I 2491
12000
Spe I 252
NdeI 486
Sca I 9545
2000
3000
2000
10000
Oligo 1
CMV
CMV
pJJH1242
2µm
bla
LTR5'Psi
ori
12609 bps
4000
SV40 ori
Not I 3529
8000
8000
f1 ori
6000
L22_eGFP
2000
9987 bps
SV40 ori
WPRE
eGFP
CamKII
LTR3'
Xho I 7288
Eco RI 6660
Not I 6645
6000
4000
CamKII
f1 ori
WPRE
eGFP
Bam HI
Bam HI 5899
Xho I 5283
EcoRI 4655
40 bp
IRTG-Seminar - April 25, 2012
AG Genetik
Jürgen J. Heinisch
A step-by-step procedure for the construction and
use of triple shuttle vectors
1b. Yeast sequences for Drosophila vectors
40 bp
Oligo 1
PstI 35
Sph I 1
Sal I 41
Eco RI 380
XbaI 95
Eco RV 10953
StuI 571
loxP
BamHI 1278
NcoI 800
EcoRV 819
UAS-HSPp
URA3
Nsi I 9990
5000
bla
2µm
4000
loxP
Sph I 1
pJJH1396
Bam HI 9039
1000
2000
URA3
Bam HI 1278
2000
white-SV40
117622µm
bps
loxP
UAS-HSPp
pJJH1410
3000
Nsi I 8423
Eco RI 380
Bgl II 392
Not I 398
Nde I 8264
512210000
bps
Eco RV 9060
loxP
loxP
Bgl II 392
Not I 398
Bam HI 11751
40 bp
2µm
URA3
bla
8000
8000
4000
loxP
pUAST
6000
2000
9050 bps
bla
Eco RV 2712
6000
white-SV40
4000
Oligo 2
Eco RV 4279
Nsi I 5317
Nsi I 5317
Eco RV 4279
IRTG-Seminar - April 25, 2012
AG Genetik
Jürgen J. Heinisch
A step-by-step procedure for the construction and
use of triple shuttle vectors
1c. Yeast sequences for insect vectors
Xba I 4678
Not I 4663
Spe I 4656
Sal I 4644
Eco RI 4628
BamHI 4606
Xho I 4311
Nhe I 4298
Nsi I 4287
Sph I 4280
Bam HI 1
Eco RI 23
Sal I 39
Not I 58
Pst I 81
Xho I 8343
Sph I 7602
Kpn I 7596
SV40PolyA
P10/PHp
PHp
P10
5000
bla
1000
pFastBac dual
8000
4000
5238 bps
bla
pJJH1460
2000
2000
Gentamycin
3000
6000
Gentamycin
ori
8637 bps
Eco RV 6245
Eco RV 6117
ori
loxP
4000
Eco RV 2923
2µm
loxP
URA3
Pst I 3440
Sal I 3446
Eco RV 4224
IRTG-Seminar - April 25, 2012
AG Genetik
Jürgen J. Heinisch
A step-by-step procedure for the construction and
use of triple shuttle vectors
2a. IVR cloning of genes of interest coupled to a selectable marker
target vector linearized with BamHI
2µm
bla
URA3
pUC ori
Spe I 2257
Nde I 2491
CMV
pJJH1242
12609 bps
SV40 ori
Not I 3529
f1 ori
CamKII
WPRE
eGFP
Xho I 7288
Eco RI 6660
Bam HI 5899
Not I 6645
Oligonucleotides for PCR reaction:
5‘
40 nt
target vector (5‘)
3‘
20 nt
marker
terminator
CamKII promoter
Nde I 1165
20 nt
YFG
PCR product from
plasmid template with
gene coupled to marker
YFG
marker
e.g. kanMX (Geneticin)
KlLEU2
SkHIS3
Co-transformation of linearized
(optional) vector (0.1-2 µg) with
PCR product (5-10 µg) into
S. cerevisiae
Selection for marker
(e.g. on plates with Geneticin or
lacking leucine/histidine)
3‘
40 nt
target vector (3‘)
terminator
marker
gene cloned into expression vector
CamKII promoter
5‘
YFG
IRTG-Seminar - April 25, 2012
AG Genetik
Jürgen J. Heinisch
A step-by-step procedure for the construction and
use of triple shuttle vectors
2b. IVR cloning of genes of interest directly from cDNA
target vector linearized with BamHI
2µm
bla
URA3
pUC ori
Spe I 2257
Nde I 2491
CMV
pJJH1242
12609 bps
SV40 ori
Not I 3529
f1 ori
CamKII
WPRE
eGFP
Xho I 7288
Eco RI 6660
Bam HI 5899
Not I 6645
Oligonucleotides for PCR reaction:
5‘
40 nt
target vector (5‘)
3‘
20 nt
YFG
terminator
CamKII promoter
Nde I 1165
20 nt
YFG
PCR product from
plasmid template with
gene coupled to marker
YFG
Co-transformation of linearized
(mandatory) vector (10-50 ng)
with PCR product (5-10 µg) into
S. cerevisiae
Selection for vector
(on plates lacking uracil)
3‘
40 nt
target vector (3‘)
CamKII promoter
5‘
YFG
terminator
gene cloned into expression vector
IRTG-Seminar - April 25, 2012
AG Genetik
Jürgen J. Heinisch
A step-by-step procedure for the construction and
use of triple shuttle vectors
2c. IVR cloning of genes of interest with C-terminal eGFP-tag
target vector linearized with BamHI
bla
URA3
pUC ori
CamKII promoter
Nde I 1165
2µm
CMV
12609 bps
SV40 ori
Not I 3529
f1 ori
CamKII
WPRE
eGFP
Bam HI 5899
Not I 6645
Oligonucleotides for PCR reaction:
5‘
40 nt
target vector (5‘)
3‘
20 nt
YFG
20 nt
YFG
40 nt
GFP
terminator
Spe I 2257
Nde I 2491
pJJH1242
Xho I 7288
Eco RI 6660
GFP
PCR product from
plasmid template with
gene coupled to marker
YFG
omit STOP-Codon
in oligo design
Co-transformation of linearized
(mandatory) vector (10-50 ng)
with PCR product (5-10 µg) into
S. cerevisiae
Selection for vector
(on plates lacking uracil)
3‘
CamKII promoter
5‘
YFG -GFP
terminator
C-terminal GFP tagged gene of interest
IRTG-Seminar - April 25, 2012
AG Genetik
Jürgen J. Heinisch
A step-by-step procedure for the construction and
use of triple shuttle vectors
2d. IVR cloning of genes of interest with N-terminal eGFP-tag
target vector linearized with EcoRI
CamKII promoter
Nde I 1165
2µm
bla
URA3
pUC ori
CMV
12609 bps
SV40 ori
Not I 3529
f1 ori
CamKII
WPRE
eGFP
Bam HI 5899
Not I 6645
Oligonucleotides for PCR reaction:
5‘
3‘
40 nt
20 nt
GFP
YFG
20 nt
YFG
3‘
40 nt
target vector (3‘)
PCR product from
plasmid template with
gene coupled to marker
YFG
Co-transformation of linearized
(mandatory) vector (10-50 ng)
with PCR product (5-10 µg) into
S. cerevisiae
CamKII promoter
5‘
terminator
omit STOP-Codon
in oligo design
Spe I 2257
Nde I 2491
pJJH1242
Xho I 7288
Eco RI 6660
GFP
Selection for vector
(on plates lacking uracil)
GFP- YFG
terminator
N-terminal GFP-tagged gene of interest
AG Genetik
IRTG-Seminar - April 25, 2012
Jürgen J. Heinisch
A step-by-step procedure for the construction and
use of triple shuttle vectors
3. Recovery of plasmids from yeast transformants
inoculate 3 ml selective medium with yeast transformant, grow ON at 30°C
harvest by centrifugation, wash, and resuspend in plasmid miniprep kit buffer 1
add glass beads and break cells by vigorous shaking (4°C/7 min)
centrifuge, collect supernatant and treat like E. coli plasmid preparation
elute from columns with 50 µl Tris-buffer, use 20 µl for E. coli transformation
use plasmid preparation and restriction digest for verification
Note: You cannot detect plasmids from a yeast preparation directly on an agarose gel!
AG Genetik
IRTG-Seminar - April 25, 2012
Jürgen J. Heinisch
A step-by-step procedure for the construction and
use of triple shuttle vectors
4. Removal of yeast sequences in E. coli (optional)
from: Bakota et al.
all yeast sequences can be
removed, leaving a single
loxP site in the target vector
AG Genetik
IRTG-Seminar - April 25, 2012
Jürgen J. Heinisch
Lecture overview
Shuttle vectors and use of yeast for in vivo cloning
Multiple deletions and tetrad analysis for combination
of desired traits
Substitution of deletion cassettes for in vivo mutated
genes
“Beyond the rim“: C- and N-terminal tags, yeast
display, gap-repair, and many more
AG Genetik
IRTG-Seminar - April 25, 2012
Jürgen J. Heinisch
Example: A quintuple deletion of CWI sensor genes
AG Genetik
IRTG-Seminar - April 25, 2012
Jürgen J. Heinisch
Method: Homologous recombination at chromosomal loci
Recipient yeast strains (HD56-5A derivatives)
MATa ura3-52 leu2-3,112 his3-11,15 trp1N::loxP
GAL MAL3 SUC2
MATα ura3-52 leu2-3,112 his3-11,15 trp1N::loxP
GAL MAL3 SUC2
AG Genetik
IRTG-Seminar - April 25, 2012
Jürgen J. Heinisch
Method: Crossing and tetrad analysis
Life cycle of laboratory S. cerevisiae strains with Mendelian inheritance
MATa ura3-52 leu2-3,112 his3-11,15 trp1N::loxP
GAL MAL3 SUC2 wsc1::KlURA3
wsc1::KlURA3
AgTEF2p
AgTEF2t
X
MATα ura3-52 leu2-3,112 his3-11,15 trp1N::loxP
GAL MAL3 SUC2 mid2::KlLEU2
mid2::KlLEU2
AgTEF2p
AgTEF2t
for example: MATa ura3-52 leu2-3,112 his3-11,15 trp1N::loxP
GAL MAL3 SUC2 wsc1::KlURA3 mid2::KlLEU2
→ Tetrad analysis allows the combination of desired traits from different parental strains
IRTG-Seminar - April 25, 2012
AG Genetik
Jürgen J. Heinisch
Method: Crossing and tetrad analysis
MATa ura3-52 leu2-3,112 his3-11,15 trp1N::loxP
wsc1::KlURA3 wsc2::KlTRP1 wsc3::kanMX
mtl1::SkHIS3 MID2
-trp (or -his; or G418)
wsc2::KlTRP1
wsc3::kanMX
mtl1::SkHIS3
homozygous deletions
X
MATα ura3-52 leu2-3,112 his3-11,15 trp1N::loxP
wsc2::KlTRP1 wsc3::kanMX mid2::KlLEU2
mtl1::SkHIS3 WSC1
-ura
-leu
wsc1::KlURA3
mid2::KlLEU2
heterozygous deletions
At least one of the sensors must be present for the yeast
cell to be viable; i.e. the quintuple deletion is lethal
IRTG-Seminar - April 25, 2012
AG Genetik
Jürgen J. Heinisch
Regeneration of selection markers (e.g. for expression of human homologs)
MATa ura3-52 leu2-3,112 his3-11,15 trp1N::loxP
wsc1::KlURA3 wsc2::KlTRP1 wsc3::kanMX
mtl1::SkHIS3 MID2
Stu I 917
CEN/ARS
wsc1::KlURA3
AgTEF2p
bla
pSH65
AgTEF2t
8018 bps
ori
loxP
loxP
wsc2::KlTRP1
AgTEF2p
Cre recombinase
mediated excision
ble
GAL1p
Cre
CYC1term
Eco RI 4791
Hin dIII 4779
AgTEF2t
TEF1p
Xho I 3363
Sal I 3369
wsc3::kanMX
AgTEF2p
AgTEF2t
mtl1::SkHIS3
AgTEF2p
AgTEF2t
wsc1::loxP
XV
wsc2::loxP
XIV
wsc3::loxP
XV
mtl1::loxP
VII
MATa ura3-52 leu2-3,112 his3-11,15 trp1N::loxP
wsc1::loxP wsc2::loxP wsc3::loxP mtl1::loxP MID2
loxP
AG Genetik
IRTG-Seminar - April 25, 2012
Jürgen J. Heinisch
Summary
Triple shuttle vectors allow for easy cloning of genes of interest in any vector of
interest using in vivo-recombination in yeast
In vivo-recombination can also be efficiently used to delete any target sequence
from the haploid (or diploid) yeast genome
Classical genetics with crossing and tetrad analysis can be employed to
construct multiple deletions
Markers can be either exchanged for each other or can be regenerated using plasmidbased, induced Cre-recombinase expression
AG Genetik
IRTG-Seminar - April 25, 2012
Jürgen J. Heinisch
Method: Homologous recombination at chromosomal loci
KlURA3
wsc1::KlURA3
AgTEF2t
AgTEF2p
chrXV (YOR008C)
WSC1
AgTEF2p
AgTEF2t
wsc2::KlTRP1
chrXIV (YNL283C)
KlTRP1
chrXV (YOL105C)
WSC2
AgTEF2t
wsc3::kanMX
AgTEF2t
AgTEF2p
AgTEF2p
AgTEF2p
AgTEF2t
mid2::KlLEU2
chrXII (YLR332W)
kanMX
AgTEF2p
AgTEF2t
mtl1::SkHIS3
AgTEF2t
chrVII (YGR023W)
WSC3
AgTEF2p
AgTEF2p
AgTEF2t
Herunterladen