Forscher versuchen, mit der Stringtheorie die Teilchenwelt zu

Werbung
128
Mathematik, aber
noch nicht, was
»We understand
the mathematics,
but not what it is
trying to tell us«
Forscher versuchen, mit der Stringtheorie
die Teilchenwelt zu ergründen
researchers are using the string theory
to explore the world of particles
Mit den Physikern Jan Plefka und Matthias Staudacher sprach Sabine Sütterlin
an interview with the physicians Jan Plefka and Matthias staudacher
by sabine sütterlin
http://u.hu-berlin.de/plefka
http://u.hu-berlin.de/staudacher
tEilCHENPHysiK / PartiClE PHysiCs
129
k deutsch
Die mathematischen Physiker Matthias Staudacher und Jan Plefka erforschen, ob sich die Gravitation mithilfe der Stringtheorie in
satz: Mit dem richtigen mathematischen Modell lässt sich die
Gravitation gleichzeitig mit beiden Theorien beschreiben.
Strings sind schwingende
Energiefädchen, die das
Teilchenkonzept ersetzen
Kann ein Laie verstehen, was Stringtheorie ist?
Plefka:
strings are vibrating energy
strings that replace the particle
concept
-
-
Das wären Teilchen, die Gravitation vermitteln, also das, was
Warum strebt man diese Vereinheitlichung an?
Plefka:
Plefka:
-
Staudacher:
-
-
-
-
Was genau erforschen Sie an der Stringtheorie?
Staudacher:
-
-
Aus dem Teilchenzoo
From the world of particles
kleinere Grundbausteine unserer Materie entdeckt. Welche Teilchen aber das endgültige
Ende darstellen, wissen sie noch nicht.
over the years scientists have discovered smaller and smaller building blocks of matter. However, as yet, they still do not know which parti-
Atome / Atoms
Sie bestehen aus Neutronen, Protonen und
Elektronen und sind nicht die kleinsten Teilchen der Materie, wie man einst glaubte.
atoms consist of neutrons, protons and electrons, but are not the smallest particle of matter as was once presumed.
Gluonen / Gluons
Elementarteilchen, die indirekt für die Anziehung von Protonen und Neutronen in einem
Atomkern verantwortlich sind.
Gluons are elementary particles which are indirectly responsible for the attraction of protons
and neutrons in an atom nucleus.
Hadronen / Hadrons
sind seit der Entdeckung der Quarks keine Elementarteilchen mehr, sie sind aus Quarks oder
deren Antiteilchen zusammengesetzt, die bekanntesten Hadronen sind Nukleonen (Neutronen und Protonen) aus denen die Atomkerne
aufgebaut sind.
since the discovery of quarks, hadrons are no
longer seen as elementary particles, as they are
composed of quarks or their antiparticles. the
best known hadrons are nucleons (neutrons
and protons) which form the nucleus of atoms.
Large Hadron Collider
Kernforschungszentrum Cern bei Genf. Hier
prallen Teilchen mit hoher Energie aufeinander, Physiker interessieren die dabei entstehenden neuen Teilchen.
the lHC is a particle accelerator housed at the
European Centre for Nuclear research CErN in
Geneva. the instrument enables scientists to
smash particles together at extremely high
speeds. Physicists are particularly interested in
the resulting new particles.
-
Quarks
Elementarteilchen, die Bestandteile von Protoquarks
Quarks are the principle components of proquarks: six regular quarks and six anti-quarks.
Strings
genaugenommen sind sie gar keine Teilchen,
Teilchenkonzept ersetzen. Ihre Existenz ist im
Gegensatz zu den oben genannten Elementarteilchen aber noch nicht erwiesen.
to be precise, strings are not particles but vibrating energy strings that replace the particle
concept. However, in contrast to the aforementioned elementary particles, their existence has
Staudacher:
-
Wie kann man sich mehr als drei Raumdimensionen
vorstellen?
Plefka:
-
-
Plefka:
-
tEilCHENPHysiK / PartiClE PHysiCs
131
Staudacher:
-
Sie sprachen aber von sechs zusätzlichen Dimensionen.
Wie geht das?
Staudacher:
-
Was genau tun Sie, wenn Sie forschen?
Staudacher:
-
132
Jan Plefka hat an der Technischen Universiver promoviert. Habilitiert wurde er am Insti2006 bis 2010 hatte er eine Lichtenberg-Pro-
dert werden. Seit Februar 2011 ist er Professor für »Quantenfeldtheorie jenseits des
Standardmodells und Stringtheorie«. Plefka
ist Sprecher des DFG-Graduiertenkollegs
»Masse, Spektrum, Symmetrie« und leitet
Projekte im DFG-Sonderforschungsbereich
»Raum-Zeit-Materie«.
Jan Plefka studied physics at the technische
Universität darmstadt and the texas a&M
University, and received his doctorate from
the University of Hanover. He was promoted
to professor at the department of Physics of
the Humboldt-Universität. Between 2006 and
2010, he held a lichtenberg Professorship of
the Volkswagen Foundation, which promotes
aspiring young researchers involved in innovative projects. He has been professor for
»Quantum Field theory beyond the standard
Model and string theory« since February
2011. Plefka is the spokesperson of the dFG
research training Group »Mass, spectrum,
symmetry« and manages projects in the dFG
sFB research venture »space-time-Matter«.
k english
The mathematical physicists Matthias Staudacher and Jan Plefka
with the right mathematical model it is possible to describe gravity simultaneously with both theories.
Matthias Staudacher ist seit 2010 Professor
für Mathematische Physik von Raum, Zeit
und Materie an den Instituten für Physik und
ten Heidelberg und München (LMU) sowie an
der University of Illinois in Urbana-Champaign, wo er 1990 über Matrixmodelle der
zweidimensionalen Quantengravitation promovierte. Von 1997 bis 2010 arbeitete er als
Forschungsgruppenleiter in der Abteilung
Quantengravitation und Vereinheitlichte
Theorien am Potsdamer Max-Planck-Institut
für Gravitationsphysik. Für seine herausra-
Can a layperson really understand the String Theory?
Plefka: The concept is quite easy to explain. Ordinarily, elementary
particles are pictured as a point. In other words, neither the fundamental particles, upon which the structure of matter is based,
nor the force particles, which are responsible for mediating interactions, vibrate. The fundamental premise of the String Theory,
however, states exactly the opposite: that they display the vibrations of a string-like object.
The idea has exciting implications: it is obvious that in addition to the four known dimensions of space and time there must
be an additional six, otherwise the String Theory would not be
mathematically consistent. Furthermore,
the strings also describe the gravitons,
which are very special force particles.
Matthias Staudacher has been Professor for
Mathematical Physics of space, time and
Matter at the department of Physics and the
department of Mathematics of the Humboldt-Universität zu Berlin since 2010. He
studied physics at Heidelberg University, at
lMU Munich and at the University of illinois
at Urbana-Champaign, where, in 1990, he received his doctorate for his thesis on Matrix
Models of two-dimensional Quantum Gravity. Between 1997 and 2010, he worked as a
research group leader at the department of
er 2009 mit dem Akademiepreis der BerlinBrandenburgischen Akademie der Wissen-
Max Planck institute for Gravitational Physics
in Potsdam. in 2009, he was awarded the
academy award of the Berlin-Brandenburg
academy of sciences and Humanities for his
Seine Forschungsschwerpunkte sind:
Quantenfeldtheorie, yang-Mills Theorien,
rable Modelle, Matrixmodelle
His main areas of research include:
Quantum Field theory, yang-Mills theories,
string theory, Gauge/string duality, integrable Models, Matrix Models.
Are these the particles which mediate
gravitational interaction, generally referred to as gravity?
Plefka: We do not know whether they are
ordinary particles. But it is to do with gravity: as a consequence of the Standard Model
tum Field Theory can describe three natural
physical forces, the well-known electromagnetic force, as well as the strong and weak
nuclear force, which are only important at
subatomic level. However, it has not yet
been possible to describe gravitation with
tEilCHENPHysiK / PartiClE PHysiCs
133
»Wir haben eine Methode entwickelt, mit
der sich zeigen lässt, dass es sich bei beiden Standpunkten – Strings und Teilchen –
um exakt dasselbe Phänomen handelt«
»We have developed a method which allows us
to show that both positions – strings and particles – are exactly the same phenomena«
staudacher:
diction of Einstein’s Theory of Relativity, which functions wonderfully on cosmic scales. But on short length scales there are phecreation of matter during the Big Bang or in the vicinity of black
natural forces.
What exactly does your String Theory
research entail?
staudacher:
surprising interpretation of the String
Theory, on the so-called AdS/CFT principle.
It involves dual description of the same
physical phenomena; in other words, with
which, on top of everything, are actually
1997. For a long time it was unclear whether it was just approximate or precise.
We have developed a method which allows us to show that
both positions – strings and particles – are exactly the same phenomena. We initially took an idealised ten dimensional system
that does not actually occur in nature, but which is fairly close to
reality and boasts this duality. The system is precisely soluble.
This proves that it can be described with both the String Theory
prototype in a bid to get closer to reality.
Plefka:
ory, we can, for example, predict which scattering processes occur
when two particles are smashed together at high speeds during
an experiment in a particle accelerator. However, this is only possible when the coupling force between the two particles is low. If
we consider the question of why a proton, consisting of quarks
and gluons, is stable – in other words, why matter assumes such
a bound state -, we are unable to answer it with the mathematical
these particles are too great.
134
Plefka: What we are doing is basically an in-depth exploration of
what Maldacena proposed. Mathematically speaking we can say
it is possible, but we would now also like to illustrate why it is possible, meaning how the particles become strings and vice versa.
staudacher: We understand the mathematics, but not what it is
be calculated in both descriptions. It is becoming increasingly
possible to achieve this exactly on both sides.
How is it possible to imagine more than
three spatial dimensions?
Plefka: We view a world that has one time and three spatial dimensions. Let us imagine two elementary particles, for example
quarks, which are connected by a strong force. In our theory, this
force is mediated via a string which hangs in a higher dimension.
If I pull the particles apart, it feels like an elastic band that is being stretched into a higher dimension. In this case, duality means
that every elementary particle in our world represents the end position of a string.
»Die Stringtheorie führt
zusammen«
gravitational force and
the other natural forces«
staudacher: Maybe you can imagine the additional dimensions as
a type of shadow play. We see the shadows on the screen, but not
the hands and the light source that project the image onto the
screen. We have to use mathematical methods to open up this invisible world.
You mentioned six additional dimensions.
How is that possible?
staudacher:
which the String Theory occurs.
You can also adopt the point of view that strings are one dimensional structures which move in time, thus spanning an area.
That is to say, you can also describe our world in this picture as
being two dimensional. We can therefore describe the same physical object in a two, four and ten dimensional language. This
game of dimensions really enthrals researchers.
What do you do exactly when you are researching?
staudacher: (laughs and gestures to the board full of formulas
domain with primarily analytical goals. Most of the work takes
place with a pencil and paper or on the good old board. It is important to discuss issues with others in order to get new ideas.
possible.
v
tEilCHENPHysiK / PartiClE PHysiCs
135
Herunterladen