Teil A: Grundlagen der Elektrodynamik - Ruhr

Werbung
Lfd. Nr.:
Matrikelnr.:
MUSTERLÖSUNG
MUSTERLÖSUNG
Seite A-1
MUSTERLÖSUNG
MUSTERLÖSUNG
Teil A: Grundlagen der Elektrodynamik
Aufgabe A-1
Wie lautet der Phasor für das folgende zeitabhängige Feld mit der Kreisfrequenz ω?
ψ ( x , y , t ) = A sin(ωt + ax )e −by
A, a, b: reelle Konstanten
~
ψ( x , y ) =
-jAe jax-by
1
Aufgabe A-2
r r
Für den Phasor F (r ) des in der Vorlesung angegebenen Vektorpotentials einer elektromagnetischen Welle im quellenfreien Raum mit ε = ε0 und µ = µ0 gilt:
r
r
F ( x , y , z ) = X ( x )e − j 2 k 0 z ez
a) Welche Differentialgleichung muß X(x) erfüllen?
d 2 X ( x)
− 3k02 X ( x ) = 0
dx 2
2
b) Bestimmen Sie X(x) für x > 0 unter der Berücksichtigung folgender Bedingungen:
• X(0) = F0
F0: komplexe Konstante
• X(x) ist zweimal stetig differenzierbar für x > 0.
r
• lim E ( x ) = 0
x →∞
X(x)=
F0e −
3k0 x
2
c) Welche Eigenschaften sind für die Welle zutreffend?
homoge
Welle
TM-Welle
ebene
Welle
evaneszente (quergedämpfte) Welle
TE-Welle
x
x
x
TEM-Welle
aperiodisches Feld
keine der genannten
Eigenschaften
2
Klausur Elektromagnetische Wellen
H 98
Teil A: Grundlagen der Elektrodynamik
Lfd. Nr.:
MUSTERLÖSUNG
Matrikelnr.:
MUSTERLÖSUNG
Seite A-2
MUSTERLÖSUNG
MUSTERLÖSUNG
Aufgabe A-3
Der Phasor der elektrischen Feldstärke einer elektromagnetischen Welle wird näherungsweise
durch die folgende Gleichung beschrieben:
r r
2
2
2
r
r
E (r ) = (e x + e y ) E 0 e − jk0 ( x −2 xy + y )
r r
a) Berechnen Sie den Phasenvektor β(r ) :
r r
r r
β(r ) =
2 k 02 ( x − y )(ex − e y )
2
b) Handelt es sich um eine homogene, ebene Welle? (Keine Wertung ohne Begründung)
Ja, denn die Phasenflächen x - y = const. sind Ebenen und die Amplitude
ist auf den Phasenflächen konstant
2 E0
2
Aufgabe A-4
Gegeben ist ein lineares, quellenfreies und isotropes Medium. Es besitzt die Leitfähigkeit κ, die
Dielektrizitätskonstante ε0 und die Permeabilitätskonstante µ0.
a) Leiten Sie allgemein
die partielle Differentialgleichung zweiter Ordnung für die elektrische
r r
Feldstärke E
~ (r , t ) einer elektromagnetischen Welle in diesem Medium her.
r r
∆E
~ (r , t ) =
µ 0ε 0
∂ 2 Er (rr , t )
+
∂t 2 ~
µ 0κ
∂ Er (rr , t )
∂t ~
3
(Fortsetzung siehe Seite A-3)
Klausur Elektromagnetische Wellen
H 98
Teil A: Grundlagen der Elektrodynamik
Lfd. Nr.:
Matrikelnr.:
MUSTERLÖSUNG
MUSTERLÖSUNG
Seite A-3
MUSTERLÖSUNG
MUSTERLÖSUNG
b) Für den Phasor der zeitharmonischen Feldstärke (Kreisfrequenz ω) läßt sich die Differentialgleichung aus Aufgabenteil a) in die folgende Form überführen:
r r
( ∆ + k 2 ) E (r ) = 0
k: komplexe Konstante
Für ein spezielles Medium soll nun gelten: κ = ω ε 0
Geben Sie k2 in Abhängigkeit von k 02 = ω 2 ε 0 µ 0 an:
k 2 = k 02 ⋅
(1−j)
2
c) Eine Lösung der Differentialgleichung in Aufgabenteil (b) ist gegeben durch:
r r
r
E (r ) = E0 ez e − αz e − jβz
E0 komplexe Konstante, α > 0 reell, β reell
Geben Sie α und β in Abhängigkeit von k0 an:
α = k0 ⋅
0,46
β = k0 ⋅
1,10
2
d) Ist die in Aufgabenteil c) angegebene Lösung der Differentialgleichung eine Lösung
der Maxwell’schen Gleichungen? (Keine Wertung ohne Begründung!)
r r
Nein, da der Vektor der elektrischen Feldstärke E (r ) stets parallel zur
r
Ausbreitungsrichtung ez der Welle liegt. Die Rotation des Vektors ist daher Null, so
daß die Maxwell'schen Gleichungen zu einem Widerspruch führen.
2
Klausur Elektromagnetische Wellen
H 98
Teil A: Grundlagen der Elektrodynamik
Lfd. Nr:
Matrikelnr.:
Seite B-1
MUSTERLÖSUNG MUSTERLÖSUNG MUSTERLÖSUNG MUSTERLÖSUNG
Teil B: Homogene, ebene Wellen
Aufgabe B-1
Welche der folgenden Aussagen treffen in verlustfreien Medien zu?
Der Begriff "homogene, ebene Welle" ist identisch mit
"transversal elektromagnetische Welle".
Jede homogene, ebene Welle ist auch eine transversal elektromagnetische Welle.
x
Jede transversal elektromagnetische Welle ist auch eine homogene, ebene Welle.
Keine der oberen Aussagen trifft zu.
2
Aufgabe B-2
Der Wellenzahlvektor einer ebenen Welle lautet:
r
r
r k
k = [( −5 + j 3)e x + (5 + j3)e y ] 0
2
Die Welle breitet sich in einem Medium mit dem Feldwellenwiderstand ZF = 2Z0 aus.
a) Geben Sie die Materialparameter εr und µr des Mediums an!
εr =
µr =
2
8
2
b) Geben Sie die Phasengeschwindigkeit der ebenen Welle im Verhältnis zur Ausbreitungsgeschwindigkeit im freien Raum, c0, an!
vph/c0 =
0,2
2
c) Geben Sie das Dämpfungsmaß des Mediums in Abhängigkeit von k0 an!
α = k0 ⋅
0
1
Klausur Elektromagnetische Wellen
H 98
Teil B: Homogene, ebene Wellen
Lfd. Nr:
Matrikelnr.:
Seite B-2
MUSTERLÖSUNG MUSTERLÖSUNG MUSTERLÖSUNG MUSTERLÖSUNG
Aufgabe B-3
Eine homogene, ebene Welle (Kreisfrequenz ω), deren elektrische Feldstärke linear in xRichtung polarisiert ist, fällt senkrecht auf ein metallisches Medium ein:
r
r
-2
|J
~ x (t = 0,z ) |/Am
Im Metall hat der Betrag der x-Komponente der Stromdichte zum Zeitpunkt t = 0 folgenden
Verlauf:
1
0.8
0.6
0.4
0.2
0
0
π/4
π/2
3/4 π
π
5/4 π
z/µm
a) Wie groß ist die Skintiefe δ?
δ=
0,5 µm
2
b) Ergänzen Sie die Skizze des Verlaufes von J~ x (t = 0, z) um den Verlauf der Amplitude
r
| J (z)|!
1
Klausur Elektromagnetische Wellen
H 98
Teil B: Homogene, ebene Wellen
Lfd. Nr:
Matrikelnr.:
Seite B-3
MUSTERLÖSUNG MUSTERLÖSUNG MUSTERLÖSUNG MUSTERLÖSUNG
Aufgabe B-4
Eine homogene, ebene Welle mit dem Phasor der magnetischen Feldstärke
r
r
H e = H e0 e − jk0 ( 2 3 x −2 y )
fällt auf eine Grenzschicht zwischen einem Dielektrikum (1) und einer ideal leitenden Wand (2)
ein.
ε = ε0 εr
µ = µ0
κ=0
1
κ→∞
2
r
Der konstante Vektor He0 liegt parallel zur Einfallsebene. Seine kartesischen Komponenten
Hx sind Hy negativ reell und sein Betrag lautet 1 Am-1
a) Bestimmen Sie die Dielektrizitätszahl εr.
εr =
16
1
r
b) Bestimmen Sie He0 .
r
He0 =
1r
3r
( − ex −
e y ) Am-1
2
2
2
r
r
c) Bestimmen Sie H r ( E muß hierfür nicht berechnet werden.)
r
Hr =
1
A 1 r
3 r  − jk0 (2
 − ex +
e y e
m  2
2

3x + 2 y
)
3
r
d) Wie groß ist der Betrag der Oberflächenstromdichte J F auf dem Metall?
r
| J F |=
1 Am-1
1
Klausur Elektromagnetische Wellen
H 98
Teil B: Homogene, ebene Wellen
Lfd. Nr:
Matrikelnr.:
Seite B-4
MUSTERLÖSUNG MUSTERLÖSUNG MUSTERLÖSUNG MUSTERLÖSUNG
Aufgabe B-5
In der Ionosphäre wird die Luft durch solare UV- und Röntgeneinstrahlung ionisiert. Die dabei
entstehende Elektronendichte N wirkt sich wie folgt auf die Plasmafrequenz aus:
ωP =
e2 N
mit e, me: Ladung bzw. Masse eines Elektrons.
ε 0 me
Ein Funkkontakt zu einem Satelliten im Kosmos sollte von möglichst niedriger Frequenz
getragen werden, da mit zunehmender Frequenz die Energieabsorption durch den in der
Atmosphäre befindlichen Sauerstoff und Wasserstoff zunimmt.
a) Welcher physikalische Effekt begrenzt den Frequenzbereich nach unten? (1 Stichwort)
Totalreflexion für ω<ωp
1
b) Zu welcher Tageszeit ist die Funkverbindung zum Satelliten besser?
Bei Tag
Bei Nacht
x
Tageszeit hat keinen Einfluß.
2
Klausur Elektromagnetische Wellen
H 98
Teil B: Homogene, ebene Wellen
Lfd. Nr.:
Matrikelnr.:
Seite C-1
Teil C: Wellenleiter
Aufgabe C-1
Gegeben ist eine Koaxialleitung mit dem rechts
abgebildeten Querschnitt (rI = 1 cm, rA = 2 cm).
Die Leitfähigkeit der koaxialen Leiterwände ist
unendlich groß. Auf der Leitung breitet sich eine
TEM-Welle aus.
In der senkrechten Grenzschicht zwischen Medium 1 und Medium 2 befindet sich keine Leiterwand.
Medium 1
Medium 2
εr2
µr2
εr1
µr1
rI
Für die Materialparameter gilt:
rA
εr1 = µr2 = 1
εr2 = µr1 = 2
a) Berechnen Sie die Ausbreitungsgeschwindigkeit c1 in Medium 1 in Abhängigkeit von c0.
c1 = c0 ⋅
1/ 2
1
b) Berechnen Sie die Ausbreitungsgeschwindigkeit c2 in Medium 2 in Abhängigkeit von c0.
c2 = c0 ⋅
1/ 2
1
c) Berechnen Sie den Leitungswellenwiderstand der Leitung zunächst unter der Annahme, daß
εr1 = εr2 = µr1 = µr2 = 1 ist!
ZL0 =
41,6
Ω
2
d) Berechnen Sie nun den Leitungswellenwiderstand der Leitung für εr1 = µr2 = 1, εr2 = µr1 = 2!
ZL =
39,2
Ω
2
(Fortsetzung siehe Seite C-2)
Klausur Elektromagnetische Wellen
H 98
Teil C: Wellenleiter
Lfd. Nr.:
Matrikelnr.:
Seite C-2
e) Nun sei µr für Medium 1 und Medium 2 gleich, während εr in den beiden Medien unterschiedlich bleibe. Ist in der Koaxialleitung eine TEM-Welle ausbreitungsfähig?
Ja
Nein
x
1
Aufgabe C-2
Gegeben ist ein Rechteckhohlleiter mit einer Querschnittsbreite a = 5 cm und einer Querschnittshöhe b = 2,5 cm. Der Leiter ist mit einem Dielektrikum (εr unbekannt, µr = 1, κD = 0)
gefüllt. Die Hohlleiterwände besitzen eine ideale Leitfähigkeit (κM = ∞). Der Leiter soll bei
einer Frequenz von f = 1 GHz betrieben werden.
a) Geben Sie den Eigenwert qH der H10-Welle an.
qH =
m-1
62,83
1
b) Kreuzen Sie an, für welche Werte von εr die H10-Welle ausbreitungsfähig ist!
εr = 1
εr = 16
εr = 100
x
x
2
c) Geben Sie die Phasengeschwindigkeit der H20-Welle für εr = 100 und f = 1 GHz an!
vph =
3,75 107
m/s
2
Klausur Elektromagnetische Wellen
H 98
Teil C: Wellenleiter
Lfd. Nr.:
Matrikelnr.:
Seite C-3
Aufgabe C-3
Eine planparallele, dielektrische Platte mit der Dicke d und der Dielektrizitätszahl εr1 wird als
Wellenleiter eingesetzt. Die Platte ist in y- und z-Richtung unendlich ausgedehnt. Die Dielektrizitätszahl der Platte beträgt εr1 = 3. Die Dielektrizitätszahl der Halbräume oberhalb und unterhalb der Platte beträgt εr2 = 2.
a) Ist bei dieser Leiterstruktur die Gruppengeschwindigkeit geführter Wellen frequenzabhängig?
Ja
Nein
x
1
Nun wird eine Welle in den Leiter eingekoppelt, die sich mit einem Separationsansatz beschreiben läßt. Für die Eigenwerte (kx, ky, kz) gilt: kx = k0/2 und ky = 0.
b) Berechnen Sie die Gruppengeschwindigkeit der Wellenausbreitung in z-Richtung.
vgr =
1,66 108
m/s
2
c) Geben den Wertebereich für kx an, bei welchem im Falle ky = 0 ein Wellentyp vorliegt?
0 < k x < 1 k0
2
Klausur Elektromagnetische Wellen
H 98
Teil C: Wellenleiter
Lfd. Nr.:
Matrikelnr.:
Seite C-4
Aufgabe C-4
Gegeben sind eine Koaxialleitung, ein dielektrischer Schichtwellenleiter und eine Rechteckhohlleitung.
a) In welchem Wellenleiter ist die Wellenausbreitung bei jeder Frequenz f > 0 möglich?
Koaxialleitung
Dielektr. Wellenleiter
x
x
Rechteckhohlleitung
2
b) In welchem Wellenleiter kann sich bei einer Betriebsfrequenz von 10 GHz ein Wellentyp mit
maximaler Gruppengeschwindigkeit ausbreiten?
Koaxialleitung
Dielektrischer
Wellenleiter
Rechteckhohlleitung
x
1
Klausur Elektromagnetische Wellen
H 98
Teil C: Wellenleiter
Herunterladen