Schullehrplan Mathematik BM 2 Vollzeit (VZ) 1. Semester 1. Arithmetik/Algebra 1.1. Grundlagen - Summe, Differenz, Produkt, Quotient, Potenz - Einschlägige Terminologie anwenden - Hierarchie der Operationen berücksichtigen 1.2. Zahlen und zugehörige Grundoperationen - Mengen in aufzählender und beschreibender Form darstellen - Ordnungsrelationen mithilfe der Zahlengerade darstellen - Sinnvolles Runden von Resultaten, Anzahl signifikante Stellen - Korrekte Termbezeichnungen - Einführung in die mathematisch korrekte Schreibweise - Einhalten der mathematisch formalen Sprache - Strukturen von algebraischen Ausdrücken erkennen und beim Berechnen sowie Umformen entsprechend berücksichtigen - den Aufbau der Zahlen verstehen (Vorzeichen, Betrag, Rundung, Ordnungsrelationen) und Zahlen nach Zahlenarten klassieren (\(\mathbb{N}\), \(\mathbb{Z}\), \(\mathbb{Q}\), \(\mathbb{R}\)) - Grundoperationen in verschiedenen Zahlenmengen unter Einhaltung der Regeln (Vorzeichenregeln, Hierarchie der Operationen) durchführen 1.3. Grundoperationen mit algebraischen Termen - Variablen, Terme definieren - algebraische Terme unter Einhaltung der Regeln für die - Addition, Subtraktion von algebraischen Termen, korrektes Auflösen von Grundoperationen umformen, ohne Polynomdivision Klammerausdrücken unter Berücksichtigung der Vorzeichenregeln - Multiplikation von Klammerausdrücken, Binome - Addieren, multiplizieren und dividieren von Bruchtermen - Vollständige Vereinfachung eines algebraischen Terms Mehrere systematische Methoden zur Faktorisierung anwenden (inkl. binomischer Formel und Satz von Vieta) - Polynome 2. Grades in Linearfaktoren zerlegen 1.4. Potenzen - Das 10er Zahlensystem als Anwendung der Zehnerpotenz verstehen - Einführung in die wissenschaftliche Notation - SI-Präfixe und die technische Notation - Einfache Potenzterme mit ganzzahligen und rationalen Exponenten vereinfachen Gemischte Terme mit Potenzen mit ganzzahligen und rationalen Exponenten vereinfachen 1.5. Zehnerlogarithmen Anwendungsaufgaben Anwendungsdiagramme lesen: lin-log, log-lin, log-log - die Potenzgesetze mit ganzzahligen und rationalen Exponenten verstehen und auf einfache Beispiele anwenden - die Hierarchie der Operationen erkennen und anwenden - eine Exponentialgleichung in die entsprechende Logarithmusgleichung umschreiben und umgekehrt \(a^x=b \iff x=\frac{\log_{10}(b)}{\log_{10}(a)}\) mit \(a,b \in \mathbb{R}^+,a \neq 1\) - logarithmische Skalen lesen und anwenden 2. Gleichungen und Gleichungssysteme 2.1. Grundlagen - Deklaration der Unbekannten mit Grösse und Einheit passend zum Lösungsansatz - Definitionsbereich der Unbekannten Nicht äquivalente Umformungen erkennen und deren Einfluss auf die Lösungsmenge berücksichtigen (Definitionsmenge, Fallunterscheidung, Kontrolle durch einsetzen) - Algebraische Gleichungen: lineare Gl., quadratische Gl., Potenzgleichungen - Transzendente Gleichungen: Exponentialgleichungen Kpt. 3.3 - Abhängigkeit der Lösungsmenge von der Grundmenge, der Definitionsmenge und dem Lösungsweg - gegebene Sachverhalte als Gleichung oder Gleichungssystem formulieren - algebraische Äquivalenz erklären und anwenden - den Typ einer Gleichung bestimmen und beim Lösen entsprechend beachten, Lösungs- und Umformungsmethoden zielführend einsetzen sowie Lösungen überprüfen 2.2. Gleichungen - Quadratische Gleichung: Lösungsmethode der Ausgangslage anpassen - lineare und quadratische Gleichungen lösen (reinquadratische, gemischt quadratische Gleichungen) - Substitution - Satz von Vieta - Fallunterscheidungen anhand der Diskriminante - Anwendungsaufgaben - elementare Potenzgleichungen mit ganzzahligen und rationalen - Substitution Exponenten lösen - Bruchgleichungen: Definitionsmenge, Hauptnenner, Scheinlösungen anhand der Definitionsmenge ausschliessen - Anwendungsaufgaben - Wurzelgleichungen (nur Quadratwurzeln) die durch maximal zweimaliges Quadrieren lösbar sind: Definitionsmenge, quadrieren, Scheinlösungen durch Kontrolle in der Bedingungsgleichung ausschliessen - Exponentialgleichung: Exponentenvergleich, Substitution, logarithmieren - Logarithmusgleichung: Definitionsmenge, Logarithmen zu einem Logarithmus zusammenfassen, entlogarithmieren - elementare Exponentialgleichungen lösen 2.3. Lineare Gleichungssysteme - Additions-, Einsetz- und Gleichsetzmethode mit und ohne Parameter - ein lineares Gleichungssystem mit zwei Variablen lösen (ohne Fallunterscheidung) - Substitution - Anwendungsaufgaben (z.B: lineare Funktion aus 2 Punkten, quadratische Funktion aus 3 Punkten) - Lineare Gleichungen mit zwei Unbekannten als lineare Funktion grafisch - die Lösungsmenge eines linearen Gleichungssystems mit zwei darstellen und Schnittpunkt als Lösung des Gleichungssystems erkennen Variablen grafisch veranschaulichen und interpretieren - Lösbarkeit der Gleichungssysteme mit 2 Variablen beurteilen 3. Funktionen 3.1. Grundlagen - reelle Funktionen als Zuordnung/Abbildung zwischen dem reellen - Funktionsbegriff - Definitionsbereich, Wertebereich, Argument, Funktionswert, Nullstelle, y- Definitionsbereich \(D\) und dem reellen Wertebereich \(W\) erklären Achsenabschnitt - Graphen skizzieren Anwendungen der linearen und exponentiellen Funktion - mit Funktionen beschreiben wie sich Änderungen einer Grösse auf eine abhängige Grösse auswirken und damit auch den Zusammenhang als Ganzes erfassen Informationsgehalt und Anwendungsbereich der verschiedenen - lineare, Potenz- (ganzzahlige Exponenten) und Exponentialfunktionen Darstellungsformen: Funktionsgleichung, Wertetabelle, Graph verbal, tabellarisch, grafisch (in kartesischen Koordinaten) sowie analytisch lesen, schreiben und interpretieren Anwendungsaufgaben - Funktionsgleichung, Wertetabelle und Graph kontextspezifisch anwenden - lineare Funktionen \((D \rightarrow W)\) in verschiedenen Notationen lesen und schreiben: Zuordnungsvorschrift \(x \mapsto f(x)\) Funktionsgleichung \(f:D \rightarrow W\) mit \(y=f(x)\) Funktionsterm \(f(x)\) 2. Semester 3. Funktionen 3.2. Lineare Funktionen - Wertetabelle - Verschiebung - Steigung - Anwendungsaufgaben - Graph aus Wertetabelle - Graph aus y-Achsenabschnitt und Steigungsdreieck Geradenschnittpunkt als Lösung eines linearen Gleichungssystems verstehen - die Koeffizienten der Funktionsgleichung geometrisch interpretieren (Steigung, Achsenabschnitt) - den Graphen einer linearen Funktion als Gerade visualisieren - Schnittpunkte von Funktionsgraphen berechnen 3.3. Exponentialfunktionen Anwendungsaufgaben: Anfangswert, Wachstumsfaktor und Wachstumsrate, Zerfallsfaktor und Zerfallsrate, Sättigungswert, Zeitkonstante - die Koeffizienten \(a\), \(b\) und \(c\) der Exponentialfunktion \(f:x \mapsto a \cdot \mathbf{e}^{b \cdot x}+c\) interpretieren (Wachstums-, Zerfalls- und Sättigungsprozesse) 4. Datenanalyse 4.1. Grundlagen - Statistische Abbildungen vs. mathematische Funktionen - Rohdaten erfassen: Teilerhebung/Stichprobe, Vollerhebung/Grundgesamtheit - Daten ordnen: Rohdaten/Urliste in geordnete Liste, klassifizierte Liste wandeln - Daten zählen: Strichliste, absolute und relative Häufigkeit bestimmen Kritische Haltung fördern 4.2. Datenerhebung Prozess von der Fragestellung bis zur Auswertung durchlaufen und Unsicherheiten/Unklarheiten aufdecken Anwendungen Boxplot, Liniendiagramm 4.3. Diagramme - Punkt-, Balken-, Säulen-, Stabdiagramme: absolute und relative Häufigkeit in Abhängigkeit der Merkmale und deren Ausprägungen. - Skalierung der Häufigkeit - Liniendiagramme: für Verläufe (technische Messreihen) - Kuchen-/Kreis- und Stapeldiagramme: Kreissektor, Stapelhöhe - Histogramme für klassierte Listen - Eigenschaften der Diagramme - Anwendungsaufgaben - Grundbegriffe der Datenanalyse (Grundgesamtheit, Urliste, Stichprobe, Stichprobenumfang, Rang) erklären - Datengewinnung und –qualität diskutieren - die Zusammensetzung einer Stichprobe und die Methode zur Gewinnung der Daten (z.B. Fragebogen, Messungen) qualitativ beurteilen - mögliche Fehler in den Daten (z.B. Ausreisser, Extremwerte) erkennen und bei der Datenauswertung berücksichtigen - geordnete Datenmengen visualisieren (Balken- und Kuchendiagramm, Histogramm, Boxplot, Summenhäufigkeitsfunktion, Streudiagramm, Mosaikplot), erklären (symmetrisch/asymmetrisch, steil/schief, unimodal/bimodal/multimodal) und interpretieren - entscheiden, wann welches Diagramm angemessen ist 4.4. Masszahlen - Weitere Lagemasse: Maximum, Minimum, Spannweite - Quartilseinteilung berechnen und grafisch im Boxplot darstellen - Theoretische und empirische Standardabweichung - Variationskoeffizient zum Vergleich der relativen Streuung - Eigenschaften der Masszahlen - Anwendungsaufgaben - univariate und bivariate Daten charakterisieren (qualitativ/quantitativ, diskret/stetig), ordnen und klassieren (Rangliste, Klassenbildung, Häufigkeitstabelle, Kontingenztafel) - Lagemasse (Mittelwert, Median, Modus) und Streumasse (Standardabweichung, Quartilsdifferenz) berechnen, interpretieren sowie auf ihre Plausibilität hin prüfen - entscheiden, wann welche Masszahl relevant ist 5. Wahrscheinlichkeitsrechnung 5.1. Grundlagen - wahrscheinlichkeitstheoretische Frage- und Problemstellungen aus dem beruflichen Kontext erkennen, beschreiben und mit Spezialisten sowie Laien kommunizieren 5.2. Elementare Wahrscheinlichkeitsrechnung - die Grundregeln der Wahrscheinlichkeitsrechnung erklären 5.3. Zufallsexperimente Urnenmodell Terminologie - das Zufallsexperiment und seine Elemente als Modell von zufälligen Vorgängen in der realen Welt erklären - die Grundbegriffe aus der Theorie der diskreten Zufallsexperimente (Ergebnis, Ereignis, Wahrscheinlichkeitsverteilung) erklären sowie zwischen diskreten und stetigen Zufallsexperimenten unterscheiden - den Zusammenhang zwischen den Modellgrössen und den entsprechenden empirischen Grössen «Wahrscheinlichkeit», «Häufigkeit» (Wahrscheinlichkeits- und Häufigkeitsverteilung), «Erwartungswert» und «arithmetisches Mittel» erkennen und erklären Teil- und Vollerhebung - theoretische und empirische Standardabweichung erkennen und erklären 5.4. Einstufige Zufallsexperimente - Verteilungen der Ergebnisse von einstufigen Zufallsexperimenten beschreiben und visualisieren sowie für Wahrscheinlichkeitsberechnungen nutzen - den Erwartungswert und die Standardabweichung für quantitative, diskrete Merkmale berechnen, interpretieren und anwenden 5.5. Mehrstufige Zufallsexperimente - Unbedingte und bedingte Wahrscheinlichkeit - Pfadregeln - Verteilungen der Ergebnisse von mehrstufigen, diskreten Zufallsexperimenten durch Baumdiagramme visualisieren sowie für Wahrscheinlichkeitsberechnungen nutzen 5.6. Statistisches Schliessen - Vertrauensintervalle aus der Medizin und aus Umfragen bestimmen - die Methode des statistischen Tests anwenden sowie ihre korrekte Interpretation und mögliche Fehlinterpretationen zeigen