Spektrum hermitescher Operatoren  = † Spektrum Â|ϕa i = a|ϕa i , |ϕa i = Eigenzustand , a = Eigenwert a∗ = hϕa |Â|ϕa i∗ = hϕa |† |ϕa i = hϕa |Â|ϕa i = a a∈R 2 Varianz ˆ |ϕa i = 0 hϕa |∆A orthogonal a 6= b ˆ =  − hϕa |Â|ϕa i ∆A | {z } =⇒ ˆ a i = Â|ϕa i − a|ϕa i = 0 ∆A|ϕ =a vollständig =⇒ hϕa |ϕb i = 0 Bew.: 0 = hϕb |Â|ϕa i = hϕb |† |ϕa i = hϕa |Â|ϕb i∗ = hϕa |b|ϕb i∗ = hϕb |b∗ |ϕa i , b∗ = b =⇒ 0 = hϕb |† |ϕa i − hϕb |Â|ϕa i = hϕb |b|ϕa i − hϕb |a|ϕa i = (b − a) hϕb |ϕa i | {z } | {z } ⇒0 6=0 Z X |ϕa ihϕa | = 1̂ a Funktion diskret Auswertung f (Â) per Spektrum: f (Â)|ϕa i = f (a)|ϕa i X Â|ϕn i = an |ϕn i , hϕn |ϕm i = δnm , |ϕn ihϕn | = 1̂ n r π 2 ~2 π 2 n2 Bsp.: Kastenpotential ϕn (x) = sin nx , Ĥ|ϕn i = |ϕn i 2 L L |2mL {z } {|ϕn i, an , n ∈ N} : En Kontinuum {|ϕa i, a ∈ R} : Â|ϕa i = a|ϕn i , Bsp.: p̂ = −i~∂x Messung präzise ←→ , p̂ϕp (x) = pϕp (x) , 2 ˆ |ψi = 0 hψ|∆A Bew.: hΦ|Φi = 0 hϕa |ϕb i = δ(a − b) , ←→ Z 1 ϕp (x) = √ exp 2π ∞ −∞ da |ϕaihϕa | = 1̂ i px ~ Â|ψi = A|ψi notwendig Eigenzustand ˆ 2 |ψi = hψ|( − A) ( − A)|ψi |Φi = 0 & hψ|∆A | {z } =⇒ ≡|Φi =⇒ gemischt Phase ( − A)|ψi = 0 X ˆ 2 |ψi = hψ|∆A 6 0 =⇒ |ψi = |ϕn ihϕn |ψi n 2 =⇒ wn = hϕn |ψi = Wahrscheinlichkeit, Messwert an zu finden |ψi −→ |ψ̃i = eiδ |ψi , δ ∈ R beliebige Phase =⇒ iδ hψ̃|Â|ψ̃i = hψ|e−iδ Âeiδ |ψi = e|−iδ {ze }hψ|Â|ψi = hψ|Â|ψi = A =1 Â|ψi = a|ψi =⇒ Â|ψ̃i = a|ψ̃i irrelevant für Messung