MAT 182: Analysis für die Naturwissenschaften HS2017 Dr. C. Luchsinger Exercise Sheet 1 The first exercise contains a repetition of the material covered in high school. In case you don’t remember everything that’s no problem, the theory will be covered in the lecture. Hand in: Wednesday, 27.09.2017, ahead of the lecture. Exercise 1 (5 points) Consider the function y = f (x) = −x2 + 2x + 8. a) (1 point) Find the roots of f (x). b) (1 point) Find the vertex S of the parobola. c) (2 points) Find the equation of the tangent at x = 2. If possible, avoid using differential calculus. d) (1 point) Sketch both the parabola and the tangent in a coordinate system. Exercise 2 (6 points) a) (2 points) Find all solutions of the equation 3x2 + 6x = 4 8 + 3 3x Hint: use factorization b) (2 points) Find the solution(s) of the equation 54x − 7 · 52x + 10 = 0. Hint: use substitution c) (2 points) Find the roots of x3 − 2x2 − 5x + 6. Hint: guess one root and then apply polinomial division 1 MAT 182: Analysis für die Naturwissenschaften HS2017 Dr. C. Luchsinger Exercise 3 (4 points) a) (2 points) Determine the unknown variables x, y and z. 3x + 2y − z = 3 2x − y + z = 4 4x + 2y − 3z = −4 b) (2 points) Determine the unknown variables x, y and z. 6x + y − 2z = 0 2x − y + z = 4 4x + 2y − 3z = −4 Hint: One equation is a linear combination of the two others. Exercise 4 (6.5 points) This exercise is meant to review the rules for exponential and logarithmic functions. a) (1.5 points) Rewrite the following expressions using only one ln(.) expression: 1) 2 ln(a) − ln(3c) 1 ln(y) 3 1 3) 4 ln(m) − ln(n) 6 2) 3 ln(y) + 3 t b) (1 point) Likewise for the exponential function: e5a · ex · (e1−t ) c) (2 points) Simplify whenever possible: 1) e− ln(2x) 2) e3 ln(w) 1 3) e 2 ln(2y) 1 4) e− 3 ln(d) d) (1 point) Rearrange the following expressions whenever possible: 1) ln(a9 b) 2) ln(e3 + 5) −x e 3) ln b 2 e) (1 point) Solve 2x − 2x−1 = 2 for x. 3