Einführung in die Statistik für Wirtschaftswissenschaftler

Werbung
Einführung in die Statistik für
Wirtschaftswissenschaftler
für Betriebswirtschaft und Internationales Management
Sommersemester 2013
Stefan Etschberger
Hochschule Augsburg
Statistik Einführung
Stefan Etschberger
Wichtige Stichprobenfunktionen
Gegeben: Einfache Stichprobe X1 , . . . , Xn ,
Beliebige Verteilung mit E(Xi ) = µ, Var(Xi ) = σ2
Stichprobenfunktion V
n
X
Bezeichnung
E(V)
Var(V)
Merkmalssumme
nµ
nσ2
1. Einführung
2. Deskriptive Statistik
Xi
i=1
X̄ =
3. W-Theorie
4. Induktive Statistik
n
1 X
Xi
n i=1
Stichprobenmittel
µ
Gauß-Statistik
n
1 X
2
(Xi − µ)
n i=1
mittlere quadr. Abw. bezüglich µ
n
1 X
2
(Xi − X̄)
n i=1
mittlere quadr. Abw.
n−1 2
σ
n
Stichprobenvarianz
σ2
n
X
1
2
(Xi − X̄)
n − 1 i=1
√
S = S2
X̄ − µ √
n
S
Grundlagen
Punkt-Schätzung
Intervall-Schätzung
Signifikanztests
X̄ − µ √
n
σ
S2 =
σ2
n
0
1
Tabellen
Quellen
σ2
Stichproben-Standardabw.
t-Statistik
139
350 508 545
D=c(435,300,730,540,350,295,350,820,620,350,
110,1800,800,700,280,200,480,30,350,300,
360,250,480,250,200,340,320,283,980,424,
1850,590,1080,1300,45,530,680,365,1000,1000,
1000,150,300,400,720,250,240,692,350,650,
180,300,300,530,350,360,360,296,580,360,
670,315,640,800,700,350,550,950,640,600,
850,200,570,600,490,540,400,120,120,180,
360,156,125,100,120,80,60,300,400,800,600,618,
250,170,810,350,350,800,400,280,420,800,
300,280,800,508,425,600,500,500,400,700,
700,300,500,500,545,600,500,500,765,200,120,
150,250,150,600,650,430,275,750,500,
1589,240,240,220,240,250,600,500)
60 600
Statistik Einführung
Stefan Etschberger
Testverteilungen
Chi-Quadrat-Verteilung
Sind X1 , . . . , Xn iid N(0; 1)-verteilte Zufallsvariablen, so wird
die Verteilung von
n
X
Z=
X2i
i=1
1. Einführung
2. Deskriptive Statistik
3. W-Theorie
4. Induktive Statistik
als Chi-Quadrat-Verteilung mit n Freiheitsgraden bezeichnet.
Grundlagen
Punkt-Schätzung
Intervall-Schätzung
Signifikanztests
f(x)
Tabellen
Quellen
0,1
0,05
x
1
10
14
Kurzschreibweise: Z ∼ χ2 (n)
Beispiel: χ2 (30): x0,975 = 46,98
140
Quantilstabelle der χ2 -Verteilung mit n Freiheitsgraden
α\n
0.005
0.01
0.025
0.05
0.1
0.2
0.25
0.4
0.5
0.6
0.75
0.8
0.9
0.95
0.975
0.99
0.995
1
2
3
4
0.00 0.01 0.07 0.21
0.00 0.02 0.11 0.30
0.00 0.05 0.22 0.48
0.00 0.10 0.35 0.71
0.02 0.21 0.58 1.06
0.06 0.45 1.01 1.65
0.10 0.58 1.21 1.92
0.28 1.02 1.87 2.75
0.45 1.39 2.37 3.36
0.71 1.83 2.95 4.04
1.32 2.77 4.11 5.39
1.64 3.22 4.64 5.99
2.71 4.61 6.25 7.78
3.84 5.99 7.81 9.49
5.02 7.38 9.35 11.14
6.63 9.21 11.34 13.28
7.88 10.60 12.84 14.86
Statistik Einführung
Stefan Etschberger
5
6
7
8
9
10
11
12
13
14
15
0.41
0.55
0.83
1.15
1.61
2.34
2.67
3.66
4.35
5.13
6.63
7.29
9.24
11.07
12.83
15.09
16.75
0.68
0.87
1.24
1.64
2.20
3.07
3.45
4.57
5.35
6.21
7.84
8.56
10.64
12.59
14.45
16.81
18.55
0.99
1.24
1.69
2.17
2.83
3.82
4.25
5.49
6.35
7.28
9.04
9.80
12.02
14.07
16.01
18.48
20.28
1.34
1.65
2.18
2.73
3.49
4.59
5.07
6.42
7.34
8.35
10.22
11.03
13.36
15.51
17.53
20.09
21.95
1.73
2.09
2.70
3.33
4.17
5.38
5.90
7.36
8.34
9.41
11.39
12.24
14.68
16.92
19.02
21.67
23.59
2.16
2.56
3.25
3.94
4.87
6.18
6.74
8.30
9.34
10.47
12.55
13.44
15.99
18.31
20.48
23.21
25.19
2.60
3.05
3.82
4.57
5.58
6.99
7.58
9.24
10.34
11.53
13.70
14.63
17.27
19.68
21.92
24.73
26.76
3.07
3.57
4.40
5.23
6.30
7.81
8.44
10.18
11.34
12.58
14.85
15.81
18.55
21.03
23.34
26.22
28.30
3.56
4.11
5.01
5.89
7.04
8.63
9.30
11.13
12.34
13.64
15.98
16.98
19.81
22.36
24.74
27.69
29.82
4.07
4.66
5.63
6.57
7.79
9.47
10.17
12.08
13.34
14.69
17.12
18.15
21.06
23.68
26.12
29.14
31.32
4.60
5.23
6.26
7.26
8.55
10.31
11.04
13.03
14.34
15.73
18.25
19.31
22.31
25.00
27.49
30.58
32.80
1. Einführung
2. Deskriptive Statistik
3. W-Theorie
4. Induktive Statistik
Grundlagen
Punkt-Schätzung
Intervall-Schätzung
Signifikanztests
Tabellen
Quellen
α\n
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0.005
0.01
0.025
0.05
0.1
0.2
0.25
0.4
0.5
0.6
0.75
0.8
0.9
0.95
0.975
0.99
0.995
5.14
5.81
6.91
7.96
9.31
11.15
11.91
13.98
15.34
16.78
19.37
20.47
23.54
26.30
28.85
32.00
34.27
5.70
6.41
7.56
8.67
10.09
12.00
12.79
14.94
16.34
17.82
20.49
21.61
24.77
27.59
30.19
33.41
35.72
6.26
7.01
8.23
9.39
10.86
12.86
13.68
15.89
17.34
18.87
21.60
22.76
25.99
28.87
31.53
34.81
37.16
6.84
7.63
8.91
10.12
11.65
13.72
14.56
16.85
18.34
19.91
22.72
23.90
27.20
30.14
32.85
36.19
38.58
7.43
8.26
9.59
10.85
12.44
14.58
15.45
17.81
19.34
20.95
23.83
25.04
28.41
31.41
34.17
37.57
40.00
8.03
8.90
10.28
11.59
13.24
15.44
16.34
18.77
20.34
21.99
24.93
26.17
29.62
32.67
35.48
38.93
41.40
8.64
9.54
10.98
12.34
14.04
16.31
17.24
19.73
21.34
23.03
26.04
27.30
30.81
33.92
36.78
40.29
42.80
9.26
10.20
11.69
13.09
14.85
17.19
18.14
20.69
22.34
24.07
27.14
28.43
32.01
35.17
38.08
41.64
44.18
9.89
10.86
12.40
13.85
15.66
18.06
19.04
21.65
23.34
25.11
28.24
29.55
33.20
36.41
39.36
42.98
45.56
10.52
11.52
13.12
14.61
16.47
18.94
19.94
22.62
24.34
26.14
29.34
30.68
34.38
37.65
40.65
44.31
46.93
11.16
12.20
13.84
15.38
17.29
19.82
20.84
23.58
25.34
27.18
30.43
31.79
35.56
38.89
41.92
45.64
48.29
11.81
12.88
14.57
16.15
18.11
20.70
21.75
24.54
26.34
28.21
31.53
32.91
36.74
40.11
43.19
46.96
49.64
12.46
13.56
15.31
16.93
18.94
21.59
22.66
25.51
27.34
29.25
32.62
34.03
37.92
41.34
44.46
48.28
50.99
13.12
14.26
16.05
17.71
19.77
22.48
23.57
26.48
28.34
30.28
33.71
35.14
39.09
42.56
45.72
49.59
52.34
13.79
14.95
16.79
18.49
20.60
23.36
24.48
27.44
29.34
31.32
34.80
36.25
40.26
43.77
46.98
50.89
53.67
141
Statistik Einführung
Stefan Etschberger
Testverteilungen: t-Verteilung
Ist X ∼ N(0; 1), Z ∼ χ2 (n), X, Z
unabhängig, so wird die Verteilung von
1. Einführung
X
T= q
1
n
2. Deskriptive Statistik
3. W-Theorie
Z
4. Induktive Statistik
Grundlagen
als t-Verteilung mit n Freiheitsgraden
bezeichnet.
Punkt-Schätzung
Intervall-Schätzung
Signifikanztests
William Sealy Gosset
1876 – 1937
Tabellen
Quellen
f(x)
0,2
0,1
x
−3
−2
−1
1
2
3
Kurzschreibweise: T ∼ t(n)
Beispiel: t(10) x0,6 = 0,260, x0,5 = 0, x0,1 = −x0,9 = −1,372
142
Statistik Einführung
Stefan Etschberger
Quantilstabelle der t-Verteilung mit n Freiheitsgraden
α\n
0.6
0.75
0.8
0.9
0.95
0.975
0.99
0.995
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0.325
0.289
0.277
0.271
0.267
0.265
0.263
0.262
0.261
0.260
0.260
0.259
0.259
0.258
0.258
0.258
0.257
0.257
0.257
0.257
0.257
0.256
0.256
0.256
0.256
0.256
0.256
0.256
0.256
0.256
1.000
0.816
0.765
0.741
0.727
0.718
0.711
0.706
0.703
0.700
0.698
0.696
0.694
0.692
0.691
0.690
0.689
0.688
0.688
0.687
0.686
0.686
0.685
0.685
0.684
0.684
0.684
0.683
0.683
0.683
1.376
1.061
0.979
0.941
0.920
0.906
0.896
0.889
0.883
0.879
0.875
0.873
0.870
0.868
0.866
0.865
0.863
0.862
0.861
0.860
0.859
0.858
0.858
0.857
0.856
0.856
0.855
0.855
0.854
0.854
3.078
1.886
1.638
1.533
1.476
1.440
1.415
1.397
1.383
1.372
1.363
1.356
1.350
1.345
1.341
1.337
1.333
1.330
1.328
1.325
1.323
1.321
1.319
1.318
1.316
1.315
1.314
1.312
1.311
1.310
6.314
2.920
2.353
2.132
2.015
1.943
1.895
1.860
1.833
1.812
1.796
1.782
1.771
1.761
1.753
1.746
1.740
1.734
1.729
1.725
1.721
1.717
1.714
1.711
1.708
1.706
1.703
1.701
1.699
1.697
12.706
4.303
3.183
2.776
2.571
2.447
2.365
2.306
2.262
2.228
2.201
2.179
2.160
2.145
2.131
2.120
2.110
2.101
2.093
2.086
2.080
2.074
2.069
2.064
2.059
2.055
2.052
2.048
2.045
2.042
31.820
6.965
4.541
3.747
3.365
3.143
2.998
2.897
2.821
2.764
2.718
2.681
2.650
2.624
2.603
2.583
2.567
2.552
2.539
2.528
2.518
2.508
2.500
2.492
2.485
2.479
2.473
2.467
2.462
2.457
63.657
9.925
5.841
4.604
4.032
3.707
3.499
3.355
3.250
3.169
3.106
3.054
3.012
2.977
2.947
2.921
2.898
2.878
2.861
2.845
2.831
2.819
2.807
2.797
2.787
2.779
2.771
2.763
2.756
2.750
1. Einführung
2. Deskriptive Statistik
3. W-Theorie
4. Induktive Statistik
Grundlagen
Punkt-Schätzung
Intervall-Schätzung
Signifikanztests
Tabellen
Quellen
143
Statistik Einführung
Stefan Etschberger
t-Verteilung vs. Normalverteilung
Dichtefunktion
t-Verteilung mit 1 (blau), 3 (grün) und 10 (lila) Freiheitsgraden
Standardnormalverteilung (rot)
1. Einführung
0.4
2. Deskriptive Statistik
3. W-Theorie
4. Induktive Statistik
Grundlagen
0.3
Punkt-Schätzung
Intervall-Schätzung
Signifikanztests
0.1
0.2
Quellen
0.0
dnorm(x)
Tabellen
−4
−2
0
2
4
x
144
Statistik Einführung
Stefan Etschberger
Punkt-Schätzung
Ein unbekannter Parameter ϑ der Verteilung von G soll auf
Basis einer Stichprobe geschätzt werden.
Zum Beispiel: σ von N(10; σ)
Schätzwert: ϑ̂
1. Einführung
2. Deskriptive Statistik
3. W-Theorie
4. Induktive Statistik
Grundlagen
Vorgehen: Verwendung einer Schätzfunktion
Punkt-Schätzung
Intervall-Schätzung
Signifikanztests
Θ̂ = g(X1 , . . . , Xn )
Tabellen
Quellen
Beachte: Der Schätzwert ϑ̂ ist die Realisierung der ZV (!) Θ̂.
Frage: Welche Stichprobenfunktion ist zur Schätzung
geeignet?
à Kriterien für die Beurteilung/Konstruktion von
Schätzfunktionen!
Im Folgenden: Vorliegen einer einfachen Stichprobe,
d.h. X1 , . . . , Xn iid.
145
Statistik Einführung
Stefan Etschberger
Erwartungstreue und Wirksamkeit
Eine Schätzfunktion Θ̂ = g(X1 , . . . , Xn ) heißt
erwartungstreu oder unverzerrt für ϑ, wenn unabhängig
vom numerischen Wert von ϑ gilt:
1. Einführung
2. Deskriptive Statistik
3. W-Theorie
E(Θ̂) = ϑ
4. Induktive Statistik
Grundlagen
Punkt-Schätzung
Intervall-Schätzung
Signifikanztests
Beispiel
Sind Θ̂ = X̄, Θ̂ 0 =
X1 +Xn
,
2
Θ̂ 00 =
1
n−1
n
P
Tabellen
Xi erwartungstreu für µ?
Quellen
i=1
a) Θ̂:
E(X̄) = µ
⇒ Θ̂ ist erwartungstreu.
1
n
= 2 [E(X1 ) + E(Xn )] = 12 (µ + µ) = µ
b) Θ̂ 0 :
E X1 +X
2
0
⇒ Θ̂ ist erwartungstreu.
n
n
n
P
P
P
1
1
1
n
c) Θ̂ 00 : E n−1
Xi = n−1
E(Xi ) = n−1
µ = n−1
µ 6= µ
i=1
i=1
i=1
⇒ Θ̂ 00 ist nicht erwartungstreu
146
Statistik Einführung
Stefan Etschberger
Erwartungstreue und Wirksamkeit
Welche der erwartungstreuen Schätzfunktionen Θ̂, Θ̂ 0 ist
„besser“?
1. Einführung
Von zwei erwartungstreuen Schätzfunktionen Θ̂, Θ̂ 0 für ϑ
heißt Θ̂ wirksamer als Θ̂ 0 , wenn unabhängig vom
numerischen Wert von ϑ gilt:
4. Induktive Statistik
2. Deskriptive Statistik
3. W-Theorie
Grundlagen
Punkt-Schätzung
Intervall-Schätzung
Signifikanztests
Var(Θ̂) < Var(Θ̂ 0 )
Tabellen
Quellen
Beispiel: (Θ̂ = X̄, Θ̂ 0 =
Wegen
X1 +Xn
)
2

=
σ2 
n
+σ ) =
σ2 
2
Var(Θ̂) = Var(X̄)
0
Var(Θ̂ ) = Var
X1 +X2
2
=
1
(σ2
4
2
⇒ Var(Θ̂) < Var(Θ̂ 0 )
(falls n > 2) ist Θ̂ wirksamer als Θ̂ 0 .
147
Statistik Einführung
Stefan Etschberger
Intervall-Schätzung
Für einen unbekannten Verteilungsparameter ϑ soll auf Basis einer
Stichprobe ein Intervall geschätzt werden.
Verwendung der Stichprobenfunktionen Vu , Vo , so
dass Vu 5 Vo und
P(Vu 5 ϑ 5 Vo ) = 1 − α
1. Einführung
2. Deskriptive Statistik
3. W-Theorie
4. Induktive Statistik
Grundlagen
Punkt-Schätzung
stets gelten.
[Vu ; Vo ] heißt Konfidenzintervall (KI) für ϑ zum
Konfidenzniveau 1 − α.
Intervall-Schätzung
Signifikanztests
Tabellen
Quellen
Beachte: Das Schätzintervall [vu ; vo ] ist Realisierung der
Zufallsvariablen (!) Vu , Vo .
à Irrtumswahrscheinlichkeit α (klein, i.d.R. α 5 0,1)
Frage: Welche Konfidenzintervalle sind zur Schätzung geeignet?
à Hängt von Verteilung von G sowie vom unbekannten Parameter
(µ, σ2 ) ab!
Im Folgenden: Einfache
Stichprobe X1 , . . . , Xn mit E(Xi ) = µ, Var(Xi ) = σ2
148
Statistik Einführung
Stefan Etschberger
Intervall-Schätzung
Wichtiger Spezialfall: Symmetrische Konfidenzintervalle
Symmetrisch heißt nicht, dass die Dichte symmetrisch ist, sondern
1. Einführung
übereinstimmende Wahrscheinlichkeiten für Über-/Unterschreiten
des Konfidenzintervalls, d.h.
P(Vu > ϑ) = P(Vo < ϑ) =
α
2
2. Deskriptive Statistik
3. W-Theorie
4. Induktive Statistik
Grundlagen
Punkt-Schätzung
Intervall-Schätzung
Signifikanztests
f(x)
Tabellen
Quellen
0,1
0,05
x
1
10
14
Wichtig: Eine Verkleinerung von α bewirkt eine Vergrößerung des
Konfidenzintervalls.
149
Konfidenzintervall für µ bei Normalverteilung mit bekanntem σ2
Vorgehensweise:
Statistik Einführung
Stefan Etschberger
1. Einführung
2. Deskriptive Statistik
3. W-Theorie
1
2
3
4
5
Festlegen des Konfidenzniveaus 1 − α
α
-Fraktils c der N(0, 1)-Verteilung
Bestimmung des 1 −
2
Berechnen des Stichprobenmittels x̄
σc
Berechnen des Wertes √
n
Ergebnis der Intervall-Schätzung:
σc
x̄ − √ ;
n
σc
x̄ − √ ;
n
σc
x̄ + √
n
σc 240
x̄ + √ 800
n150
[1]
[11]
[21]
850
500
250
300
800
400
980
340
45
350
150
360
425 200
360 500
110 1000
4. Induktive Statistik
Grundlagen
Punkt-Schätzung
Intervall-Schätzung
Signifikanztests
Tabellen
Quellen
170
545
540
618
600
540
400
600
800
150
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
352.7215212
374.6548545
412.7548545
553.4215212
320.3548545
352.5215212
338.4215212
413.5548545
330.1215212
425.1215212
481.3548545
399.9215212
423.7548545
537.2118122
559.1451455
597.2451455
737.9118122
504.8451455
537.0118122
522.9118122
598.0451455
514.6118122
609.6118122
665.8451455
584.4118122
608.2451455
Intervallschätzung: Beispiel
Statistik Einführung
Stefan Etschberger
Beispiel
Normalverteilung mit σ = 2,4
(x1 , . . . , x9 ) = (184.2, 182.6, 185.3, 184.5, 186.2, 183.9, 185.0, 187.1,
184.4)
Gesucht: Konfidenzintervall für µ zum Konfidenzniveau
1 − α = 0,99
1. Einführung
2. Deskriptive Statistik
3. W-Theorie
4. Induktive Statistik
Grundlagen
Punkt-Schätzung
Intervall-Schätzung
Signifikanztests
1. 1 − α = 0,99
Tabellen
2. N(0; 1): c = x1− α2 = x1− 0,01 = x0,995 = 2,576 (Tab. 3;
2
Interpolation)
3. x̄ =
4.
σc
√
n
1
9
=
Quellen
(184,2 + · · · + 184,4) = 184,8
2,4·2,576
√
9
= 2,06
5. KI = [184,8 − 2,06; 184,8 + 2,06] = [182,74; 186,86]
Interpretation: Mit 99 % Wahrscheinlichkeit
ist µ ∈ [182,74; 186,86].
151
Statistik Einführung
Stefan Etschberger
Wichtige Fraktilswerte
1. Einführung
2. Deskriptive Statistik
Wichtige N(0; 1)-Fraktilswerte:
3. W-Theorie
4. Induktive Statistik
α
xα
0,9
1,281552
0,95
1,644854
0,975 1,959964
0,99
2,326348
0,995 2,575829
Grundlagen
Punkt-Schätzung
Intervall-Schätzung
Signifikanztests
Tabellen
Quellen
(I.d.R. genügen drei Nachkommastellen.)
152
Statistik Einführung
Stefan Etschberger
Intervalllänge
Im Fall 13.1.1 gilt offenkundig
2σc
L = Vo − Vu = √
n
1. Einführung
2. Deskriptive Statistik
3. W-Theorie
Welcher Stichprobenumfang n sichert eine vorgegebene
(Maximal-)Länge L? ⇒
Nach n auflösen!
⇒
4. Induktive Statistik
Grundlagen
Punkt-Schätzung
Intervall-Schätzung
n=
2σc
L
2
Signifikanztests
Tabellen
Quellen
Eine Halbierung von L erfordert eine Vervierfachung von n!
Angewendet auf letztes Beispiel:
L = 4 ⇒n =
L = 2 ⇒n =
2·2,4·2,576 2
4
2·2,4·2,576 2
2
= 9,556 ⇒ n = 10
= 38,222 ⇒ n = 39
153
Statistik Einführung
Stefan Etschberger
Konfidenzintervall
Konfidenzintervall für µ bei Normalverteilung mit
unbekanntem σ2
2. Deskriptive Statistik
Vorgehensweise:
1
2
3
4
5
1. Einführung
3. W-Theorie
Festlegen des Konfidenzniveaus
1−α
α
-Fraktils c der t(n − 1)-Verteilung
Bestimmung des 1 −
2
Berechnen des Stichprobenmittels x̄ und der
Stichproben-Standardabweichung s
sc
Berechnen des Wertes √
n
Ergebnis der Intervall-Schätzung:
sc
x̄ − √ ;
n
sc
x̄ + √
n
4. Induktive Statistik
Grundlagen
Punkt-Schätzung
Intervall-Schätzung
Signifikanztests
Tabellen
Quellen
Zu Schritt 2: Falls n − 1 > 30 wird die N(0; 1)-Verteilung
verwendet.
154
650 125 200 200 600
↓ n\α →
1
2
3
4
5
6
0.6
0.75
0.8
0.9
0.95
0.325
0.289
0.277
0.271
0.267
0.265
1.000
0.816
0.765
0.741
0.727
0.718
1.376
1.061
0.979
0.941
0.920
0.906
3.078
1.886
1.638
1.533
1.476
1.440
6.314
2.920
2.353
2.132
2.015
1.943
Statistik Einführung
Stefan Etschberger
Konfidenzintervalllänge
Beispiel:
Wie das letzte Beispiel, jedoch σ unbekannt.
1. Einführung
2. Deskriptive Statistik
3. W-Theorie
4. Induktive Statistik
1
1 − α = 0,99
2
t(8): c = x1− α2 = x1− 0,01 = x0,995 = 3,355 (Tab. 4)
Grundlagen
2
s=
4
sc
√
n
=
5
KI = [184,8 − 1,47; 184,8 + 1,47] = [183,33; 186,27]
x̄ =
1,31·3,355
√
9
Intervall-Schätzung
Signifikanztests
1
9 (184,2 + · · · + 184,4) = 184,8
q
1
2
2
8 [(184,2 + · · · + 184,4 ) − 9
3
Punkt-Schätzung
Tabellen
· 184,82 ] = 1,31
Quellen
= 1,47
Interpretation: Mit 99 % Wahrscheinlichkeit
ist µ ∈ [183,33; 186,27].
155
Herunterladen