Methodenlehre II, SS 2009 - Ruhr

Werbung
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
Methodenlehre II, SS 2009
Prof. Dr. Holger Dette
Ruhr-Universität Bochum
30. März 2011
1 / 46
Methodenlehre II
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
I
Prof. Dr. Holger Dette
NA 3/73
I
Telefon: 0234 322 8284
I
Email: [email protected]
I
Internet: www.ruhr-uni-bochum.de/mathematik3/index.html
I
Vorlesung: Montag, 8.30–10.00 Uhr, HGA 10
I
Thema: Das allgemeine lineare Modell und seine Anwendungen
in der Psychologie
I
2 / 46
Statistik-Team
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
I
Übung: Dienstag, 12.15–13.00 Uhr, HGA 30
Tobias Kley: [email protected]
I
Tutorium: SPSS
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
Lars Kuchinke: [email protected]
GAFO 04/615 Mo. 10.00–12.00 Uhr
GAFO 04/615 Mo. 12.00–14.00 Uhr
Marco Grabemann: [email protected]
GA 1/128 Mo. 12.00–14.00 Uhr
GAFO 04/271 Fr. 12.00–14.00 Uhr
Cäcilia Werschmann: cilly [email protected]
GAFO 04/615 Fr. 12.00–14.00 Uhr
Igor Ivanov: [email protected]
3 / 46
Das allgemeine lineare Modell:
Ein mathematisches Modell - viele statistische
”
Verfahren“
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
Inhaltsverzeichnis
1. Grundlegende Prinzipien der schließenden Statistik am Beispiel
des t-Tests
2. Das lineare Regressionsmodell, multiple Regression und
Korrelation
3. Das allgemeine“ lineare Modell
”
4 / 46
Literatur
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
A. Aron, E.N. Aron, E.J. Coups, Statistics for Psychology,
5th Edition, Pearson Prentice Hall
J. Bortz, Statistik, 6. Auflage, Springer
M. Rudolf, J. Müller, Multivariate Verfahren, Hogrefe
P. Zöfel, Statistik für Psychologen, Pearson Studium
5 / 46
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
1. Grundlegende Prinzipien der schließenden
Statistik am Beispiel des t-Tests
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
1.1 Schätzer und Konfidenzintervalle
1.2 t-Test für eine Stichprobe
1.3 Zweistichprobenprobleme
1.4 Einfaktorielle Varianzanalyse
6 / 46
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
1.1 Schätzer und Konfidenzintervalle
7 / 46
1.1 Beispiel: Intelligenzquotient
Fragestellung: Haben (15-jährige) Kinder aus Bochum einen
höheren Intelligenzquotienten als 100?
I
10 Kinder (zufällig ausgewählt) machen einen IQ-Test
Daten: y1 , . . . , y10 Stichprobe
i
yi
i
yi
I
1
104
6
107
2
98
7
100
3
106
8
97
4
99
9
108
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
5
110
10
112
Hypothese (IQ der Kinder ist niedriger als 100):
H0 : µ ≤ 100
Alternative (IQ ist höher als 100):
H1 : µ > 100
Dabei ist µ der (unbekannte) Erwartungswert der
Gesamtpopulation der (15-jährigen) Kinder aus Bochum
8 / 46
Prinzip der schließenden Statistik
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
Auf Grund der Stichprobe y1 , . . . , y10 sollen Aussagen über das
Merkmal der Grundgesamtheit getroffen werden. Zum Beispiel
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
I
Wie groß ist µ (Schätzung)?
I
Kann man ein Intervall bestimmen, in dem µ liegt
(Konfidenzintervall)?
I
Gilt
1.2 t-Test für eine
Stichprobe
H0 : µ ≤ 100
(IQ ist nicht höher)
H1 : µ > 100
(IQ ist höher)?
oder gilt
(statistischer Test)
9 / 46
Grundlegende Schwierigkeit:
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
I
µ ist der Erwartungswert der Population der 15-jährigen Kinder
I
Auf Basis der Stichprobe soll auf die Grundgesamtheit
geschlossen werden
−→ Fehler, Unsicherheiten sind möglich!
I
Beispiel: zufällig“ wählen wir 5 hochbegabte Kinder (IQ ≥ 130)
”
für die Stichprobe aus. Vermutlich wird dadurch µ überschätzt!
I
Ziel der schließenden Statistik:
Quantifizierung der Unsicherheit, z. B.
mit welcher Wahrscheinlichkeit macht ein statistischer Test
einen Fehler, falls (aufgrund von Daten) für H1 (IQ ist höher als
100) entschieden wird, obwohl in Wirklichkeit H0 gilt?
I
Notwendig für diese Quantifizierung:
Mathematische Modellannahmen
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
10 / 46
Zusätzliche Modellannahme: Normalverteilung
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
I
Allgemein gängige Annahme: Intelligenz in einer bestimmten
Altersgruppe der Bevölkerung ist normalverteilt
1
1 x −µ 2
ϕ(x ) = √
)
exp − (
2
σ
2πσ 2
µ : Erwartungswert
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
σ 2 : Varianz
I
Deutung: Ist Y der IQ eines zufällig aus der Population
ausgewählten Individuums, so gilt
Z
P(a ≤ Y ≤ b) =
b
ϕ(x )dx
a
I
Diese Modellannahme sollte man stets rechtfertigen (wie man
das machen kann, sehen wir später)
11 / 46
Interpretation der Wahrscheinlichkeiten:
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
a
I
I
b
Die Wahrscheinlichkeit, dass eine Beobachtung zwischen den
Werten a und b liegt, entspricht der Fläche unter der Kurve im
Intervall [a, b].
In Formeln:
Z
b
P(a ≤ Y ≤ b) =
ϕ(x )dx
a
12 / 46
Verschiedene Normalverteilungen N(µ, σ 2 )
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
Dichten der Normalverteilung mit verschiedenen Parametern
0.5
N(0,0.707)
N(0,1)
N(1,1.25)
N(2,2)
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
0.0
0.1
0.2
0.3
0.4
1.2 t-Test für eine
Stichprobe
-4
-2
0
2
4
6
I
µ: Erwartungswert
I
σ 2 : Varianz
I
Beachte: unter jeder Kurve ist die Fläche genau 1
13 / 46
Motivation der Modellannahme der
Normalverteilung
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
14 / 46
Zusätzliche Modellannahme: Normalverteilung
I
Mathematisches Modell (hier n = 10): y1 , . . . , yn sind
Realisierungen von Zufallsvariablen
Yi = µ + εi ,
i = 1, . . . , m
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
I
I
I
I
yi : IQ-Messung für i-tes Kind
(Realisation der Zufallsvariablen Yi )
µ: (unbekannter) Erwartungswert der Population
(hier der 15-jährigen Kinder aus Bochum)
ε1 , . . . , εn : unabhängige Zufallsvariable, normalverteilt mit
Erwartungswert 0 und Varianz σ 2 .
Interpretation: Messfehler, genetische Variabilität, Tagesform ...
Mathematische Statistik z. B. Maximum Likelihood (in diesem
Beispiel auch der gesunde Menschenverstand) liefert Schätzer
für µ:
n
1X
yi = 104.1
µ̂ = y · =
n
i=1
I
Wie genau ist diese Schätzung? Wie sehr streut diese
Schätzung?
15 / 46
Zusätzliche Modellannahme: Normalverteilung
I
I
I
Maß für die Genauigkeit: Varianz (je kleiner die Varianz, desto
genauer“ die Schätzung)
”
Mathematische Statistik (Methodenlehre I): die Varianz des
Schätzers µ̂ ist:
σ2
Var (µ̂) =
n
Beachte:
I
I
I
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
Je größer der Stichprobenumfang n, desto kleiner die Varianz
von µ̂. D.h. desto genauer ist die Schätzung.
Für die Beurteilung der Genauigkeit muss man die Varianz σ 2
der Population kennen.
Mathematische Statistik: Schätzung für den Parameter σ 2
n
σ̂ 2 =
1 X
(yi − y · )2 = 28.32
n − 1 i=1
σ̂µ2 =
σ̂ 2
= 2.832
n
16 / 46
Zusätzliche Modellannahme: Normalverteilung
I
Oft wird der Schätzer zusammen mit dem Standardfehler
angegeben
µ̂ = 104.1
µ̂ + σ̂µ = 105.78
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
µ̂ − σ̂µ = 102.42
I
I
I
q
2
σ̂µ = √σ̂n = σ̂n = 1.683 ist der Standardfehler des Schätzers
µ̂ (Schätzung für Streuung des arithmetischen Mittels)
σ̂ = 5.322 ist die aus den Daten geschätzte
Standardabweichung (Schätzung für die Streuung einer
einzelnen Beobachtung)
Deutung: Vor der Datenerhebung ist µ̂ zufällig. Falls die
Normalverteilungsannahme korrekt ist, ist auch µ̂ normalverteilt
mit:
- Erwartungswert µ
2
- Varianz σn
17 / 46
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
0.14
Verschiedene Normalverteilungen
Y1 ~ N (104.1, 28.32)
0.12
(Y1 + Y2)
2 ~ N (104.1, 28.32/2)
10
( ∑ Yi)
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
0.08
0.06
0.04
0.02
0.00
Dichte
0.10
i=
=1
10 ~ N (104.1, 2.832)
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
40
60
80
100
120
140
160
x
18 / 46
Methodenlehre II, SS
2009
1.2 Schätzverfahren (Erwartungswert einer Population
unter Normalverteilungsannahme)
I
Daten y1 , . . . , yn (Stichprobe) mit Erwartungswert µ
I
Rechtfertigung der Unabhängigkeits- und
Normalverteilungsannahme
Pn
µ̂ = n1 i=1 yi Schätzung für den Erwartungswert µ der
Population
Pn
1
2
σ̂ 2 = n−1
i=1 (yi − y · ) Schätzung für die Varianz der
Population (σ̂ Schätzung für die Standardabweichung)
I
I
σ̂ 2
n
I
σ̂µ2 =
I
Schätzung für den Standardfehler von µ̂ : σ̂µ =
Prof. Dr. Holger
Dette
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
Schätzung für die Varianz von µ̂
q
σ̂ 2
n
=
σ̂
√
n
19 / 46
SPSS-Output: die Schätzer für die Daten aus
Beispiel 1.1 (Intelligenzquotient)
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
Deskriptive Statistik
N
Mittelwert
Statistik
Statistik
Standardfehler
Intelligenzquotient
10
104,10
1,683
Gültige Werte
(Listenweise)
10
Standardabweichung
Varianz
Statistik
Statistik
5,322
1.2 t-Test für eine
Stichprobe
28,322
µ̂ = 104.1(Mittelwert)
σ̂µ = 1.683(Standardfehler)
σ̂ 2 = 28.322(empirische Varianz)
σ̂ = 5.322(Standardabweichung)
20 / 46
Beachte:
Methodenlehre II, SS
2009
I
Prof. Dr. Holger
Dette
µ̂ =
n
1X
yi ;
n i=1
n
σ̂ 2 =
1 X
(yi − y · )2 ;
n − 1 i=1
r
σ̂µ =
σ̂ 2
n
hängen von den Daten y1 , . . . , yn ab (sind also vor
Datenerhebung zufällig)
I
µ̂ − a σ̂µ , µ̂ + a σ̂µ
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
ist (vor der Datenerhebung) ein zufälliges Intervall, das mit
einer bestimmten Wahrscheinlichkeit den Erwartungswert µ
enthält
I
a −→ 0
=⇒ Wahrscheinlichkeit ≈ 0
a −→ ∞
=⇒ Wahrscheinlichkeit ≈ 1
Gesucht: zufälliges Intervall, das den unbekannten
Erwartungswert mit einer vorgegebenen Wahrscheinlichkeit
enthält: Konfidenzintervall
21 / 46
Das Konfidenzintervall
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
I
Gebe eine Wahrscheinlichkeit 1 − α vor (z. B. 1 − α = 95%)
I
Bestimme a so, dass das zufällige Intervall
(µ̂ − a σ̂µ , µ̂ + a σ̂µ )
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
den Parameter µ mit Wahrscheinlichkeit 1 − α enthält.
I
Mathematische Statistik liefert
a = tn−1,1− α2
(1 − α2 )-Quantil der t-Verteilung mit n − 1 Freiheitsgraden
I
Diese Werte sind tabelliert oder durch Software verfügbar.
I
Das Intervall
I = µ̂ − tn−1,1− α2 σ̂µ , µ̂ + tn−1,1− α2 σ̂µ
heißt (1 − α) Konfidenzintervall für µ.
22 / 46
Methodenlehre II, SS
2009
Verschiedene t-Verteilungen
Prof. Dr. Holger
Dette
0.4
Dichten der t– Verteilung mit verschiedenen Freiheitsgraden
t 100
t4
t1
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
0.0
0.1
0.2
0.3
1.2 t-Test für eine
Stichprobe
-4
-2
0
1 Γ((n + 1)/2)
fn (t) = √
Γ(n/2)
πn
2
4
−(n+1)/2
t2
1+
n
23 / 46
Methodenlehre II, SS
2009
Das Quantil der t-Verteilung mit n
Freiheitsgraden
Prof. Dr. Holger
Dette
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
Dichte der t4 -Verteilung
1.1 Schätzer und
Konfidenzintervalle
0.3
0.4
1.2 t-Test für eine
Stichprobe
0.0
0.1
0.2
0.95
t
-4
-2
0
Z
2
4, 0.95
= 2.132
4
t4,0.95
P(T4 ≤ t4,0.95 ) =
f4 (t)dt = 0.95
−∞
24 / 46
Beispiel 1.3 (Fortsetzung von Beispiel 1.1)
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
I
I
Berechnung eines 90% Konfidenzintervalls für µ
µ̂ = 104.1,
σ̂ 2 = 28.32
I
n = 10,
I
α = 10%
I
(aus Tabelle bzw. Software) t9,0.95 = 1.833
I
90% Konfidenzintervall für µ = (101.02, 107.18)
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
Beachte:
I
I
Ein (1 − α)-Konfidenzintervall ist ein zufälliges“ Intervall, das
”
den (unbekannten) Erwartungswert mit Wahrscheinlichkeit
1 − α enthält.
Die Aussage das Intervall (101.02, 107.18) enthält den
”
unbekannten Erwartungswert der Population mit
Wahrscheinlichkeit 90%“ hat keinen Sinn!
25 / 46
Erklärung des Begriffs zufälliges“ Intervall durch
”
ein fiktives“ Experiment
”
I
I
Annahme: das Experiment (Untersuchung des IQ von 10
Kindern) kann N mal (unabhängig) wiederholt werden (z. B.
1000 mal)
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
jeweils 10 Daten liefern ein (1 − α)-Konfidenzintervall
(z. B. 95 % Konfidenzintervall)
Datensatz 1 −→ Konfidenzintervall I1
Datensatz 2 −→ Konfidenzintervall I2
..
.
Datensatz N −→ Konfidenzintervall IN
I
ca. (1 − α) · N (z. B. 95% · 1000 = 950) Intervalle enthalten den
(unbekannten) Erwartungswert µ der Population
26 / 46
Methodenlehre II, SS
2009
1.4 Konfidenzbereich für den Erwartungswert einer Population unter Normalverteilungsannahme
I
Daten y1 , . . . , yn (Stichprobe) mit Erwartungswert µ
I
Rechtfertigung der Unabhängigkeits- und
Normalverteilungsannahme
I
Bestimme das tn−1,1− α2 Quantil der t-Verteilung mit n − 1
Freiheitsgraden (aus Tabelle oder Software)
I
Das Intervall
Prof. Dr. Holger
Dette
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
(µ̂ − tn−1,1− α2 σ̂µ , µ̂ + tn−1,1− α2 σ̂µ )
ist ein (1 − α) Konfidenzintervall für µ
I
In vielen Softwarepaketen erhält man direkt das
Konfidenzintervall als Ausgabe (z. B. in SPSS)
27 / 46
SPSS-Output: Konfidenzintervall für die Daten
aus Beispiel 1.1 (Intelligenzquotient)
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
Test bei einer Sichprobe
1.2 t-Test für eine
Stichprobe
Testwert = 100
90% Konfidenzintervall der
Differenz
T
Intelligenzquotient
2,436
df
Sig. (2-seitig)
9
,038
Mittlere
Differenz
4,100
Untere
1,02
Obere
7,18
Beachte:
I
SPSS liefert nur ein Konfidenzintervall für die Differenz µ − 100
=⇒ 90% Konfidenzintervall für den Erwartungswert µ
(101.02, 107.18)
28 / 46
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
1.2 t-Test für eine Stichprobe
29 / 46
Beispiel 1.5 (Fortsetzung von Beispiel 1.1)
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
Frage: Ist der IQ der Kinder aus Bochum höher als 100?
H0 : µ ≤ 100
H1 : µ > 100
H0 nennt man Nullhypothese und H1 heißt Alternative.
I
I
I
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
Intuitiv würde man für H1 entscheiden, falls der Mittelwert der
Stichprobe
10
1 X
µ̂ =
yi
10 i=1
groß“ ist
”
Beachte: µ̂ ändert sich, falls man die Daten anders skaliert!
Besser: entscheide für H1 , falls µ̂ groß im Verhältnis zu dem
Standardfehler σ̂µ ist (Invarianz bzgl. unterschiedlicher
Skalierungen)
30 / 46
Methodenlehre II, SS
2009
Die Nullhypothese H0 : µ ≤ 100 wird abgelehnt falls
µ̂ − 100
T =
>c
σ̂µ
Prof. Dr. Holger
Dette
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
Fragen:
I
Wie legt man den kritischen Wert c fest?
I
Bei dem Verfahren können 2 Fehler auftreten
I
Fehler erster Art: Die Nullhypothese H0 wird abgelehnt, obwohl
H0 in Wirklichkeit stimmt (d. h. der IQ ist nicht höher als 100)
I
Fehler zweiter Art: Die Nullhypothese H0 wird nicht abgelehnt,
obwohl in Wirklichkeit die Alternative H1 zutrifft (d. h. der IQ ist
höher als 100)
Ziel: kleine“ Wahrscheinlichkeiten für Fehler erster und zweiter Art
”
31 / 46
Grundlegendes Prinzip der Testtheorie
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
I
Der kritische Wert c wird festgelegt, indem man eine maximal
tolerierbare Wahrscheinlichkeit α für einen Fehler erster Art
vorgibt (α-Fehler)!
I
Diese Wahrscheinlichkeit heißt Niveau des Tests.
I
Damit hat man keine Kontrolle über die Wahrscheinlichkeit eines
Fehlers zweiter Art (β-Fehler)
I
Z. B. soll die Wahrscheinlichkeit für Fehler erster Art maximal
α = 5% = 0.05 sein.
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
=⇒ (mathematische Statistik, Tabelle, Software)
n = 10, c = tn−1,1−α = t9,0.95 = 1.833
µ̂ − 100
104.1 − 100
T =
= 2.436 > 1.833
= √
σ̂µ
2.832
D. h. die Nullhypothese H0 : µ ≤ 100 wird zum Niveau α = 5%
zu Gunsten der Alternative H1 : µ > 100 verworfen
(signifikantes Ergebnis zum Niveau 5 %)
32 / 46
Erklärung des Begriffs Niveau durch ein fiktives“
”
Experiment
I
I
Annahme: Das Experiment (Untersuchung des IQ von 10
Kindern) kann N mal (unabhängig) wiederholt werden (z. B.
1000 mal)
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
jeweils 10 Daten liefern ein Ergebnis für den Test zum Niveau α
(z.B. Niveau 5 %)
Datensatz 1 −→ Testergebnis 1
Datensatz 2 −→ Testergebnis 2
..
.
Datensatz N −→ Testergebnis N
I
Falls die Nullhypothese H0 : µ ≤ 100 wahr“ ist, so wird
”
maximal in ca. αN (z. B. 5% 1000 = 50) Fällen für die
Alternative
H1 : µ > 100
entschieden.
33 / 46
Fehler erster und zweiter Art
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
Entscheidung aufgrund der Stichprobe zugunsten
von:
H0
H1
in der Population gilt
H0
H1
richtige
β-Fehler
Entscheidung
richtige
α-Fehler
Entscheidung
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
Beachte:
I
Die Wahrscheinlichkeiten für α-Fehler und β-Fehler verändern
sich gegenläufig.
I
Bei festem Niveau (Wahrscheinlichkeit für α-Fehler) kann die
Wahrscheinlichkeit für einen β-Fehler durch Vergrößerung des
Stichprobenumfangs verkleinert werden.
I
Bei festem Stichprobenumfang wird nur“ der Fehler erster Art
”
kontrolliert.
34 / 46
Die Verteilung von T falls µ = 100 ist.
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
Dichte der t9 -Verteilung
0.4
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
0.3
1.1 Schätzer und
Konfidenzintervalle
0.2
1.2 t-Test für eine
Stichprobe
0.1
p– Wert
0.0
α=5%
t
-3
I
I
I
I
-2
-1
0
9, 0.95
1
= 1.833
T n = 2.436
2
3
Kritischer Wert: tn−1,0.95 = 1.833 (H0 wird verworfen, falls T
größer als der kritische Wert ist)
Blaue Fläche: Niveau (α)
Rote Fläche: p-Wert: Wahrscheinlichkeit einen Wert größer als
2.436 zu beobachten: P(T > 2.436) = 0.0188
Beachte: Ist der p-Wert < α (wie in diesem Beispiel) dann wird
H0 abgelehnt (signifikantes Ergebnis)
35 / 46
Testverfahren für den Erwartungswert einer
Stichprobe unter Normalverteilungsannahme
1.6 Einstichproben t-Test für rechtsseitige Hypothesen
I
Hypothesen: H0 : µ ≤ µ0 ;
Hypothese)
I
Daten y1 , . . . , yn (Stichprobe) mit Erwartungswert µ
I
Rechtfertigung der Unabhängigkeits- und
Normalverteilungsannahme
I
H0 wird zum Niveau α verworfen, falls
T =
H1 : µ > µ0 (rechtsseitige
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
µ̂ − µ0
> tn−1,1−α
σ̂µ
gilt, bzw. falls der p-Wert < α ist.
I
µ̂: Schätzer für µ; σ̂µ : Schätzer für den Standardfehler von
µ̂
36 / 46
Vertauschen der Hypothesen
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
1.7 Einstichproben t-Test für linksseitige Hypothesen
I
Hypothesen: H0 : µ ≥ µ0 ;
Hypothese)
H1 : µ < µ0 (linksseitige
I
Daten y1 , . . . , yn (Stichprobe) mit Erwartungswert µ
I
Rechtfertigung der Unabhängigkeits- und
Normalverteilungsannahme
I
H0 wird zum Niveau α verworfen, falls
T =
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
µ̂ − µ0
< −tn−1,1−α = tn−1,α
σ̂µ
gilt, bzw. falls der p-Wert < α ist.
I
µ̂: Schätzer für µ; σ̂µ : Schätzer für den Standardfehler von
µ̂
37 / 46
Tests für zweiseitige Hypothesen
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
1.8 Einstichproben t-Test für zweiseitige Hypothesen
I
Hypothesen: H0 : µ = µ0 ;
Hypothese)
H1 : µ 6= µ0 (zweiseitige
I
Daten y1 , . . . , yn (Stichprobe) mit Erwartungswert µ
I
Rechtfertigung der Unabhängigkeits- und
Normalverteilungsannahme
I
H0 wird zum Niveau α verworfen, falls
|T | = |
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
µ̂ − µ0
| > tn−1,1−α/2
σ̂µ
gilt, bzw. falls der p-Wert kleiner als α ist.
I
µ̂: Schätzer für µ; σ̂µ : Schätzer für den Standardfehler von
µ̂
38 / 46
Die Verteilung von T , falls µ = 100 ist.
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
Dichte der t9 -Verteilung
0.4
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
0.2
0.3
1.2 t-Test für eine
Stichprobe
p– Wert
0.1
p– Wert
α = 2,5 %
0.0
α = 2,5 %
-T n = -2.436
-3
I
I
t
9, 0.025
-2
= -2.262
-1
t
0
1
9, 0.975
= 2.262
2
T n = 2.436
3
Blaue Fläche: Niveau α; Rote Fläche: p-Wert
(Wahrscheinlichkeit einen Wert zu beobachten, dessen Betrag
größer als 2.436 ist P(|T | > 2.436) = 0.038
Beachte: Ist der p-Wert < α (wie in diesem Beispiel), dann wird
H0 abgelehnt!
39 / 46
SPSS-Output bei Anwendung des t-Tests auf die
Daten aus Beispiel 1.1 (Intelligenzquotient)
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
Test bei einer Sichprobe
Testwert = 100
90% Konfidenzintervall der
Differenz
T
Intelligenzquotient
2,436
df
Sig. (2-seitig)
9
,038
Mittlere
Differenz
4,100
Untere
Obere
1,02
7,18
Beachte:
I
SPSS liefert nur den p-Wert für den zweiseitigen t-Test aus
Beispiel 1.8!
I
Den p-Wert für den einseitigen Test erhält man als
0.038/2 = 0.019.
40 / 46
Methodenlehre II, SS
2009
Beispiel: t-Test für den Vergleich von zwei
verbundenen“ Stichproben
”
I
I
Prof. Dr. Holger
Dette
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
Eine der wichtigsten Anwendungen der in 1.6, 1.7 und 1.8
vorgestellten Verfahren besteht in dem Vergleich von
verbundenen“ Stichproben (vorher - nachher Untersuchungen)
”
Beispiel: Untersuchung der Einstellungen von 9 Jungen
gegenüber neutralen Personen vor und nach einem
Frustrationserlebnis (Sündenbockfunktion).
Einstellung
VPn
vorher
nachher
∆
1
38
33
-5
2
32
28
-4
3
33
34
1
4
28
26
-2
5
29
27
-2
6
37
31
-6
7
35
32
-3
8
35
36
1
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
9
34
30
-4
41 / 46
Prinzip: Differenzenbildung“
”
I
Prinzip:
I
I
I
I
Falls kein Unterschied zwischen den Einstellungen vor und nach
dem Frustrationserlebnis besteht sollten die Differenzen (nachher
- vorher) klein“ sein.
”
Durch Differenzenbildung (nachher - vorher) erhält man die
Daten“ ∆1 , . . . , ∆9
”
Rechtfertigung der Voraussetzungen für den t-Test aus 1.8 für
diese Daten“.
”
Wende den t-Test für eine Stichprobe auf die Daten“
”
∆1 , . . . , ∆9 an und teste die Hypothesen
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
H0 : µ = 0, H1 : µ 6= 0
I
Wegen
−2.667 = 3.27 > 2.31 = t8,0.975
|T | = 0.816 besteht zum Niveau α = 0.05 ein signifikanter Unterschied.
42 / 46
SPSS Output: t-Test für gepaarte Stichproben
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
Statistik bei gepaarten Stichproben
Mittelwert
Paaren 1
N
Standardabweichung
Standardfehler
des Mittelwertes
vorher
33,44
9
3,358
1,119
nachher
30,78
9
3,346
1,115
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
Korrelationen bei gepaarten Stichproben
N
Paaren 1
vorher & nachher
9
Korrelation
Signifikanz
,733
,025
Test bei gepaarten Stichproben
Gepaarte Differenzen
95%
Konfidenzintervall
der Differenz
Paaren 1
Mittelwert
Standardabweichung
Standardfehler
des Mittelwertes
Untere
Obere
2,667
2,449
,816
,784
4,550
vorher - nachher
Test bei gepaarten Stichproben
T
Paaren 1
vorher - nachher
3,266
df
8
Sig.
(2-seitig)
,011
43 / 46
1.9 Bemerkungen (zu den statistischen Verfahren
1.2, 1.4, 1.6, 1.7, 1.8)
I
Mathematische Statistik ⇒ unter der Normalverteilungsannahme
sind alle hier vorgestellten Verfahren optimal
I
Die Normalverteilungsannahme kann (und sollte) man
rechtfertigen. Mögliche Verfahren sind:
I
Methodenlehre II, SS
2009
Prof. Dr. Holger
Dette
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
statistische Tests für die Hypothese
H0 : Y1 , . . . , Yn
normalverteilt
In SPSS üblich sind
- Kolmogorov-Smirnov-Test
- Shapiro-Wilk Test
I
I
Explorative Verfahren. In SPSS üblich: QQ-Plot
Besteht die Normalverteilungsannahme diese Überprüfung nicht,
so sind z. B. nichtparametrische Verfahren anzuwenden.
44 / 46
Methodenlehre II, SS
2009
SPSS Output: QQ-Plot für die Daten aus
Beispiel 1.1
Prof. Dr. Holger
Dette
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
Q-Q-Diagramm von Normal von Intelligenzquotient
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
Erwarteter Wert von Normal
115
110
105
100
95
95
100
105
Beobachteter Wert
110
115
45 / 46
Methodenlehre II, SS
2009
Der QQ-Plot
I
I
Unter der Modellannahme gilt: die Größen Yi sind normalverteilt
mit Erwartungswert µ und Varianz σ 2
Der QQ-Plot vergleicht grafisch die empirischen Quantile der
Daten“ y1 , . . . , yn mit den Quantilen der Normalverteilung mit
”
Erwartungswert
µ̂ und Varianz σ̂ 2 .
(1) 1/n-Quantil der Stichprobe y1 , . . . yn =⇒ kleinste der
Beobachtungen y(1) (in Beispiel 1.1 ist y(1) = 97)
(1 − 1/2)/n-Quantil der Normalverteilung mit Erwartungswert µ̂
und Varianz σ̂ 2 =⇒ (im Beispiel 1.1 ist
z(1) = 104.1 − 1.64 · 5.32 = 95.37)
(2) 2/n-Quantil der Stichprobe y1 , . . . , yn =⇒ zweitkleinste der
Beobachtungen y(2) (in Beispiel 1.1 ist y(2) = 98)
(2 − 1/2)/n-Quantil der Normalverteilung mit Erwartungswert µ̂
und Varianz σ̂ 2 =⇒ (in Beispiel 1.1 ist
z(2) = 104.1 − 1.04 · 5.32 = 98.57)
(3) usw.
I
Prof. Dr. Holger
Dette
1. Grundlegende
Prinzipien der
schließenden Statistik
am Beispiel des t-Tests
1.1 Schätzer und
Konfidenzintervalle
1.2 t-Test für eine
Stichprobe
Der QQ-Plot ist das Streudiagramm der Daten
(y(1) , z(1) ), . . . , (y(n) , z(n) )
I
In in vielen Fällen enthält dieses Diagramm noch die
Winkelhalbierende des entsprechenden Quadranten.
46 / 46
Herunterladen