Wolfgang Demtröder Experimentalphysik 1 Mechanik und Wärme 2. überarbeitete und erweiterte Auflage Mit 575, meist zweifarbigen Abbildungen, 9 Farbtafeln, 38 Tabellen, zahlreichen durchgerechneten Beispielen und 164 Übungsaufgaben mit ausführlichen Lösungen 13 Inhaltsverzeichnis 1. Einführung und Überblick 1.1 1.2 1.3 Die Bedeutung des Experimentes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Der Modellbegriff in der Physik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Historischer Rückblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.1 Die antike Naturphilosophie . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.2 Die Entwicklung der klassischen Physik . . . . . . . . . . . . . . . . 1.3.3 Die moderne Physik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 5 5 7 10 1.4 1.5 Unser heutiges physikalisches Weltbild . . . . . . . . . . . . . . . . . . . . . . . . . Beziehungen zwischen Physik und Nachbarwissenschaften . . . . . . . 1.5.1 Biophysik und medizinische Physik . . . . . . . . . . . . . . . . . . . . 1.5.2 Astrophysik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5.3 Geophysik und Meteorologie . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5.4 Physik und Technik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5.5 Physik und Philosophie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 15 15 16 16 16 17 1.6 Die Grundgrößen in der Physik, ihre Normale und Meßverfahren . 1.6.1 Längeneinheiten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6.2 Meßverfahren für Längen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6.3 Zeiteinheiten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6.4 Zeitmessungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6.5 Masseneinheiten und ihre Messung . . . . . . . . . . . . . . . . . . . . 1.6.6 Temperatureinheit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6.7 Einheit der elektrischen Stromstärke . . . . . . . . . . . . . . . . . . . 1.6.8 Winkeleinheiten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 19 20 22 25 25 26 26 27 1.7 1.8 Maßsysteme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Meßgenauigkeit und Meßfehler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8.1 Systematische Fehler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8.2 Statistische Fehler. Meßwertverteilung und Mittelwert . . . 1.8.3 Streuungsmaße . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8.4 Fehlerverteilungsgesetz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8.5 Fehlerfortpflanzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8.6 Ausgleichsrechnung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 28 28 29 30 31 32 33 2. Mechanik eines Massenpunktes 2.1 2.2 Das Modell des Massenpunktes. Bahnkurve . . . . . . . . . . . . . . . . . . . . Geschwindigkeit und Beschleunigung . . . . . . . . . . . . . . . . . . . . . . . . . . 37 38 VIII Inhaltsverzeichnis 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Bewegungsgleichung der gleichförmig beschleunigten Bewegung . 2.3.1 Der freie Fall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.2 Der schräge Wurf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bewegungen mit nicht-konstanter Beschleunigung . . . . . . . . . . . . . . 2.4.1 Die gleichförmige Kreisbewegung . . . . . . . . . . . . . . . . . . . . . 2.4.2 Die allgemeine krummlinige Bewegung . . . . . . . . . . . . . . . . Kräfte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.1 Kräfte als Vektoren. Addition von Kräften . . . . . . . . . . . . . . 2.5.2 Kraftfelder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.3 Messung von Kräften. Diskussion des Kraftbegriffes . . . . . Die Grundgleichungen der Mechanik . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.1 Die Newtonschen Axiome . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.2 Träge und schwere Masse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.3 Die Bewegungsgleichung eines Teilchens in einem beliebigen Kraftfeld . . . . . . . . . . . . . . . . . . . . . . . . . . Der Energiesatz der Mechanik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.1 Arbeit und Leistung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.2 Wegunabhängige Arbeit. Konservative Kraftfelder . . . . . . . 2.7.3 Potentielle Energie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.4 Der Energiesatz der Mechanik . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.5 Zusammenhang zwischen Kraftfeld und Potential . . . . . . . . Drehimpuls und Drehmoment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gravitation und Planetenbewegungen . . . . . . . . . . . . . . . . . . . . . . . . . . 2.9.1 Die Keplerschen Gesetze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.9.2 Newtons Gravitationsgesetz . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.9.3 Planetenbahnen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.9.4 Das effektive Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.9.5 Gravitationsfeld ausgedehnter Körper . . . . . . . . . . . . . . . . . . 2.9.6 Experimentelle Prüfung des Gravitationsgesetzes . . . . . . . . 2.9.7 Experimentelle Bestimmung der Erdbeschleunigung . . . . . 40 41 41 42 42 43 45 45 46 47 48 48 50 51 54 54 55 57 58 59 60 61 61 63 64 66 67 70 72 3. Bewegte Bezugssysteme und spezielle Relativitätstheorie 3.1 3.2 3.3 Relativbewegung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inertialsysteme und Galilei-Transformation . . . . . . . . . . . . . . . . . . . . . Beschleunigte Bezugssysteme, Trägheitskräfte . . . . . . . . . . . . . . . . . . 3.3.1 Geradlinig beschleunigte Bezugssysteme . . . . . . . . . . . . . . . 3.3.2 Rotierende Bezugssysteme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.3 Zentrifugal- und Corioliskräfte . . . . . . . . . . . . . . . . . . . . . . . . 3.3.4 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 77 79 79 81 83 86 3.4 3.5 3.6 Die Konstanz der Lichtgeschwindigkeit . . . . . . . . . . . . . . . . . . . . . . . . Lorentz-Transformationen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Spezielle Relativitätstheorie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6.1 Das Problem der Gleichzeitigkeit . . . . . . . . . . . . . . . . . . . . . . 3.6.2 Minkowski-Diagramme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6.3 Lorentz-Kontraktion von Längen . . . . . . . . . . . . . . . . . . . . . . 86 87 89 89 90 92 Inhaltsverzeichnis 3.6.4 3.6.5 3.6.6 Zeitdilatation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zwillings-Paradoxon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Raumzeit-Ereignisse und Kausalität . . . . . . . . . . . . . . . . . . . . 93 95 98 4. Systeme von Massenpunkten. Stöße 4.1 Grundbegriffe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.1 Schwerpunkt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.2 Reduzierte Masse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.3 Drehimpuls eines Teilchensystems . . . . . . . . . . . . . . . . . . . . . 101 101 102 103 4.2 Stöße zwischen zwei Teilchen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.1 Grundgleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.2 Elastische Stöße im Laborsystem . . . . . . . . . . . . . . . . . . . . . . 4.2.3 Elastische Stöße im Schwerpunktsystem . . . . . . . . . . . . . . . . 4.2.4 Inelastische Stöße . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.5 Newton-Diagramme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 105 106 109 111 112 4.3 Was lernt man aus der Untersuchung von Stößen? . . . . . . . . . . . . . . . 113 4.3.1 Streuung in einem Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.4 Stöße bei relativistischen Energien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.1 Relativistische Massenzunahme . . . . . . . . . . . . . . . . . . . . . . . 4.4.2 Kraft und relativistischer Impuls . . . . . . . . . . . . . . . . . . . . . . . 4.4.3 Die relativistische Energie . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.4 Unelastische Stöße bei relativistischen Energien . . . . . . . . . 4.4.5 Relativistischer Energiesatz . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 117 118 119 120 121 5. Dynamik starrer ausgedehnter Körper 5.1 5.2 5.3 5.4 5.5 Das Modell des starren Körpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Massenschwerpunkt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Die Bewegung eines starren Körpers . . . . . . . . . . . . . . . . . . . . . . . . . . . Kräfte und Kräftepaare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Trägheitsmoment und Rotationsenergie . . . . . . . . . . . . . . . . . . . . . . . . 5.5.1 Steinerscher Satz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 126 127 127 129 130 5.6 Bewegungsgleichung der Rotation eines starren Körpers . . . . . . . . . 5.6.1 Rotation um eine Achse bei konstantem Drehmoment . . . . 5.6.2 Drehschwingungen um eine feste Achse . . . . . . . . . . . . . . . . 5.6.3 Vergleich von Translation und Rotation . . . . . . . . . . . . . . . . . 132 133 134 135 5.7 Rotation um freie Achsen. Kreiselbewegungen . . . . . . . . . . . . . . . . . . 5.7.1 Trägheitstensor und Trägheitsellipsoid . . . . . . . . . . . . . . . . . . 5.7.2 Hauptträgheitsmomente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7.3 Freie Achsen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7.4 Die Eulerschen Gleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7.5 Der kräftefreie symmetrische Kreisel . . . . . . . . . . . . . . . . . . . 5.7.6 Präzession des symmetrischen Kreisels . . . . . . . . . . . . . . . . . 135 136 137 139 141 141 144 5.8 Die Erde als symmetrischer Kreisel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 IX X Inhaltsverzeichnis 6. Reale feste und flüssige Körper 6.1 6.2 Atomares Modell der Aggregatzustände . . . . . . . . . . . . . . . . . . . . . . . . Deformierbare feste Körper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.1 Hookesches Gesetz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.2 Querkontraktion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.3 Scherung und Torsionsmodul . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.4 Biegung eines Balkens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.5 Elastische Hysterese, Deformationsarbeit . . . . . . . . . . . . . . . 6.2.6 Die Härte eines Festkörpers . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 153 153 155 156 157 159 160 6.3 Ruhende Flüssigkeiten, Hydrostatik . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.1 Freie Verschiebbarkeit und Oberflächen von Flüssigkeiten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.2 Statischer Druck in einer Flüssigkeit . . . . . . . . . . . . . . . . . . . 6.3.3 Auftrieb und Schwimmen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 6.4 Phänomene an Flüssigkeitsgrenzflächen . . . . . . . . . . . . . . . . . . . . . . . . 6.4.1 Oberflächenspannung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4.2 Grenzflächen und Haftspannung . . . . . . . . . . . . . . . . . . . . . . . 6.4.3 Kapillarität . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4.4 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 166 167 170 171 6.5 Reibung zwischen festen Körpern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5.1 Haftreibung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5.2 Gleitreibung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5.3 Rollreibung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5.4 Bedeutung der Reibung in der Technik . . . . . . . . . . . . . . . . . 171 172 173 173 175 6.6 Die Erde als deformierbarer Körper . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.6.1 Polabplattungen der rotierenden Erde . . . . . . . . . . . . . . . . . . . 6.6.2 Gezeitenverformung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.6.3 Wirkungen der Gezeiten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.6.4 Messung der Erdverformung . . . . . . . . . . . . . . . . . . . . . . . . . . 176 176 177 180 181 7.1 7.2 7.3 Makroskopische Betrachtung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Luftdruck und barometrische Höhenformel . . . . . . . . . . . . . . . . . . . . . Kinetische Gastheorie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3.1 Das Modell des idealen Gases . . . . . . . . . . . . . . . . . . . . . . . . . 7.3.2 Grundgleichungen der kinetischen Gastheorie . . . . . . . . . . . 7.3.3 Mittlere kinetische Energie und absolute Temperatur . . . . . 7.3.4 Verteilungsfunktion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3.5 Maxwell-Boltzmannsche Geschwindigkeitsverteilung . . . . 7.3.6 Stoßquerschnitt und mittlere freie Weglänge . . . . . . . . . . . . 183 184 186 186 186 187 188 189 192 7.4 Experimentelle Prüfung der kinetischen Gastheorie . . . . . . . . . . . . . . 194 7.4.1 Molekularstrahlen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 7.5 Transportprozesse in Gasen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 7.5.1 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 161 162 164 7. Gase Inhaltsverzeichnis 7.6 7.5.2 Brownsche Bewegung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5.3 Wärmeleitung in Gasen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5.4 Viskosität von Gasen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5.5 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Die Erdatmosphäre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 200 201 202 203 8. Strömende Flüssigkeiten und Gase 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 Grundbegriffe und Strömungstypen . . . . . . . . . . . . . . . . . . . . . . . . . . . . Euler-Gleichung für ideale Flüssigkeiten . . . . . . . . . . . . . . . . . . . . . . . Kontinuitätsgleichung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bernoulli-Gleichung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Laminare Strömungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.5.1 Innere Reibung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.5.2 Laminare Strömung zwischen zwei parallelen Wänden . . . 8.5.3 Laminare Strömungen durch Rohre . . . . . . . . . . . . . . . . . . . . 8.5.4 Kugelfall-Viskosimeter, Stokessches Gesetz . . . . . . . . . . . . . Navier-Stokes-Gleichung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.6.1 Wirbel und Zirkulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.6.2 Helmholtzsche Wirbelsätze . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.6.3 Die Entstehung von Wirbeln . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.6.4 Turbulente Strömungen. Strömungswiderstand . . . . . . . . . . Aerodynamik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.7.1 Der dynamische Auftrieb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.7.2 Zusammenhang zwischen dynamischem Auftrieb und Strömungswiderstand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.7.3 Kräfte beim Fliegen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ähnlichkeitsgesetze, Reynoldssche Zahl . . . . . . . . . . . . . . . . . . . . . . . . 207 209 210 211 215 215 217 218 219 220 220 223 223 225 227 227 228 229 230 9. Vakuum-Physik 9.1 9.2 9.3 Grundlagen und Grundbegriffe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1.1 Die verschiedenen Vakuumbereiche . . . . . . . . . . . . . . . . . . . . 9.1.2 Einfluß der Wandbelegung . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1.3 Saugvermögen und Saugleistung von Pumpen . . . . . . . . . . . 9.1.4 Strömungsleitwerte von Vakuumleitungen . . . . . . . . . . . . . . 9.1.5 Erreichbarer Enddruck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vakuum-Erzeugung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.1 Mechanische Pumpen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.2 Diffusionspumpen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.3 Kryo- und Sorptionspumpen . . . . . . . . . . . . . . . . . . . . . . . . . . Messung kleiner Drücke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3.1 Flüssigkeitsdruckmeßgeräte . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3.2 Membranmanometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3.3 Wärmeleitungsmanometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3.4 Ionisations- und Penning-Vakuummeter . . . . . . . . . . . . . . . . 9.3.5 Reibungsvakuummeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 233 234 235 235 237 238 238 242 243 245 246 247 247 248 249 XI XII Inhaltsverzeichnis 10. Mechanische Schwingungen und Wellen 10.1 Der freie ungedämpfte Oszillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2 Darstellung von Schwingungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3 Überlagerung von Schwingungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.1 Eindimensionale Überlagerungen . . . . . . . . . . . . . . . . . . . . . . 10.3.2 Zweidimensionale Überlagerung, Lissajous-Figuren . . . . . 251 252 253 253 256 10.4 Der freie gedämpfte Oszillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5 Erzwungene Schwingungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.6 Energiebilanz bei der Schwingung eines Massenpunktes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.7 Parametrischer Oszillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.8 Gekoppelte Oszillatoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.8.1 Gekoppelte Federpendel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.8.2 Erzwungene Schwingungen zweier gekoppelter Pendel . . . 10.8.3 Normalschwingungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 260 10.9 Mechanische Wellen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.9.1 Verschiedene Darstellungen harmonischer ebener Wellen . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.9.2 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.9.3 Allgemeine Darstellung beliebiger Wellen. Wellengleichung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.9.4 Verschiedene Wellentypen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.9.5 Ausbreitung von Wellen in verschiedenen Medien . . . . . . . 10.9.6 Energiedichte und Energietransport in einer Welle . . . . . . . 10.9.7 Dispersion, Phasen- und Gruppengeschwindigkeit . . . . . . . 263 264 266 266 268 269 270 270 272 272 273 276 281 281 10.10 Überlagerung von Wellen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 10.10.1 Kohärenz und Interferenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 10.10.2 Überlagerung zweier harmonischer Wellen . . . . . . . . . . . . . . 284 10.11 Beugung, Reflexion und Brechung von Wellen . . . . . . . . . . . . . . . . . . 10.11.1 Huygenssches Prinzip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.11.2 Beugung an Begrenzungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.11.3 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.11.4 Reflexion und Brechung von Wellen . . . . . . . . . . . . . . . . . . . 286 286 288 289 289 10.12 Stehende Wellen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.12.1 Eindimensionale stehende Wellen . . . . . . . . . . . . . . . . . . . . . . 10.12.2 Experimentelle Demonstration stehender Wellen . . . . . . . . 10.12.3 Zweidimensionale Eigenschwingungen von Membranen . 290 290 292 293 10.13 Wellen bei bewegten Quellen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.13.1 Doppler-Effekt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.13.2 Wellenfronten bei bewegten Quellen . . . . . . . . . . . . . . . . . . . 10.13.3 Stoßwellen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 295 296 297 10.14 Akustik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 10.14.1 Definitionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 Inhaltsverzeichnis 10.14.2 Druckamplitude und Energiedichte von Schallwellen . . . . 299 10.14.3 Erzeugung von Schallwellen . . . . . . . . . . . . . . . . . . . . . . . . . . 300 10.14.4 Schalldetektoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 10.15 Physik der Musikinstrumente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.15.1 Einteilung der Musikinstrumente . . . . . . . . . . . . . . . . . . . . . . 10.15.2 Akkorde, Tonleitern und Stimmungen . . . . . . . . . . . . . . . . . . 10.15.3 Physik der Geige . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.15.4 Physik beim Klavierspiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 301 302 303 305 11. Wärmelehre 11.1 Temperatur und Wärmemenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.1 Temperaturmessung, Thermometer und Temperaturskala . 11.1.2 Thermische Ausdehnung fester und flüssiger Körper . . . . . 11.1.3 Thermische Ausdehnung von Gasen, Gasthermometer . . . 11.1.4 Absolute Temperaturskala . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.5 Wärmemenge und spezifische Wärme . . . . . . . . . . . . . . . . . . 11.1.6 Molvolumen und Avogadro-Konstante . . . . . . . . . . . . . . . . . . 11.1.7 Innere Energie und spezifische Molwärme idealer Gase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.8 Molekulare Deutung der spezifischen Wärme . . . . . . . . . . . 11.1.9 Spezifische Wärme eines Gases bei konstantem Druck . . . 11.1.10 Spezifische Wärme fester Körper . . . . . . . . . . . . . . . . . . . . . . 11.1.11 Schmelzwärme und Verdampfungswärme . . . . . . . . . . . . . . . 309 310 312 315 316 316 318 11.2 Wärmetransport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2.1 Konvektion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2.2 Wärmeleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2.3 Das Wärmerohr (heatpipe) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2.4 Wärmestrahlung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2.5 Methoden der Wärmeisolierung . . . . . . . . . . . . . . . . . . . . . . . 323 323 325 329 330 330 11.3 Die Hauptsätze der Thermodynamik . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3.1 Zustandsgrößen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3.2 Der erste Hauptsatz der Thermodynamik . . . . . . . . . . . . . . . 11.3.3 Spezielle Prozesse als Beispiele für den ersten Hauptsatz . 11.3.4 Der zweite Hauptsatz der Thermodynamik . . . . . . . . . . . . . . 11.3.5 Der Carnotsche Kreisprozeß . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3.6 quivalente Formulierungen des zweiten Hauptsatzes . . . . . 11.3.7 Die Entropie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3.8 Reversible und irreversible Prozesse . . . . . . . . . . . . . . . . . . . . 11.3.9 Thermodynamische Potentiale . . . . . . . . . . . . . . . . . . . . . . . . . 11.3.10 Der dritte Hauptsatz (Nernstsches Theorem) . . . . . . . . . . . . 11.3.11 Thermodynamische Maschinen . . . . . . . . . . . . . . . . . . . . . . . . 332 332 334 334 336 336 339 340 343 344 346 348 11.4 Thermodynamik realer Gase und Flüssigkeiten . . . . . . . . . . . . . . . . . . 11.4.1 Van der Waalssche Zustandsgleichung . . . . . . . . . . . . . . . . . . 11.4.2 Stoffe in verschiedenen Aggregatzuständen . . . . . . . . . . . . . 11.4.3 Lösungen und Mischzustände . . . . . . . . . . . . . . . . . . . . . . . . . 350 350 352 359 318 319 320 321 322 XIII XIV Inhaltsverzeichnis 12. Nichtlineare Dynamik und Chaos Stabilität dynamischer Systeme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logistisches Wachstumsgesetz und Feigenbaum-Diagramm . . . . . . Bevölkerungsexplosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selbstähnlichkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fraktale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mandelbrot-Mengen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Folgerungen für unser Weltverständnis . . . . . . . . . . . . . . . . . . . . . . . . . 365 368 370 372 373 374 377 1. 1.1 1.2 Vektorrechnung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition des Vektors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Darstellung von Vektoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.1 Kartesische Koordinaten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.2 Sphärische oder Polarkoordinaten . . . . . . . . . . . . . . . . . . . . . . 1.2.3 Zylindrische Koordinaten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381 381 381 381 382 382 1.3 1.4 1.5 Polare und axiale Vektoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Addition von Vektoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multiplikation von Vektoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5.1 Multiplikation eines Vektors mit einem Skalar . . . . . . . . . . . 1.5.2 Das Skalarprodukt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5.3 Das Vektorprodukt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5.4 Mehrfache Produkte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 383 383 383 383 384 384 1.6 Differentiation von Vektoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6.1 Vektorfelder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6.2 Differentiation eines Vektors nach einer skalaren Größe . . 1.6.3 Der Gradient einer skalaren Größe . . . . . . . . . . . . . . . . . . . . . 1.6.4 Die Divergenz eines Vektorfeldes . . . . . . . . . . . . . . . . . . . . . . 1.6.5 Die Rotation eines Vektorfeldes . . . . . . . . . . . . . . . . . . . . . . . . 1.6.6 Mehrfach-Differentiationen . . . . . . . . . . . . . . . . . . . . . . . . . . . 385 385 385 386 386 387 387 2. 2.1 2.2 2.3 3. 3.1 3.2 Koordinatensysteme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kartesische Koordinaten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zylinderkoordinaten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sphärische Koordinaten (Kugelkoordinaten) . . . . . . . . . . . . . . . . . . . . Komplexe Zahlen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rechenregeln für komplexe Zahlen . . . . . . . . . . . . . . . . . . . . . . . . . . . . Polardarstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 388 388 389 390 391 391 12.1 12.2 12.3 12.4 12.5 12.6 12.7 Anhang Lösungen der Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 Farbtafeln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421 Literaturverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 Sachwortverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 Wolfgang Demtröder Experimentalphysik 2 Elektrizität und Optik Zweite, überarbeitete und erweiterte Auflage Mit 635, meist zweifarbigen Abbildungen, 11 Farbtafeln, 17 Tabellen, zahlreichen durchgerechneten Beispielen und 137 Übungsaufgaben mit ausführlichen Lösungen 123 Inhaltsverzeichnis 1. Elektrostatik 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Elektrische Ladungen; Coulomb-Gesetz . . . . . . . . . . Das elektrische Feld . . . . . . . . . . . . . . . . . . . . . . . . 1.2.1 Elektrische FeldstaÈrke . . . . . . . . . . . . . . . . . 1.2.2 Elektrischer Kraftfluû; Ladungen als Quellen des elektrischen Feldes Elektrostatisches Potential . . . . . . . . . . . . . . . . . . . . 1.3.1 Potential und Spannung . . . . . . . . . . . . . . . . 1.3.2 Potentialgleichung . . . . . . . . . . . . . . . . . . . È quipotentialflaÈchen . . . . . . . . . . . . . . . . . . 1.3.3 A 1.3.4 Spezielle Ladungsverteilungen . . . . . . . . . . . Multipole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.1 Der elektrische Dipol . . . . . . . . . . . . . . . . . 1.4.2 Der elektrische Quadrupol . . . . . . . . . . . . . . 1.4.3 Multipolentwicklung . . . . . . . . . . . . . . . . . . Leiter im elektrischen Feld . . . . . . . . . . . . . . . . . . . 1.5.1 Influenz . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5.2 Kondensatoren . . . . . . . . . . . . . . . . . . . . . . Die Energie des elektrischen Feldes . . . . . . . . . . . . . Dielektrika im elektrischen Feld . . . . . . . . . . . . . . . 1.7.1 Dielektrische Polarisation . . . . . . . . . . . . . . 1.7.2 Polarisationsladungen . . . . . . . . . . . . . . . . . 1.7.3 Die Gleichungen des elektrostatischen Feldes in Materie . . . . . . . . . . . . . . . . . . . . . . . . . 1.7.4 Die elektrische Feldenergie im Dielektrikum . Die atomaren Grundlagen von Ladungen und elektrischen Momenten . . . . . . . . . . . . . . . . . . . 1.8.1 Der Millikan-Versuch . . . . . . . . . . . . . . . . . 1.8.2 Ablenkung von Elektronen und Ionen in elektrischen Feldern . . . . . . . . . . . . . . . . 1.8.3 Molekulare Dipolmomente . . . . . . . . . . . . . Elektrostatik in Natur und Technik . . . . . . . . . . . . . . 1.9.1 ReibungselektrizitaÈt und Kontaktpotential . . . 1.9.2 Das elektrische Feld der Erde und ihrer AtmosphaÈre . . . . . . . . . . . . . . . . . 1.9.3 Die Entstehung von Gewittern . . . . . . . . . . . 1.9.4 Elektrostatische Staubfilter . . . . . . . . . . . . . ........ ........ ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 5 .. 7 .. 8 .. 9 . 10 . 11 . 11 . 13 . 14 . 16 . 16 . 17 . 18 . 19 . 22 . 23 . 24 . 24 ....... ....... 25 28 ....... ....... 30 30 . . . . . . . . 31 31 34 34 ....... ....... ....... 35 35 36 . . . . . . . . . . . . . . . . . . . . XII Inhaltsverzeichnis 1.9.5 Elektrostatische Farbbeschichtung . . . . 1.9.6 Elektrostatische Kopierer und Drucker Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . È bungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 37 38 39 Strom als Ladungstransport . . . . . . . . . . . . . . . . . . . . . . . . . Elektrischer Widerstand und Ohmsches Gesetz . . . . . . . . . . . 2.2.1 Driftgeschwindigkeit und Stromdichte . . . . . . . . . . . . 2.2.2 Das Ohmsche Gesetz . . . . . . . . . . . . . . . . . . . . . . . 2.2.3 Beispiele fuÈr die Anwendung des Ohmschen Gesetzes 2.2.4 TemperaturabhaÈngigkeit des elektrischen Widerstandes fester KoÈrper; Supraleitung . . . . . . . . . . . . . . . . . . . 2.3 Stromleistung und Joulesche WaÈrme . . . . . . . . . . . . . . . . . . . 2.4 Netzwerke; Kirchhoffsche Regeln . . . . . . . . . . . . . . . . . . . . 2.4.1 Reihenschaltung von WiderstaÈnden . . . . . . . . . . . . . . 2.4.2 Parallelschaltung von WiderstaÈnden . . . . . . . . . . . . . 2.4.3 Wheatstonesche BruÈckenschaltung . . . . . . . . . . . . . . 2.5 Meûverfahren fuÈr elektrische StroÈme . . . . . . . . . . . . . . . . . . 2.5.1 StrommeûgeraÈte . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.2 Schaltung von Amperemetern . . . . . . . . . . . . . . . . . 2.5.3 StrommeûgeraÈte als Voltmeter . . . . . . . . . . . . . . . . . 2.6 Ionenleitung in FluÈssigkeiten . . . . . . . . . . . . . . . . . . . . . . . . 2.7 Stromtransport in Gasen; Gasentladungen . . . . . . . . . . . . . . . 2.7.1 LadungstraÈgerkonzentration . . . . . . . . . . . . . . . . . . . 2.7.2 Erzeugungsmechanismen fuÈr LadungstraÈger . . . . . . . . 2.7.3 Strom-Spannungs-Kennlinie . . . . . . . . . . . . . . . . . . . 2.7.4 Mechanismus von Gasentladungen . . . . . . . . . . . . . . 2.7.5 Verschiedene Typen von Gasentladungen . . . . . . . . . . 2.8 Stromquellen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8.1 Innenwiderstand einer Stromquelle . . . . . . . . . . . . . . 2.8.2 Galvanische Elemente . . . . . . . . . . . . . . . . . . . . . . . 2.8.3 Akkumulatoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8.4 Verschiedene Typen von Batterien . . . . . . . . . . . . . . 2.8.5 Chemische Brennstoffzellen . . . . . . . . . . . . . . . . . . . 2.9 Thermische Stromquellen . . . . . . . . . . . . . . . . . . . . . . . . . . 2.9.1 Kontaktpotential . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.9.2 Thermoelektrische Spannung . . . . . . . . . . . . . . . . . . 2.9.3 Peltier-Effekt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . È bungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . U . . . . . 41 43 43 45 46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 52 53 53 54 54 55 55 56 57 57 59 59 59 60 62 64 66 66 66 69 69 71 72 72 72 73 74 74 . . . . 77 79 80 81 2. Der elektrische Strom 2.1 2.2 3. Statische Magnetfelder 3.1 3.2 Permanentmagnete; PolstaÈrke . . . . . . . . . . . . . . . . . . . . . Magnetfelder stationaÈrer StroÈme . . . . . . . . . . . . . . . . . . . 3.2.1 Magnetischer Kraftfluû und magnetische Spannung 3.2.2 Das Magnetfeld eines geraden Stromleiters . . . . . . . . . . . . . . Inhaltsverzeichnis 3.2.3 3.2.4 3.2.5 Magnetfeld im Inneren einer langgestreckten Spule . . . Das Vektorpotential . . . . . . . . . . . . . . . . . . . . . . . . . Das magnetische Feld einer beliebigen Stromverteilung; Biot-Savart-Gesetz . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.6 Beispiele zur Berechnung von magnetischen Feldern spezieller Stromanordnungen . . . . . . . . . . . . . . . . . . . 3.3 KraÈfte auf bewegte Ladungen im Magnetfeld . . . . . . . . . . . . . 3.3.1 Experimentelle Demonstration der Lorentzkraft . . . . . . 3.3.2 Elektronen- und Ionenoptik mit Magnetfeldern . . . . . . 3.3.3 KraÈfte auf stromdurchflossene Leiter im Magnetfeld . . . 3.3.4 Hall-Effekt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.5 Das Barlowsche Rad zur Demonstration der ¹Elektronenreibungª in Metallen . . . . . . . . . . . . . . 3.3.6 KraÈfte zwischen zwei parallelen Stromleitern . . . . . . . . 3.4 Elektromagnetisches Feld und RelativitaÈtsprinzip . . . . . . . . . . . 3.4.1 Das elektrische Feld einer bewegten Ladung . . . . . . . . 3.4.2 Zusammenhang zwischen elektrischem und magnetischem Feld . . . . . . . . . . . . . . . . . . . . . . . 3.4.3 Relativistische Transformation von Ladungsdichte und Strom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.4 Transformationsgleichungen fuÈr das elektromagnetische Feld . . . . . . . . . . . . . . . . 3.5 Materie im Magnetfeld . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.1 Magnetische Dipole . . . . . . . . . . . . . . . . . . . . . . . . 3.5.2 Magnetisierung und magnetische SuszeptibilitaÈt . . . . . 3.5.3 Diamagnetismus . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.4 Paramagnetismus . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.5 Ferromagnetismus . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.6 Antiferro-, Ferrimagnete und Ferrite . . . . . . . . . . . . . 3.5.7 Feldgleichungen in Materie . . . . . . . . . . . . . . . . . . . 3.5.8 Elektromagnete . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 Das Magnetfeld der Erde . . . . . . . . . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . È bungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . U 82 82 83 84 88 89 90 92 92 93 94 94 95 97 98 100 101 101 103 104 106 106 109 110 111 111 114 115 4. Zeitlich veraÈnderliche Felder 4.1 4.2 4.3 4.4 4.5 Faradaysches Induktionsgesetz . . . . . . . . . . . . Lenzsche Regel . . . . . . . . . . . . . . . . . . . . . . 4.2.1 Durch Induktion angefachte Bewegung 4.2.2 Elektromagnetische Schleuder . . . . . . 4.2.3. Magnetische Levitation . . . . . . . . . . . 4.2.4 WirbelstroÈme . . . . . . . . . . . . . . . . . . Selbstinduktion und gegenseitige Induktion . . . 4.3.1 Selbstinduktion . . . . . . . . . . . . . . . . . 4.3.2 Gegenseitige Induktion . . . . . . . . . . . Die Energie des magnetischen Feldes . . . . . . . Der Verschiebungsstrom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 120 121 121 121 122 122 122 125 127 127 XIII XIV Inhaltsverzeichnis 4.6 Maxwell-Gleichungen und elektrodynamische Potentiale . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . È bungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . U 129 132 132 5. Elektrotechnische Anwendungen 5.1 Elektrische Generatoren und Motoren . . . . . . . . . . . . . . 5.1.1 Gleichstrommaschinen . . . . . . . . . . . . . . . . . . 5.1.2 Wechselstromgeneratoren . . . . . . . . . . . . . . . . 5.2 Wechselstrom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 Mehrphasenstrom; Drehstrom . . . . . . . . . . . . . . . . . . . 5.4 Wechselstromkreise mit komplexen WiderstaÈnden; Zeigerdiagramme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.1 Wechselstromkreis mit InduktivitaÈt . . . . . . . . . . 5.4.2 Wechselstromkreis mit KapazitaÈt . . . . . . . . . . . 5.4.3 Allgemeiner Fall . . . . . . . . . . . . . . . . . . . . . . 5.5 Lineare Netzwerke; Hoch- und TiefpaÈsse; Frequenzfilter 5.5.1 Hochpaû . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.2 Tiefpaû . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.3 Frequenzfilter . . . . . . . . . . . . . . . . . . . . . . . . 5.6 Transformatoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6.1 Unbelasteter Transformator . . . . . . . . . . . . . . . 5.6.2 Belasteter Transformator . . . . . . . . . . . . . . . . . 5.6.3 Anwendungsbeispiele . . . . . . . . . . . . . . . . . . . 5.7 Gleichrichtung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7.1 Einweggleichrichtung . . . . . . . . . . . . . . . . . . . 5.7.2 Zweiweggleichrichtung . . . . . . . . . . . . . . . . . . 5.7.3 BruÈckenschaltung . . . . . . . . . . . . . . . . . . . . . 5.7.4 Kaskadenschaltung . . . . . . . . . . . . . . . . . . . . . 5.8 Impedanz-Anpassung bei Wechselstromkreisen . . . . . . . 5.9 ElektronenroÈhren . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.9.1 Vakuum-Dioden . . . . . . . . . . . . . . . . . . . . . . . 5.9.2 Triode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . È bungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . U . . . . . . . . . . . . . . . . . . . . 135 137 140 140 142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 145 145 146 147 148 149 149 150 151 152 153 154 155 155 156 157 157 158 158 159 160 160 Der elektromagnetische Schwingkreis . . . . . . . . . . . . . . . . . . 6.1.1 GedaÈmpfte elektromagnetische Schwingungen . . . . . . 6.1.2 Erzwungene Schwingungen . . . . . . . . . . . . . . . . . . . Gekoppelte Schwingkreise . . . . . . . . . . . . . . . . . . . . . . . . . Erzeugung ungedaÈmpfter Schwingungen . . . . . . . . . . . . . . . . . Offene Schwingkreise; Hertzscher Dipol . . . . . . . . . . . . . . . . . 6.4.1 Experimentelle Realisierung eines Senders . . . . . . . . 6.4.2 Das elektromagnetische Feld des schwingenden Dipols Die Abstrahlung des schwingenden Dipols . . . . . . . . . . . . . . 163 164 165 166 168 170 171 172 177 6. Elektromagnetische Schwingungen und die Entstehung elektromagnetischer Wellen 6.1 6.2 6.3 6.4 6.5 Inhaltsverzeichnis 6.5.1 Die abgestrahlte Leistung . . . . . . . . . . . . . . 6.5.2 StrahlungsdaÈmpfung . . . . . . . . . . . . . . . . . . 6.5.3 Frequenzspektrum der abgestrahlten Leistung 6.5.4 Die Abstrahlung einer beschleunigten Ladung Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . È bungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 178 179 179 182 183 Die Wellengleichung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ebene elektrische Wellen . . . . . . . . . . . . . . . . . . . . . . . . . . Periodische Wellen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Polarisation elektromagnetischer Wellen . . . . . . . . . . . . . . . . 7.4.1 Linear polarisierte Wellen . . . . . . . . . . . . . . . . . . . . 7.4.2 Zirkular polarisierte Wellen . . . . . . . . . . . . . . . . . . . 7.4.3 Elliptisch polarisierte Wellen . . . . . . . . . . . . . . . . . . 7.4.4 Unpolarisierte Wellen . . . . . . . . . . . . . . . . . . . . . . . 7.5 Das Magnetfeld elektromagnetischer Wellen . . . . . . . . . . . . . 7.6 Energie- und Impulstransport durch elektromagnetische Wellen 7.7 Messung der Lichtgeschwindigkeit . . . . . . . . . . . . . . . . . . . . 7.7.1 Die astronomische Methode von Ole Rùmer . . . . . . . 7.7.2 Die Zahnradmethode von Fizeau . . . . . . . . . . . . . . . 7.7.3 Phasenmethode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.7.4 Bestimmung von c aus der Messung von Frequenz und WellenlaÈnge . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.8 Stehende elektromagnetische Wellen . . . . . . . . . . . . . . . . . . 7.8.1 Eindimensionale stehende Wellen . . . . . . . . . . . . . . . 7.8.2 Dreidimensionale stehende Wellen; Hohlraumresonatoren . . . . . . . . . . . . . . . . . . . . . . . 7.9 Wellen in Wellenleitern und Kabeln . . . . . . . . . . . . . . . . . . . 7.9.1 Wellen zwischen zwei planparallelen leitenden Platten 7.9.2 Hohlleiter mit rechteckigem Querschnitt . . . . . . . . . . 7.9.3 Drahtwellen; Lecherleitung; Koaxialkabel . . . . . . . . . 7.9.4 Beispiele fuÈr Wellenleiter . . . . . . . . . . . . . . . . . . . . 7.10 Das elektromagnetische Frequenzspektrum . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . È bungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . U 185 186 186 187 188 188 189 189 189 190 194 194 194 195 7. Elektromagnetische Wellen im Vakuum 7.1 7.2 7.3 7.4 195 196 196 197 199 199 201 204 206 207 209 210 8. Elektromagnetische Wellen in Materie 8.1 8.2 8.3 Brechungsindex . . . . . . . . . . . . . . . . . . . . . 8.1.1 Makroskopische Beschreibung . . . . . 8.1.2 Mikroskopisches Modell . . . . . . . . . Absorption und Dispersion . . . . . . . . . . . . . Lichtstreuung . . . . . . . . . . . . . . . . . . . . . . . 8.3.1 KohaÈrente Streuung; Interferenz . . . . 8.3.2 InkohaÈrente Streuung . . . . . . . . . . . 8.3.3 Streuquerschnitte . . . . . . . . . . . . . . 8.3.4 Lichtstreuung in unserer AtmosphaÈre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 214 214 216 220 220 222 223 224 XV XVI Inhaltsverzeichnis 8.3.5 Streuung an Mikropartikeln; Mie-Streuung . . . . . . . . Wellengleichung fuÈr elektromagnetische Wellen in Materie . . . 8.4.1 Wellen in nichtleitenden Medien . . . . . . . . . . . . . . . 8.4.2 Wellen in leitenden Medien . . . . . . . . . . . . . . . . . . . 8.4.3 Die elektromagnetische Energie von Wellen in Medien 8.5 Wellen an GrenzflaÈchen zwischen zwei Medien . . . . . . . . . . . 8.5.1 Randbedingungen fuÈr elektrische und magnetische FeldstaÈrke . . . . . . . . . . . . . . . . . . . 8.5.2 Reflexions- und Brechungsgesetz . . . . . . . . . . . . . . . 8.5.3 Amplitude und Polarisation von reflektierten und gebrochenen Wellen . . . . . . . . . . . . . . . . . . . . . 8.5.4 Reflexions- und TransmissionsvermoÈgen einer GrenzflaÈche . . . . . . . . . . . . . . . . . . . . . . . . . . 8.5.5 Brewsterwinkel . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.5.6 Totalreflexion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . È nderung der Polarisation bei schraÈgem Lichteinfall . 8.5.7 A 8.5.8 PhasenaÈnderung bei der Reflexion . . . . . . . . . . . . . . 8.5.9 Reflexion an MetalloberflaÈchen . . . . . . . . . . . . . . . . 8.6 Lichtausbreitung in nichtisotropen Medien; Doppelbrechung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.6.1 Ausbreitung von Lichtwellen in anisotropen Medien . . 8.6.2 Brechungsindex-Ellipsoid . . . . . . . . . . . . . . . . . . . . 8.6.3 Doppelbrechung . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.7 Erzeugung und Anwendung von polarisiertem Licht . . . . . . . 8.7.1 Erzeugung von linear polarisiertem Licht durch Reflexion . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.7.2 Erzeugung von linear polarisiertem Licht beim Durchgang durch dichroitische Kristalle . . . . . . 8.7.3 Doppelbrechende Polarisatoren . . . . . . . . . . . . . . . . . 8.7.4 Polarisationsdreher . . . . . . . . . . . . . . . . . . . . . . . . . 8.7.5 Optische AktivitaÈt . . . . . . . . . . . . . . . . . . . . . . . . . 8.7.6 Spannungsdoppelbrechung . . . . . . . . . . . . . . . . . . . . 8.8 Nichtlineare Optik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.8.1 Optische Frequenzverdopplung . . . . . . . . . . . . . . . . . 8.8.2 Phasenanpassung . . . . . . . . . . . . . . . . . . . . . . . . . . 8.8.3 Optische Frequenzmischung . . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . È bungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . U 8.4 226 227 227 228 229 230 231 231 232 234 235 236 237 237 239 240 241 242 244 245 245 246 247 248 249 251 252 252 253 254 255 256 9. Geometrische Optik 9.1 9.2 9.3 9.4 9.5 Grundaxiome der geometrischen Optik . . . . . . Die optische Abbildung . . . . . . . . . . . . . . . . Hohlspiegel . . . . . . . . . . . . . . . . . . . . . . . . . Prismen . . . . . . . . . . . . . . . . . . . . . . . . . . . Linsen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.5.1 Brechung an einer gekruÈmmten FlaÈche 9.5.2 DuÈnne Linsen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 259 260 264 265 265 267 Inhaltsverzeichnis 9.5.3 Dicke Linsen . . . . . . . . . . . . . . . . . . . . . . . . . 9.5.4 Linsensysteme . . . . . . . . . . . . . . . . . . . . . . . . 9.5.5 Zoom-Linsensysteme . . . . . . . . . . . . . . . . . . . 9.5.6 Linsenfehler . . . . . . . . . . . . . . . . . . . . . . . . . . 9.5.7 Die aplanatische Abbildung . . . . . . . . . . . . . . . 9.6 Matrixmethoden der geometrischen Optik . . . . . . . . . . . 9.6.1 Die Translationsmatrix . . . . . . . . . . . . . . . . . . 9.6.2 Die Brechungsmatrix . . . . . . . . . . . . . . . . . . . 9.6.3 Die Reflexionsmatrix . . . . . . . . . . . . . . . . . . . 9.6.4 Transformationsmatrix einer Linse . . . . . . . . . . 9.6.5 Abbildungsmatrix . . . . . . . . . . . . . . . . . . . . . . 9.6.6 Matrizen von Linsensystemen . . . . . . . . . . . . . 9.6.7 Jones-Vektoren . . . . . . . . . . . . . . . . . . . . . . . . 9.7 Geometrische Optik der ErdatmosphaÈre . . . . . . . . . . . . 9.7.1 Ablenkung von Lichtstrahlen in der AtmosphaÈre 9.7.2 Regenbogen . . . . . . . . . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . È bungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 271 272 273 280 282 282 282 283 283 284 285 285 287 287 288 290 290 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 295 296 296 297 298 299 301 304 305 305 307 311 312 313 313 315 318 319 322 323 323 324 325 325 326 327 10. Interferenz und Beugung 10.1 Zeitliche und raÈumliche KohaÈrenz . . . . . . . . . . . . . . . . È berlagerung kohaÈrenter Wellen . . . . . . 10.2 Erzeugung und U 10.3 Experimentelle Realisierung der Zweistrahl-Interferenz . 10.3.1 Fresnelscher Spiegelversuch . . . . . . . . . . . . . . . 10.3.2 Youngscher Doppelspaltversuch . . . . . . . . . . . . 10.3.3 Interferenz an einer planparallelen Platte . . . . . . 10.3.4 Michelson-Interferometer . . . . . . . . . . . . . . . . . 10.3.5 Das Michelson-Morley-Experiment . . . . . . . . . . 10.3.6 Sagnac-Interferometer . . . . . . . . . . . . . . . . . . . 10.3.7 Mach-Zehnder Interferometer . . . . . . . . . . . . . . 10.4 Vielstrahl-Interferenz . . . . . . . . . . . . . . . . . . . . . . . . . 10.4.1 Fabry-Perot-Interferometer . . . . . . . . . . . . . . . . 10.4.2 Dielektrische Spiegel . . . . . . . . . . . . . . . . . . . 10.4.3 Antireflexschicht . . . . . . . . . . . . . . . . . . . . . . 10.5 Beugung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5.1 Beugung am Spalt . . . . . . . . . . . . . . . . . . . . . 10.5.2 Beugungsgitter . . . . . . . . . . . . . . . . . . . . . . . . 10.6 Fraunhofer- und Fresnel-Beugung . . . . . . . . . . . . . . . . 10.6.1 Fresnelsche Zonen . . . . . . . . . . . . . . . . . . . . . 10.6.2 Fresnelsche Zonenplatte . . . . . . . . . . . . . . . . . 10.7 Allgemeine Behandlung der Beugung . . . . . . . . . . . . . . 10.7.1 Das Beugungsintegral . . . . . . . . . . . . . . . . . . . 10.7.2 Fresnel- und Fraunhofer-Beugung an einem Spalt 10.7.3 Fresnel-Beugung an einer Kante . . . . . . . . . . . . È ffnung 10.7.4 Fresnel-Beugung an einer kreisfoÈrmigen O 10.7.5 Babinetsches Theorem . . . . . . . . . . . . . . . . . . 10.8. Fourierdarstellung der Beugung . . . . . . . . . . . . . . . . . . . . . . XVII XVIII Inhaltsverzeichnis 10.8.1 Fourier-Transformation . . . . . . . . . 10.8.2 Anwendung auf Beugungsprobleme Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . È bungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 328 330 331 11.1 Das Auge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.1 Aufbau des Auges . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.2 Kurz- und Weitsichtigkeit . . . . . . . . . . . . . . . . . . . . 11.1.3 RaÈumliche AufloÈsung und Empfindlichkeit des Auges 11.2 VergroÈûernde optische Instrumente . . . . . . . . . . . . . . . . . . . . 11.2.1 Die Lupe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2.2 Das Mikroskop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2.3 Das Fernrohr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3 Die Rolle der Beugung bei optischen Instrumenten . . . . . . . . 11.3.1 AufloÈsungsvermoÈgen des Fernrohrs . . . . . . . . . . . . . 11.3.2 AufloÈsungsvermoÈgen des Auges . . . . . . . . . . . . . . . 11.3.3 AufloÈsungsvermoÈgen des Mikroskops . . . . . . . . . . . . 11.3.4 Abbesche Theorie der Abbildung . . . . . . . . . . . . . . . 11.4 Die LichtstaÈrke optischer Instrumente . . . . . . . . . . . . . . . . . . 11.5 Spektrographen und Monochromatoren . . . . . . . . . . . . . . . . . 11.5.1 Prismenspektrographen . . . . . . . . . . . . . . . . . . . . . . 11.5.2 Gittermonochromator . . . . . . . . . . . . . . . . . . . . . . . 11.5.3 Das spektrale AufloÈsungsvermoÈgen von Spektrographen . . . . . . . . . . . . . . . . . . . . . . . . 11.5.4 Ein allgemeiner Ausdruck fuÈr das spektrale AufloÈsungsvermoÈgen . . . . . . . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . È bungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . U 333 333 335 335 336 337 338 340 341 341 343 343 344 346 347 348 349 11. Optische Instrumente 349 352 354 355 12. Neue Techniken in der Optik 12.1 Konfokale Mikroskopie . . . . . . . . . . . . . . . 12.2 Optische Nahfeldmikroskopie . . . . . . . . . . . 12.3 Aktive und adaptive Optik . . . . . . . . . . . . . 12.3.1 Aktive Optik . . . . . . . . . . . . . . . . . 12.3.2 Adaptive Optik . . . . . . . . . . . . . . . . 12.4 Diffraktive Optik . . . . . . . . . . . . . . . . . . . . 12.5 Holographie . . . . . . . . . . . . . . . . . . . . . . . 12.5.1 Aufnahme eines Hologramms . . . . . 12.5.2 Die Rekonstruktion des Wellenfeldes 12.5.3 Weiûlichtholographie . . . . . . . . . . . 12.5.4 Holographische Interferometrie . . . . 12.5.5 Anwendungen der Holographie . . . . 12.6 Fourieroptik . . . . . . . . . . . . . . . . . . . . . . . 12.6.1 Die Linse als Fouriertransformator . . 12.6.2 Optische Filterung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 359 360 360 361 363 366 366 368 369 370 372 372 373 375 Inhaltsverzeichnis 12.6.3 Optische Mustererkennung . . . . . . . . . . . . . . . 12.7 Integrierte Optik . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.7.1 Lichtausbreitung in optischen Wellenleitern . . . 12.7.2 Lichtmodulation . . . . . . . . . . . . . . . . . . . . . . 12.7.3 Kopplung zwischen benachbarten Wellenleitern 12.7.4 Integrierte optische Elemente . . . . . . . . . . . . . 12.8 Optische NachrichtenuÈbertragung . . . . . . . . . . . . . . . . 12.8.1 Optische Lichtleitfasern . . . . . . . . . . . . . . . . . 12.8.2 Pulsausbreitung in Fasern . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . È bungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 377 377 379 380 381 381 382 383 386 387 LoÈsungen der UÈbungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389 Farbtafeln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443 Literaturverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451 Sachwortverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457 XIX Wolfgang Demtröder Experimentalphysik3 Atome, Moleküle und Festkörper Zweite, überarbeitete und erweiterte Auflage Mit 706, meist zweifarbigen Abbildungen, 9 Farbtafeln, 48 Tabellen, zahlreichen durchgerechneten Beispielen und 149 Übungsaufgaben mit ausführlichen Lösungen 13 Inhaltsverzeichnis 1. Einleitung 1.1 1.2 1.3 1.4 Inhalt und Bedeutung der Atomphysik . . . . . . . . . . . . . . . . . . . . . . . . . Moleküle: Grundbausteine der Natur . . . . . . . . . . . . . . . . . . . . . . . . . . . Festkörperphysik und ihre technische Bedeutung . . . . . . . . . . . . . . . . Überblick über das Konzept des Lehrbuches . . . . . . . . . . . . . . . . . . . . 1 2 3 4 2. Entwicklung der Atomvorstellung 2.1 2.2 2.3 2.4 2.5 2.6 Historische Entwicklung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Experimentelle und theoretische Hinweise auf die Existenz von Atomen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.1 Daltons Gesetz der konstanten Proportionen . . . . . . . . . . . . 2.2.2 Gesetze von Gay-Lussac und der Begriff des Mols . . . . . . . 2.2.3 Experimentelle Methoden zur Bestimmung der Avogadro-Konstanten . . . . . . . . . . . . . . 2.2.4 Die Bedeutung der kinetischen Gastheorie für die Atomvorstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kann man Atome sehen? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.1 Brownsche Molekularbewegung . . . . . . . . . . . . . . . . . . . . . . . 2.3.2 Nebelkammer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.3 Mikroskope mit atomarer Auflösung . . . . . . . . . . . . . . . . . . . Bestimmung der Atomgröße . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.1 Bestimmung von Atomgrößen aus dem Kovolumen der van-der-Waals-Gleichung . . . . . . . 2.4.2 Abschätzung der Atomgrößen aus den Transportkoeffizienten in Gasen . . . . . . . . . . . . . . . . 2.4.3 Beugung von Röntgenstrahlung an Kristallen . . . . . . . . . . . 2.4.4 Vergleich der Methoden zur Atomgrößenbestimmung . . . . Der elektrische Aufbau von Atomen . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.1 Kathoden- und Kanalstrahlen . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.2 Messung der Elementarladung . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.3 Erzeugung freier Elektronen . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.4 Erzeugung freier Ionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.5 Bestimmung der Elektronenmasse . . . . . . . . . . . . . . . . . . . . . 2.5.6 Wie neutral ist ein Atom? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Elektronen- und Ionenoptik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.1 Brechungsgesetz für Elektronenstrahlen . . . . . . . . . . . . . . . . 2.6.2 Elektronenbahnen in axialsymmetrischen Feldern . . . . . . . 7 9 9 10 12 16 17 17 21 21 26 26 26 27 28 29 30 31 32 34 36 37 39 39 40 X Inhaltsverzeichnis 2.6.3 Elektrostatische Elektronenlinsen . . . . . . . . . . . . . . . . . . . . . . 2.6.4 Magnetische Linsen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.5 Anwendungen der Elektronen- und Ionenoptik . . . . . . . . . . 2.7 Bestimmung der Atommassen; Massenspektrometer . . . . . . . . . . . . . 2.7.1 Überblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.2 Parabelspektrograph von J.J. Thomson . . . . . . . . . . . . . . . . . 2.7.3 Geschwindigkeitsfokussierung . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.4 Richtungsfokussierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.5 Massenspektrometer mit doppelter Fokussierung . . . . . . . . 2.7.6 Flugzeit-Massenspektrometer . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.7 Quadrupol-Massenspektrometer . . . . . . . . . . . . . . . . . . . . . . . 2.7.8 Ionen-Zyklotron-Resonanz-Spektrometer . . . . . . . . . . . . . . . 2.7.9 Isotope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8 Die Struktur von Atomen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8.1 Streuversuche; integraler und differentieller Streuquerschnitt . . . . . . . . . . . 2.8.2 Grundlagen der klassischen Streutheorie . . . . . . . . . . . . . . . . 2.8.3 Bestimmung der Ladungsverteilung im Atom aus Streuexperimenten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8.4 Das Thomsonsche Atommodell . . . . . . . . . . . . . . . . . . . . . . . . 2.8.5 Rutherfordsches Atommodell . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8.6 Rutherfordsche Streuformel . . . . . . . . . . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 44 46 46 47 47 49 50 51 52 54 56 57 58 58 59 63 63 66 67 68 69 3. Entwicklung der Quantenphysik 3.1 3.2 3.3 Experimentelle Hinweise auf den Teilchencharakter elektromagnetischer Strahlung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.1 Hohlraumstrahlung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.2 Das Plancksche Strahlungsgesetz . . . . . . . . . . . . . . . . . . . . . . 3.1.3 Wiensches Verschiebungsgesetz . . . . . . . . . . . . . . . . . . . . . . . 3.1.4 Das Stefan-Boltzmannsche Strahlungsgesetz . . . . . . . . . . . . 3.1.5 Photoelektrischer Effekt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.6 Compton-Effekt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.7 Eigenschaften des Photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.8 Photonen im Gravitationsfeld . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.9 Wellen- und Teilchenbeschreibung von Licht . . . . . . . . . . . . Der Wellencharakter von Teilchen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1 Die de-Broglie-Wellenlänge und Elektronenbeugung . . . . . 3.2.2 Beugung und Interferenz von Atomen . . . . . . . . . . . . . . . . . . 3.2.3 Bragg-Reflexion und Neutronenspektrometer . . . . . . . . . . . 3.2.4 Neutronen-Interferometrie . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.5 Anwendungen der Welleneigenschaften von Teilchen . . . . Materiewellen und Wellenfunktionen . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.1 Wellenpakete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.2 Statistische Deutung der Wellenfunktion . . . . . . . . . . . . . . . . 3.3.3 Heisenbergsche Unbestimmtheitsrelation . . . . . . . . . . . . . . . 73 74 75 78 79 80 82 83 84 85 87 87 88 90 90 91 92 92 94 95 Inhaltsverzeichnis 3.3.4 Das Auseinanderlaufen eines Wellenpaketes . . . . . . . . . . . . 3.3.5 Unbestimmtheitsrelation für Energie und Zeit . . . . . . . . . . . 3.4 Die Quantenstruktur der Atome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.1 Atomspektren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.2 Das Bohrsche Atommodell . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.3 Die Stabilität der Atome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.4 Franck-Hertz-Versuch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Was unterscheidet die Quantenphysik von der klassischen Physik? 3.5.1 Klassische Teilchenbahnen gegen Wahrscheinlichkeitsdichten der Quantenphysik . . . . 3.5.2 Interferenzerscheinungen bei Licht- und Materiewellen . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.3 Die Rolle des Meßprozesses . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.4 Die Bedeutung der Quantenphysik für unser Naturverständnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 99 101 101 103 106 107 109 109 110 113 113 115 116 4. Grundlagen der Quantenmechanik 4.1 4.2 Die Schrödingergleichung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anwendungsbeispiele der stationären Schrödingergleichung . . . . . . 4.2.1 Das freie Teilchen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.2 Potentialstufe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.3 Tunneleffekt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.4 Teilchen im Potentialkasten . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.5 Harmonischer Oszillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Mehrdimensionale Probleme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.1 Teilchen im zweidimensionalen Potentialkasten . . . . . . . . . 4.3.2 Teilchen im kugelsymmetrischen Potential . . . . . . . . . . . . . . 4.4 Erwartungswerte und Operatoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.1 Operatoren und Eigenwerte . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.2 Der Drehimpuls in der Quantenmechanik . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 119 119 120 123 126 128 131 131 133 136 137 139 142 143 5. Das Wasserstoffatom 5.1 5.2 5.3 5.4 5.5 Schrödingergleichung für Einelektronen-Atome . . . . . . . . . . . . . . . . . 5.1.1 Trennung von Schwerpunkt- und Relativbewegung . . . . . . 5.1.2 Lösung der Radialgleichung . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.3 Quantenzahlen und Wellenfunktionen des H-Atoms . . . . . . 5.1.4 Aufenthaltswahrscheinlichkeiten und Erwartungswerte des Elektrons in verschiedenen Quantenzuständen . . . . . . . Normaler Zeeman-Effekt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vergleich der Schrödinger-Theorie mit den experimentellen Befunden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Relativistische Korrektur der Energieterme . . . . . . . . . . . . . . . . . . . . . Elektronenspin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 145 147 149 151 153 156 158 159 XI XII Inhaltsverzeichnis 5.5.1 Stern-Gerlach-Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.2 Einstein-de-Haas-Effekt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.3 Spin-Bahn-Kopplung; Feinstruktur . . . . . . . . . . . . . . . . . . . . . 5.5.4 Anomaler Zeeman-Effekt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6 Hyperfeinstruktur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7 Vollständige Beschreibung des Wasserstoffatoms . . . . . . . . . . . . . . . . 5.7.1 Gesamtwellenfunktion und Quantenzahlen . . . . . . . . . . . . . . 5.7.2 Termbezeichnung und Termschema . . . . . . . . . . . . . . . . . . . . 5.7.3 Lamb-Verschiebung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.8 Korrespondenzprinzip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.9 Das Modell des Elektrons und seine Probleme . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 160 161 163 166 169 169 170 171 176 177 179 180 6. Atome mit mehreren Elektronen 6.1 6.2 6.3 6.4 6.5 6.6 6.7 Das Heliumatom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.1 Näherungsmodelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.2 Symmetrie der Wellenfunktion . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.3 Berücksichtigung des Elektronenspins . . . . . . . . . . . . . . . . . . 6.1.4 Das Pauliprinzip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.5 Termschema des Heliumatoms . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.6 Heliumspektrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Aufbau der Elektronenhüllen größerer Atome . . . . . . . . . . . . . . . . . . . 6.2.1 Das Schalenmodell der Atomhüllen . . . . . . . . . . . . . . . . . . . . 6.2.2 Sukzessiver Aufbau der Atomhüllen mit steigender Kernladungszahl . . . . . . . . . . . . . . . . . . . . . . . . 6.2.3 Atomvolumen und Ionisierungsenergien . . . . . . . . . . . . . . . . 6.2.4 Das Periodensystem der Elemente . . . . . . . . . . . . . . . . . . . . . Alkaliatome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Theoretische Modelle von Mehrelektronen-Atomen . . . . . . . . . . . . . 6.4.1 Modell unabhängiger Elektronen . . . . . . . . . . . . . . . . . . . . . . . 6.4.2 Das Hartree-Verfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Elektronenkonfigurationen und Drehimpulskopplungen . . . . . . . . . . 6.5.1 Kopplungsschemata für die Elektronendrehimpulse . . . . . . 6.5.2 Elektronenkonfiguration und Atomzustände leichter Atome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Angeregte Atomzustände . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.6.1 Einfachanregung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.6.2 Anregung mehrerer Elektronen, Autoionisation . . . . . . . . . . 6.6.3 Innerschalenanregung, Auger-Prozeß . . . . . . . . . . . . . . . . . . . 6.6.4 Rydbergzustände . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.6.5 Planetarische Atome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Exotische Atome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.7.1 Myonische Atome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.7.2 Pionische und kaonische Atome . . . . . . . . . . . . . . . . . . . . . . . 6.7.3 Antiwasserstoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.7.4 Positronium und Myonium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 182 183 184 185 185 187 188 189 189 192 194 196 199 199 199 201 201 206 208 208 208 209 210 212 213 213 214 215 216 Inhaltsverzeichnis Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 7. Emission und Absorption elektromagnetischer Strahlung durch Atome 7.1 Übergangswahrscheinlichkeiten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1.1 Induzierte und spontane Übergänge; Einstein-Koeffizienten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1.2 Übergangswahrscheinlichkeiten und Matrixelemente . . . . . 7.1.3 Übergangswahrscheinlichkeiten für Absorption und induzierte Emission . . . . . . . . . . . . . . . . 7.2 Auswahlregeln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.1 Auswahlregeln für die magnetische Quantenzahl . . . . . . . . 7.2.2 Paritätsauswahlregeln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.3 Auswahlregeln für die Spinquantenzahl . . . . . . . . . . . . . . . . . 7.2.4 Multipol-Übergänge höherer Ordnung . . . . . . . . . . . . . . . . . . 7.3 Lebensdauern angeregter Zustände . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4 Linienbreiten der Spektrallinien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.1 Natürliche Linienbreite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.2 Doppler-Verbreiterung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.3 Stoßverbreiterung von Spektrallinien . . . . . . . . . . . . . . . . . . . 7.5 Röntgenstrahlung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5.1 Bremsstrahlung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5.2 Charakteristische Röntgenstrahlung . . . . . . . . . . . . . . . . . . . . 7.5.3 Absorption und Streuung von Röntgenstrahlung . . . . . . . . . 7.5.4 Röntgenfluoreszenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5.5 Messung von Röntgenwellenlängen . . . . . . . . . . . . . . . . . . . . 7.6 Kontinuierliche Absorptions- und Emissionsspektren . . . . . . . . . . . . 7.6.1 Photoionisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.6.2 Rekombinationsstrahlung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 219 222 223 224 225 226 227 228 229 231 232 234 236 239 240 241 242 246 246 248 249 251 252 253 8. Laser 8.1 8.2 8.3 8.4 Physikalische Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1.1 Schwellwertbedingung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1.2 Erzeugung der Besetzungsinversion . . . . . . . . . . . . . . . . . . . . 8.1.3 Frequenzverteilung der induzierten Emission . . . . . . . . . . . . Optische Resonatoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2.1 Offene optische Resonatoren . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2.2 Moden des offenen Resonators . . . . . . . . . . . . . . . . . . . . . . . . 8.2.3 Beugungsverluste offener Resonatoren . . . . . . . . . . . . . . . . . 8.2.4 Das Frequenzspektrum optischer Resonatoren . . . . . . . . . . . Einmodenlaser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Verschiedene Lasertypen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4.1 Festkörperlaser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4.2 Halbleiterlaser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 256 257 259 259 260 261 263 264 265 266 266 267 XIII XIV Inhaltsverzeichnis 8.4.3 Farbstofflaser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4.4 Gaslaser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.5 Erzeugung kurzer Laserpulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.5.1 Güteschaltung von Laserresonatoren . . . . . . . . . . . . . . . . . . . 8.5.2 Modengekoppelte Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.5.3 Optische Pulskompression . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 270 272 272 274 275 277 278 9. Moleküle 9.1 9.2 9.3 9.4 9.5 9.6 9.7 Das H+ 2 -Molekülion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1.1 Ansatz zur exakten Lösung für das starre Molekül . . . . . . . 9.1.2 Molekülorbitale und die LCAO-Näherung . . . . . . . . . . . . . . 9.1.3 Verbesserungen des LCAO-Ansatzes . . . . . . . . . . . . . . . . . . . Das H2 -Molekül . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.1 Molekülorbitalnäherung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.2 Heitler-London-Näherung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.3 Vergleich beider Näherungen . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.4 Verbesserungen der Näherung . . . . . . . . . . . . . . . . . . . . . . . . . Elektronische Zustände zweiatomiger Moleküle . . . . . . . . . . . . . . . . . 9.3.1 Molekülorbitalkonfigurationen . . . . . . . . . . . . . . . . . . . . . . . . . 9.3.2 Angeregte Molekülzustände . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3.3 Excimere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3.4 Korrelationsdiagramme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Die physikalischen Ursachen der Molekülbindung . . . . . . . . . . . . . . . 9.4.1 Chemische Bindung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.4.2 Multipolentwicklung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.4.3 Induzierte Dipolmomente und van-der-Waals-Potential . . . 9.4.4 Allgemeine Potentialentwicklung . . . . . . . . . . . . . . . . . . . . . . 9.4.5 Bindungstypen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rotation und Schwingung zweiatomiger Moleküle . . . . . . . . . . . . . . 9.5.1 Born-Oppenheimer-Näherung . . . . . . . . . . . . . . . . . . . . . . . . . 9.5.2 Der starre Rotator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.5.3 Zentrifugalaufweitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.5.4 Der Einfluß der Elektronenbewegung . . . . . . . . . . . . . . . . . . . 9.5.5 Schwingung zweiatomiger Moleküle . . . . . . . . . . . . . . . . . . . 9.5.6 Schwingungs-Rotations-Wechselwirkung . . . . . . . . . . . . . . . 9.5.7 Rotationsbarriere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Spektren zweiatomiger Moleküle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.6.1 Das Übergangsmatrixelement . . . . . . . . . . . . . . . . . . . . . . . . . . 9.6.2 Schwingungs-Rotations-Übergänge . . . . . . . . . . . . . . . . . . . . 9.6.3 Die Struktur elektronischer Übergänge . . . . . . . . . . . . . . . . . 9.6.4 Franck-Condon-Prinzip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.6.5 Kontinuierliche Spektren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Elektronische Zustände mehratomiger Moleküle . . . . . . . . . . . . . . . . 9.7.1 Das H2 O-Molekül . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.7.2 Hybridisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 280 282 285 286 286 288 288 289 290 290 292 294 294 295 295 296 298 299 300 301 301 302 304 304 305 307 308 309 309 310 312 314 315 317 317 318 Inhaltsverzeichnis 9.7.3 Das CO2 -Molekül . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.7.4 Walsh-Diagramm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.7.5 Das NH3 -Molekül . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.7.6 π-Elektronensysteme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.8 Rotation mehratomiger Moleküle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.8.1 Rotation symmetrischer Kreiselmoleküle . . . . . . . . . . . . . . . 9.8.2 Asymmetrische Kreiselmoleküle . . . . . . . . . . . . . . . . . . . . . . . 9.9 Schwingungen mehratomiger Moleküle . . . . . . . . . . . . . . . . . . . . . . . . 9.9.1 Normalschwingungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.9.2 Quantitative Behandlung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.10 Chemische Reaktionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.10.1 Reaktionen erster Ordnung . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.10.2 Reaktionen zweiter Ordnung . . . . . . . . . . . . . . . . . . . . . . . . . . 9.10.3 Exotherme und endotherme Reaktionen . . . . . . . . . . . . . . . . 9.10.4 Die Bestimmung der absoluten Reaktionsraten . . . . . . . . . . 9.11 Moleküldynamik und Wellenpakete . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 322 323 324 325 326 327 328 328 329 331 332 332 332 334 335 336 337 10. Experimentelle Methoden der Atom- und Molekülphysik 10.1 10.2 10.3 10.4 10.5 10.6 Spektroskopische Verfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.1 Mikrowellenspektroskopie . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.2 Fourierspektroskopie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.3 Klassische Emissions- und Absorptionsspektroskopie . . . . 10.1.4 Ramanspektroskopie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Laserspektroskopie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.1 Laser-Absorptionsspektroskopie . . . . . . . . . . . . . . . . . . . . . . . 10.2.2 Optoakustische Spektroskopie . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.3 Laserinduzierte Fluoreszenzspektroskopie . . . . . . . . . . . . . . 10.2.4 Resonante Zweistufen-Photoionisation . . . . . . . . . . . . . . . . . 10.2.5 Laserspektroskopie in Molekularstrahlen . . . . . . . . . . . . . . . 10.2.6 Nichtlineare Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.7 Sättigungsspektroskopie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.8 Dopplerfreie Zweiphotonenabsorption . . . . . . . . . . . . . . . . . . Messung magnetischer und elektrischer Momente von Atomen und Molekülen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.1 Die Rabi-Methode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.2 Stark-Spektroskopie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Elektronenspektroskopie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4.1 Elektronenstreuversuche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4.2 Photoelektronenspektroskopie . . . . . . . . . . . . . . . . . . . . . . . . . Molekül-Atom-Streuung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5.1 Elastische Streuung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5.2 Inelastische Streuung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5.3 Reaktive Streuung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zeitaufgelöste Messungen an Atomen und Molekülen . . . . . . . . . . . 10.6.1 Lebensdauermessungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 341 342 345 346 348 348 349 350 351 352 352 353 356 357 358 359 360 360 361 362 362 364 365 366 367 XV XVI Inhaltsverzeichnis 10.6.2 Zeitaufgelöste Messungen der Moleküldynamik . . . . . . . . . 10.6.3 Energietransferprozeß . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.7 Optisches Kühlen und Speichern von Atomen . . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368 370 370 374 375 11. Die Struktur fester Körper 11.1 Die Struktur von Einkristallen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.1 Symmetrien von Raumgittern . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.2 Bravaisgitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.3 Kristallstrukturen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.4 Gitterebenen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Das reziproke Gitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3 Experimentelle Methoden zur Strukturbestimmung . . . . . . . . . . . . . . 11.3.1 Bragg-Reflexion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3.2 Laue-Beugung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3.3 Debye-Scherrer-Verfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4 Genauere Behandlung der Röntgenbeugung . . . . . . . . . . . . . . . . . . . . . 11.4.1 Streuamplitude und Streufaktor . . . . . . . . . . . . . . . . . . . . . . . . 11.4.2 Der atomare Streufaktor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.3 Debye-Waller-Faktor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.5 Reale Kristalle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.5.1 Leerstellen im Gitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.5.2 Frenkelsche Fehlordnung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.5.3 Diffusion von Punktdefekten . . . . . . . . . . . . . . . . . . . . . . . . . . 11.5.4 Gitterversetzungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.5.5 Polykristalline Festkörper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.6 Warum halten Festkörper zusammen? . . . . . . . . . . . . . . . . . . . . . . . . . . 11.6.1 Edelgaskristalle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.6.2 Ionenkristalle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.6.3 Metallische Bindung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.6.4 Kovalente Kristalle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.6.5 Wasserstoffbrückenbindung . . . . . . . . . . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 379 380 383 386 387 389 389 390 392 393 393 395 396 397 397 398 398 400 400 400 401 402 403 403 404 404 405 12. Dynamik der Kristallgitter 12.1 12.2 12.3 Gitterschwingungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1.1 Die lineare Kette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1.2 Optische und akustische Zweige . . . . . . . . . . . . . . . . . . . . . . . Spezifische Wärme von Festkörpern . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2.1 Das Einstein-Modell der spezifischen Wärme . . . . . . . . . . . 12.2.2 Das Debye-Modell der spezifischen Wärme . . . . . . . . . . . . . Phononenspektroskopie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.3.1 Infrarotabsorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.3.2 Brillouin- und Ramanstreuung . . . . . . . . . . . . . . . . . . . . . . . . . 12.3.3 Inelastische Neutronenstreuung . . . . . . . . . . . . . . . . . . . . . . . . 407 407 410 412 413 414 416 417 417 419 Inhaltsverzeichnis 12.3.4 Ist Phononenspektroskopie mit Röntgenstrahlung möglich? . . . . . . . . . . . . . . . . . . . . . . . . 12.3.5 Phononenspektrum und Kraftkonstanten . . . . . . . . . . . . . . . . 12.3.6 Phononen als Quasiteilchen . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4 Mößbauer-Effekt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420 421 421 421 427 427 13. Elektronen im Festkörper 13.1 Freies Elektronengas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.1.1 Elektronen im eindimensionalen Potentialkasten . . . . . . . . . 13.1.2 Freies Elektronengas im dreidimensionalen Potentialkasten . . . . . . . . . . . . . . . . . . 13.1.3 Fermi-Dirac-Verteilung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.1.4 Eigenschaften des Elektronengases bei T = 0 K . . . . . . . . . 13.1.5 Elektronengas bei T > 0 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.1.6 Spezifische Wärme der Elektronen . . . . . . . . . . . . . . . . . . . . . 13.2 Elektronen im periodischen Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2.1 Blochfunktionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2.2 Energie-Impuls-Relationen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2.3 Energiebänder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2.4 Isolatoren und Leiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2.5 Reale Bandstrukturen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.3 Supraleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.3.1 Das Cooper-Paar-Modell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.3.2 Experimentelle Prüfung der BCS-Theorie . . . . . . . . . . . . . . . 13.3.3 Hochtemperatursupraleiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.4 Nichtmetallische Leiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.5 Elektronenemission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.5.1 Glühemission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.5.2 Feldemission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 429 431 432 434 434 435 436 436 438 440 440 441 443 443 444 447 448 449 449 450 452 453 14. Halbleiter 14.1 14.2 14.3 Reine Elementhalbleiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.1.1 Elektronen und Löcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.1.2 Effektive Masse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.1.3 Elektrische Leitfähigkeit von reinen Halbleitern . . . . . . . . . 14.1.4 Die Bandstruktur von Halbleitern . . . . . . . . . . . . . . . . . . . . . . Dotierte Halbleiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2.1 Donatoren und n-Halbleiter . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2.2 Akzeptoren und p-Halbleiter . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2.3 Halbleitertypen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2.4 Störstellen-Leitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2.5 Der p-n-Übergang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anwendungen von Halbleitern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455 456 457 458 460 461 461 463 463 464 464 467 XVII XVIII Inhaltsverzeichnis 14.3.1 Gleichrichter-Dioden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.3.2 Heißleiter und Halbleiter-Thermometer . . . . . . . . . . . . . . . . . 14.3.3 Photodioden und Solarzellen . . . . . . . . . . . . . . . . . . . . . . . . . . 14.3.4 Transistoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.3.5 Feldeffekt-Transistoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467 468 468 470 472 473 474 15. Dielektrische und optische Eigenschaften von Festkörpern 15.1 15.2 15.3 Dielektrische Polarisation und lokales Feld . . . . . . . . . . . . . . . . . . . . . Festkörper mit permanenten elektrischen Dipolen . . . . . . . . . . . . . . . Frequenzabhängigkeit der Polarisation und dielektrische Funktion 15.3.1 Elektronische Polarisation in Dielektrika . . . . . . . . . . . . . . . . 15.3.2 Optische Eigenschaften von Ionenkristallen . . . . . . . . . . . . . 15.3.3 Experimentelle Bestimmung der dielektrischen Funktion . 15.4 Optische Eigenschaften von Halbleitern . . . . . . . . . . . . . . . . . . . . . . . . 15.4.1 Interbandübergänge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.4.2 Dotierte Halbleiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.4.3 Exzitonen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.5 Störstellen und Farbzentren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475 477 478 479 481 484 485 485 486 486 487 489 490 16. Amorphe Festkörper; Flüssigkeiten, Flüssigkristalle und Cluster 16.1 16.2 16.3 16.4 16.5 16.6 Gläser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1.1 Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1.2 Die Struktur von Glas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1.3 Physikalische Eigenschaften von Gläsern . . . . . . . . . . . . . . . Metallische Gläser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2.1 Herstellungsverfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2.2 Struktur metallischer Gläser . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2.3 Eigenschaften metallischer Gläser . . . . . . . . . . . . . . . . . . . . . . Amorphe Halbleiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3.1 Struktur und Herstellung von amorphem Silizium a-Si:H . 16.3.2 Elektronische und optische Eigenschaften . . . . . . . . . . . . . . . Flüssigkeiten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.4.1 Makroskopische Beschreibung . . . . . . . . . . . . . . . . . . . . . . . . . 16.4.2 Mikroskopische Struktur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.4.3 Experimentelle Untersuchungsmethoden . . . . . . . . . . . . . . . . Flüssige Kristalle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.5.1 Strukturtypen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.5.2 Anwendungen von Flüssigkristallen . . . . . . . . . . . . . . . . . . . . Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.6.1 Klassifikation der Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.6.2 Herstellungsverfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.6.3 Physikalische Eigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.6.4 Anwendungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492 492 493 494 495 496 497 497 498 498 499 499 499 501 503 503 504 505 507 508 509 510 512 Inhaltsverzeichnis Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512 Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513 17. Oberflächen 17.1 Die atomare Struktur von Oberflächen . . . . . . . . . . . . . . . . . . . . . . . . . . 17.2 Experimentelle Untersuchungsmethoden . . . . . . . . . . . . . . . . . . . . . . . 17.3 Adsorption und Desorption von Atomen und Molekülen . . . . . . . . . 17.4 Chemische Reaktionen an Oberflächen . . . . . . . . . . . . . . . . . . . . . . . . . 17.5 Schmelzen von Festkörperoberflächen . . . . . . . . . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516 517 521 524 526 526 527 Zeittafel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529 Lösungen der Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533 Farbtafeln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587 Literatur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595 Sach- und Namenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605 XIX Wolfgang Demtröder Experimentalphysik 4 Kern-, Teilchen- und Astrophysik Mit 522, meist zweifarbigen Abbildungen, 15 Farbtafeln, 58 Tabellen, zahlreichen durchgerechneten Beispielen und 105 Übungsaufgaben mit ausführlichen Lösungen 13 Inhaltsverzeichnis 1. Einleitung 1.1 1.2 1.3 1.4 Was ist Kern-, Elementarteilchen- und Astrophysik? . . . . . . . . . . . . . Historische Entwicklung der Kern- und Elementarteilchenphysik . Bedeutung der Kern-, Elementarteilchen- und Astrophysik; offene Fragen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Überblick über das Konzept des Lehrbuches . . . . . . . . . . . . . . . . . . . . 1 2 6 6 2. Aufbau der Atomkerne Untersuchungsmethoden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ladung, Größe und Masse der Kerne . . . . . . . . . . . . . . . . . . . . . . . . . . . Massen- und Ladungsverteilung im Kern . . . . . . . . . . . . . . . . . . . . . . . 2.3.1 Massendichteverteilung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.2 Ladungsverteilung im Kern . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Aufbau der Kerne aus Nukleonen; Isotope und Isobare . . . . . . . . . . . 2.5 Kerndrehimpulse, magnetische und elektrische Momente . . . . . . . . 2.5.1 Magnetische Kernmomente . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.2 Elektrisches Quadrupolmoment . . . . . . . . . . . . . . . . . . . . . . . 2.6 Bindungsenergie der Kerne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.1 Experimentelle Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.2 Nukleonenkonfiguration und Pauliprinzip . . . . . . . . . . . . . . 2.6.3 Tröpfchenmodell und Bethe-Weizsäcker-Formel . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 2.2 2.3 9 10 13 15 15 18 20 20 23 26 26 28 29 32 33 3. Instabile Kerne, Radioaktivität 3.1 3.2 3.3 3.4 Stabilitätskriterien; Stabile und instabile Kerne . . . . . . . . . . . . . . . . . . Instabile Kerne und Radioaktivität . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1 Zerfallsgesetze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2 Natürliche Radioaktivität . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.3 Zerfallsketten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alphazerfall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Betazerfall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.1 Experimentelle Befunde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.2 Neutrino-Hypothese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.3 Modell des Betazerfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 38 39 41 41 43 46 46 47 48 VIII Inhaltsverzeichnis 3.4.4 Experimentelle Methoden zur Untersuchung des β-Zerfalls . . . . . . . . . . . . . . . . . . . . . . . 3.4.5 Elektroneneinfang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.6 Energiebilanzen und Zerfallstypen . . . . . . . . . . . . . . . . . . . . . 3.5 Gammastrahlung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.1 Beobachtungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.2 Multipol-Übergänge und Übergangswahrscheinlichkeiten . . . . . . . . . . . . . . . . . . . 3.5.3 Konversionsprozesse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.4 Kernisomere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 51 52 52 52 53 55 57 57 58 4. Experimentelle Techniken und Geräte in Kern- und Hochenergiephysik Teilchenbeschleuniger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.1 Geschwindigkeit, Impuls und Beschleunigung bei relativistischen Energien . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.2 Physikalische Grundlagen der Beschleuniger . . . . . . . . . . . 4.1.3 Elektrostatische Beschleuniger . . . . . . . . . . . . . . . . . . . . . . . . 4.1.4 Hochfrequenz-Beschleuniger . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.5 Kreisbeschleuniger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.6 Stabilisierung der Teilchenbahnen in Beschleunigern . . . . 4.1.7 Speicherringe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.8 Die großen Maschinen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Wechselwirkung von Teilchen und Strahlung mit Materie . . . . . . . . 4.2.1 Geladene schwere Teilchen . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.2 Energieverlust von Elektronen . . . . . . . . . . . . . . . . . . . . . . . . 4.2.3 Wechselwirkung von Gamma-Strahlung mit Materie . . . . 4.2.4 Wechselwirkung von Neutronen mit Materie . . . . . . . . . . . 4.3 Detektoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.1 Ionisationskammer, Proportionalzählrohr, Geigerzähler . . . . . . . . . . . . . . . . . . . . 4.3.2 Szintillationszähler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.3 Halbleiterzähler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.4 Spurendetektoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.5 Čerenkov-Zähler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.6 Detektoren in der Hochenergiephysik . . . . . . . . . . . . . . . . . . 4.4 Streuexperimente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.1 Grundlagen der relativistischen Kinematik . . . . . . . . . . . . . 4.4.2 Elastische Streuung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.3 Was lernt man aus Streuexperimenten? . . . . . . . . . . . . . . . . . 4.5 Kernspektroskopie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5.1 Gamma-Spektroskopie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5.2 Beta-Spektrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 61 61 62 64 66 67 71 76 80 81 82 85 86 88 90 91 94 95 97 101 101 103 104 106 109 109 110 112 113 114 Inhaltsverzeichnis 5. Kernkräfte und Kernmodelle Das Deuteron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nukleon-Nukleon-Streuung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.1 Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.2 Spinabhängigkeit der Kernkräfte . . . . . . . . . . . . . . . . . . . . . . 5.2.3 Ladungsabhängigkeit der Kernkräfte . . . . . . . . . . . . . . . . . . . 5.3 Isospin-Formalismus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 Meson-Austauschmodell der Kernkräfte . . . . . . . . . . . . . . . . . . . . . . . . 5.5 Kernmodelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.1 Nukleonen als Fermigas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.2 Schalenmodell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6 Rotation und Schwingung von Kernen . . . . . . . . . . . . . . . . . . . . . . . . . 5.6.1 Deformierte Kerne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6.2 Kernrotationen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6.3 Kernschwingungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7 Experimenteller Nachweis angeregter Rotationsund Schwingungszustände . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 5.2 117 121 121 122 124 125 127 129 129 133 140 140 141 144 145 146 147 6. Kernreaktionen Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.1 Die inelastische Streuung mit Kernanregung . . . . . . . . . . . . 6.1.2 Die reaktive Streuung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.3 Die stoßinduzierte Kernspaltung . . . . . . . . . . . . . . . . . . . . . . 6.1.4 Energieschwelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.5 Reaktionsquerschnitt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Erhaltungssätze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.1 Erhaltung der Nukleonenzahl . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.2 Erhaltung der elektrischen Ladung . . . . . . . . . . . . . . . . . . . . 6.2.3 Drehimpuls-Erhaltung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.4 Erhaltung der Parität . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 Spezielle stoßinduzierte Kernreaktionen . . . . . . . . . . . . . . . . . . . . . . . . 6.3.1 Die (α,p)-Reaktion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.2 Die (α,n)-Reaktion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4 Stoßinduzierte Radioaktivität . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5 Kernspaltung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5.1 Spontane Kernspaltung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5.2 Stoßinduzierte Spaltung leichter Kerne . . . . . . . . . . . . . . . . . 6.5.3 Induzierte Spaltung schwerer Kerne . . . . . . . . . . . . . . . . . . . 6.5.4 Energiebilanz bei der Kernspaltung . . . . . . . . . . . . . . . . . . . . 6.6 Kernfusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.7 Die Erzeugung von Transuranen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 149 149 150 150 150 151 152 152 152 152 153 154 154 155 155 157 157 159 159 162 163 164 166 166 IX X Inhaltsverzeichnis 7. Physik der Elementarteilchen Die Entdeckung der Myonen und Pionen . . . . . . . . . . . . . . . . . . . . . . . Der Zoo der Elementarteilchen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.1 Lebensdauer des Pions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.2 Spin des Pions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.3 Parität des π-Mesons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.4 Entdeckung weiterer Teilchen . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.5 Klassifikation der Teilchen . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.6 Quantenzahlen und Erhaltungssätze . . . . . . . . . . . . . . . . . . . 7.3 Leptonen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4 Das Quarkmodell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.1 Der achtfache Weg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.2 Quarkmodell der Mesonen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.3 Charm-Quark und Charmonium . . . . . . . . . . . . . . . . . . . . . . . 7.4.4 Quarkaufbau der Baryonen . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.5 Farbladungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.6 Experimentelle Hinweise auf die Existenz von Quarks . . . 7.4.7 Quarkfamilien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5 Quantenchromodynamik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.6 Starke und schwache Wechselwirkungen . . . . . . . . . . . . . . . . . . . . . . . 7.6.1 W- und Z-Bosonen als Austauschteilchen der schwachen Wechselwirkung . . . . . . . . . . . . . . . . . . . . . . . 7.6.2 Reelle W- und Z-Bosonen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.6.3 Paritätsverletzung bei der schwachen Wechselwirkung . . . 7.6.4 Die CPT-Symmetrie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.6.5 Erhaltungssätze und Symmetrien . . . . . . . . . . . . . . . . . . . . . . 7.7 Das Standardmodell der Teilchenphysik . . . . . . . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1 7.2 169 170 171 172 173 174 176 176 177 179 180 181 182 184 186 186 188 189 191 193 194 196 198 200 201 203 204 8. Anwendungen der Kern- und Hochenergiephysik 8.1 8.2 8.3 Radionuklid-Anwendungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1.1 Strahlendosis, Meßgrößen und Meßverfahren . . . . . . . . . . . 8.1.2 Technische Anwendungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1.3 Anwendungen in der Biologie . . . . . . . . . . . . . . . . . . . . . . . . 8.1.4 Anwendungen von Radionukliden in der Medizin . . . . . . . 8.1.5 Nachweis geringer Atomkonzentrationen durch Radioaktivierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1.6 Altersbestimmung mit radiometrischer Datierung . . . . . . . 8.1.7 Hydrologische Anwendungen . . . . . . . . . . . . . . . . . . . . . . . . . Anwendungen von Beschleunigern . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kernreaktoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3.1 Kettenreaktionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3.2 Aufbau eines Kernreaktors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3.3 Steuerung und Betrieb eines Kernreaktors . . . . . . . . . . . . . . 8.3.4 Reaktortypen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 205 208 209 209 211 211 213 214 214 215 217 219 221 Inhaltsverzeichnis 8.3.5 Sicherheit von Kernreaktoren . . . . . . . . . . . . . . . . . . . . . . . . . 8.3.6 Radioaktiver Abfall und Entsorgungskonzepte . . . . . . . . . . 8.3.7 Neue Konzepte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3.8 Vor- und Nachteile der Kernspaltungsenergie . . . . . . . . . . . 8.4 Kontrollierte Kernfusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4.1 Allgemeine Anforderungen . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4.2 Magnetischer Einschluß . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4.3 Plasmaheizung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4.4 Laserinduzierte Kernfusion . . . . . . . . . . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 226 226 228 228 229 230 232 233 234 235 9. Grundlagen der experimentellen Astronomie und Astrophysik Einleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Meßdaten von Himmelskörpern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Astronomische Koordinatensysteme . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3.1 Das Horizontsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3.2 Die Äquatorsysteme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3.3 Das Ekliptikalsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3.4 Das galaktische Koordinatensystem . . . . . . . . . . . . . . . . . . . 9.3.5 Zeitliche Veränderungen der Koordinaten . . . . . . . . . . . . . . 9.3.6 Zeitmessung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.4 Beobachtung von Sternen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.5 Teleskope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.5.1 Lichtstärke von Teleskopen . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.5.2 Vergrößerung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.5.3 Teleskopanordnungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.5.4 Nachführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.5.5 Radioteleskope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.5.6 Röntgenteleskope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.6 Parallaxe, Aberration und Refraktion . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.7 Entfernungsmessungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.8 Scheinbare und absolute Helligkeiten . . . . . . . . . . . . . . . . . . . . . . . . . . 9.9 Messung der spektralen Energieverteilung . . . . . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1 9.2 9.3 237 239 240 240 241 242 242 243 243 244 245 246 246 247 249 250 251 252 254 257 259 259 260 10. Unser Sonnensystem 10.1 Allgemeine Beobachtungen und Gesetze der Planetenbewegungen 10.1.1 Planetenbahnen; Erstes Keplersches Gesetz . . . . . . . . . . . . 10.1.2 Zweites und drittes Keplersches Gesetz . . . . . . . . . . . . . . . . 10.1.3 Die Bahnelemente der Planeten . . . . . . . . . . . . . . . . . . . . . . . 10.1.4 Die Umlaufzeiten der Planeten . . . . . . . . . . . . . . . . . . . . . . . . 10.1.5 Größe, Masse und mittlere Dichte der Planeten . . . . . . . . . 10.1.6 Energiehaushalt der Planeten . . . . . . . . . . . . . . . . . . . . . . . . . 263 263 265 266 269 270 272 XI XII Inhaltsverzeichnis 10.2 Die inneren Planeten und ihre Monde . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.1 Merkur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.2 Venus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.3 Die Erde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.4 Der Erdmond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.5 Mars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3 Die äußeren Planeten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.1 Jupiter und seine Monde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.2 Saturn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.3 Die äußersten Planeten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4 Kleine Körper im Sonnensystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4.1 Die Planetoiden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4.2 Kometen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4.3 Meteore und Meteorite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5 Die Sonne als stationärer Stern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5.1 Masse, Größe, Dichte und Leuchtkraft der Sonne . . . . . . . 10.5.2 Mittelwerte für Temperatur und Druck im Inneren der Sonne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5.3 Radialer Verlauf von Druck, Dichte und Temperatur . . . . . 10.5.4 Energieerzeugung im Inneren der Sonne . . . . . . . . . . . . . . . 10.5.5 Der Energietransport in der Sonne . . . . . . . . . . . . . . . . . . . . . 10.5.6 Die Photosphäre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5.7 Chromosphäre und Korona . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.6 Die aktive Sonne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.6.1 Sonnenflecken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.6.2 Das Magnetfeld der Sonne . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.6.3 Fackeln, Flares und Protuberanzen . . . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 274 275 275 278 281 283 283 286 288 289 289 292 294 295 295 297 298 300 303 305 308 309 309 312 313 314 315 11. Geburt, Leben und Tod von Sternen 11.1 Die sonnennächsten Sterne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.1 Direkte Messung von Sternradien . . . . . . . . . . . . . . . . . . . . . 11.1.2 Doppelsternsysteme und die Bestimmung von Sternmassen . . . . . . . . . . . . . . . . . 11.1.3 Spektraltypen der Sterne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.4 Hertzsprung-Russel-Diagramm . . . . . . . . . . . . . . . . . . . . . . . 11.2 Die Geburt von Sternen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2.1 Das Jeans-Kriterium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2.2 Die Bildung von Protosternen . . . . . . . . . . . . . . . . . . . . . . . . . 11.2.3 Der Einfluß der Rotation auf kollabierende Gaswolken . . 11.2.4 Der Weg des Sterns im Hertzsprung-Russel-Diagramm . . . . . . . . . . . . . . . . . . . . 11.3 Der stabile Lebensabschnitt von Sternen (Hauptreihenstadium) . . . 11.3.1 Der Einfluß der Sternmasse auf Leuchtkraft und Lebensdauer . . . . . . . . . . . . . . . . . . . . . . 11.3.2 Die Energieerzeugung in Sternen der Hauptreihe . . . . . . . . 317 318 321 324 325 326 327 329 330 331 332 332 333 Inhaltsverzeichnis 11.4 Die Nach-Hauptreihen-Entwicklung . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.1 Sterne geringer Masse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.2 Die Entwicklung von Sternen mit mittleren Massen . . . . . 11.4.3 Die Entwicklung massereicher Sterne und die Synthese schwerer Elemente . . . . . . . . . . . . . . . . . . . 11.5 Entartete Sternmaterie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.5.1 Zustandsgleichung entarteter Materie . . . . . . . . . . . . . . . . . . 11.5.2 Weiße Zwerge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.5.3 Neutronensterne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.5.4 Pulsare als rotierende Neutronensterne . . . . . . . . . . . . . . . . . 11.6 Schwarze Löcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.6.1 Der Kollaps zu einem schwarzen Loch . . . . . . . . . . . . . . . . . 11.6.2 Schwarzschild-Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.6.3 Lichtablenkung im Gravitationsfeld . . . . . . . . . . . . . . . . . . . 11.6.4 Zeitlicher Verlauf des Kollapses eines schwarzen Loches 11.6.5 Die Suche nach schwarzen Löchern . . . . . . . . . . . . . . . . . . . 11.7 Beobachtbare Phänomene während des Endstadiums von Sternen . 11.7.1 Pulsationsveränderliche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.7.2 Novae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.7.3 Sterne stehlen Masse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.7.4 Supernovae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.8 Zusammenfassende Darstellung der Sternentwicklung . . . . . . . . . . . 11.9 Zum Nachdenken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 335 336 337 339 339 341 343 346 349 349 350 351 352 353 353 353 356 357 358 359 361 362 363 12. Die Entwicklung und die heutige Struktur des Universums 12.1 Experimentelle Hinweise auf ein endliches expandierendes Universum . . . . . . . . . . . . . . . . . . . . 12.1.1 Homogenität des Weltalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2 Die Metrik des gekrümmten Raumes . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.3 Das Standardmodell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.3.1 Strahlungsdominiertes und massedominiertes Universum 12.3.2 Hubble-Parameter und kritische Dichte . . . . . . . . . . . . . . . . 12.3.3 Die frühe Phase des Universums . . . . . . . . . . . . . . . . . . . . . . 12.3.4 Die Synthese der leichten Elemente . . . . . . . . . . . . . . . . . . . . 12.3.5 Die Bildung von Kugelsternhaufen und Galaxien . . . . . . . 12.3.6 Das Alter des Universums . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.3.7 Friedmann-Gleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.3.8 Die Rotverschiebung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4 Bildung und Struktur von Galaxien . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.1 Galaxien-Typen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.2 Aktive Galaxien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5 Die Struktur unseres Milchstraßensystems . . . . . . . . . . . . . . . . . . . . . . 12.5.1 Stellarstatistik und Sternpopulationen . . . . . . . . . . . . . . . . . . 12.5.2 Die Bewegungen der sonnennahen Sterne . . . . . . . . . . . . . . 12.5.3 Die differentielle Rotation der Milchstraßenscheibe . . . . . 366 368 368 370 370 371 373 376 377 377 378 379 381 382 385 385 386 388 389 XIII XIV Inhaltsverzeichnis 12.5.4 Die Spiralarme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5.5 Kugelsternhaufen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5.6 Das Zentrum unserer Milchstraße . . . . . . . . . . . . . . . . . . . . . 12.5.7 Interstellare Materie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.6 Die Entstehung der Elemente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.7 Die Entstehung unseres Sonnensystems . . . . . . . . . . . . . . . . . . . . . . . . 12.7.1 Kollaps der rotierenden Gaswolke . . . . . . . . . . . . . . . . . . . . . 12.7.2 Die Bildung der Planetesimale . . . . . . . . . . . . . . . . . . . . . . . . 12.7.3 Die Trennung von Gasen und festen Stoffen . . . . . . . . . . . . 12.7.4 Das Alter des Sonnensystems . . . . . . . . . . . . . . . . . . . . . . . . . 12.8 Die Entstehung der Erde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.8.1 Die Separation von Erdkern und Erdmantel . . . . . . . . . . . . . 12.8.2 Die Erdkruste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.8.3 Vulkanismus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.8.4 Bildung der Ozeane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.8.5 Die Bildung der Erdatmosphäre . . . . . . . . . . . . . . . . . . . . . . . Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 393 395 395 399 400 401 403 404 405 407 407 409 410 410 411 412 414 Zeittafel zur Kern- und Hochenergiephysik . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 Lösungen der Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417 Farbtafeln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465 Literaturverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473 Sach- und Namenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 http://www.springer.com/978-3-540-64292-3