$#"! # " /.-0 0 ,+*)-('&&.%&$#+"*!'$#.%0 +)!**00 -+-0)%/0-%#-)%&('&&.%&$#+"*.%0 /.-0 0 +-*'%)*#.-%'.-&'**0+!!.'**.%.-0 -.!.*0%0 0 '!-%#-)%&('&&.%&$#+"*!.-'%0+-'+0$#'%/!.-0 .-.%0+0 0'%0+!!.0++!.0 0 0 Gutachter: Prof. Dr. Dr. Bernd Fischer Prof. Dr. Gabriele Stangl Prof. Dr. Heiner Niemann Verteidigung am: 29.6.2015 Halle (Saale) Halle (Saale) 0 0 A@?>=@<;?:9 Inhalt 879A@?>=@<;?: 77777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 69 878795@43=<=291=>>@<;2 7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 69 87878790/?2=.;=?-=?9,+)9(=?91+<<=)>@'&=?9%=<43/>@21;29;?(9$;2#@)";?:94;,9(=?9 =?<#@'"=>?(=?9A13)!/ 7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 9 8787679A=)@1=?<=>>9@?(;-@=)<=)95@43=<=291=>>@<;29!98985%93=@1904?@?'&=? 77777777777777777777777 9 876795@=9)@1>4?<4<@/?2=?<#@'">;?:9(=2904?@?'&=?2 7777777777777777777777777777777777777777777777777777777777777777777777 9 87 795=)9=13)!/?4>=9%=<43/>@21;2 777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 9 87795429?2;>@?=-=</)!2<=19 7777777777777777777777777777777777777777777777777777777777777777777777777777777777777 89 8779$(@/?="<@?=-=</)!2<=19$ 77777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 8 9 87795@=9A $41@>@= 7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 89 679@=>2<=>>;?:9(=)9$)3=@<77777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 89 79)@:@?4>4)3=@<=? 77777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 689 79A):=3?@22=9;?(95@2";22@/?7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 9 78790/1=?24</)@2'&=9A)&&;?:9(=)929;?(9=)1@?(=)<=9?2;>@?9;?(9=?2@<@@<<77777777777777 9 7679$(@/?="<@?9;?(9(@=9:=:=?2=@<@:=9='&2=>#@)";?:91@<9(=19777777777777777777777777777777777777777777777 9 7 79A 99(=)9-=?<)4>=9'&4><=)9-#@2'&=?99;?(9$777777777777777777777777777777777777777777777777777777777777777777 9 779A@?91+<<=)>@'&=)95@43=<=291=>>@<;29;?(9(@=9$;2#@)";?:94;,9(=?9=13)!/?4>=?9 @@(1=<43/>@21;27777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 69 77879?<)4-=>>;>)=9@@(2=@'&=);?:9;?(9A)=22@/?9>@/:=?=)9'&>+22=>1/>="+>= 7777777777777777777 69 77679%:>@'&=9=:;>4</)=?9(=29=13)!/?4>=?9@@(2</,,#='&2=>2 777777777777777777777777777777777777777777777 9 7795@=9/>>=9/?9A 9,+)9(@=9>4?:,)@2<@:=9):;?:9=13)!/?4>=)9=>>=? 7777777777777777777777777777777777777777 9 779$;23>@'"77777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 9 79;2411=?,422;?: 7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 9 79;114)!77777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 89 79@<=)4<;)=)-=@'&?@2 777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 869 79$33@>(;?:2=)-=@'&?@2 77777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 869 79$3"+)-;?:2=)-=@'&?@2 7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 8 9 89 9 EDCBAD@?C>= = ;:=ADCA=:9>BD654@=32@D:1BA=0A/43/>?C>=?C.=EC@-D6,B?C>=.A4=E:+/*34=)?=>A-(5/BAD4@AC'=&DC.AC=D:= 0A/B1?&= ADCA/= >A4?C.AC= %65-1C>A/4651&@= D:= :$@@A/BD65AC= #/>1CD4:?4= ADCA= "AD5A= !3C= AC.3,/DCAC= ?C.= :A@1+3BD465AC= C2144?C>42/3)A44AC= 4@1@@= (5/AC.= .A/= /(D:2B1C@1@D3C42514A'= )?= ADCA:= AD@2?C,@'= 1C= .A:= .A/= E:+/*3= C365= CD65@= DC= .AC= ;@A/?4= D:2B1C@DA/@= D4@'= 4D65A/C= B3,1BA= "A>?B1@D3C4:A651CD4:AC= .DA= A/AD@4@ABB?C>= ADCA4= 32@D:1BAC= DC@/1?@A/DCAC= DBDA?4= DA= :$@@A/BD65A= 0A/43/>?C>= :D@= (5/4@3&&AC= ?C.= 1654@?:4&1,@3/AC= 51@= >/?C.BA>AC.A= ?4-D/,?C>AC= 1?&= .AC= A:+/*3C1BAC= A@1+3BD4:?4= ?C.= .1:D@= B1C>&/D4@D>A= 3C4A?AC)AC= &$/= .DA= A4?C.5AD@= .A4= DC.A4= :A@1+3BD465A= /3>/1::DA/?C>= 14= ?&@/A@AC= +A4@D::@A/= E/,/1C,?C>AC= D:= E/-1654ACAC1B@A/= D4@= :D@=.AC=EC@-D6,B?C>4+A.DC>?C>AC==!A/+?C.AC=%3=D4@=.14="D4D,3=:A@1+3BD465A/=E/,/1C,?C>AC'= -DA= +A/>A-D65@= ?C.= D1+A@A4= :ABBD@?4'= +AD= 165,3::AC= .D1+A@D465A/= $@@A/= .A?@BD65= A/595@= +A/4D65@41/@D,AB=B1>A:1CC=<=1+AD=+A4@A5@=ADC=.D/A,@A/=?41::AC51C>=)-D465AC=.A/= /@=?C.= .A/=%@(/,A=.A/=DC@/1?@A/DCAC=0A/(C.A/?C>=?C.=.AC=3C4A?AC)AC=&$/=.AC=E:+/*3=A=>/1!DA/AC.A/= .A/= :$@@A/BD65A= %@3&&-A654AB= >A4@9/@= D4@'= .A4@3= 5(?&D>A/= @/A@AC= 0A/(C.A/?C>AC= .A4= A:+/*3C1BAC= A@1+3BD4:?4=?C.=ADCA=A/595@A=/1C,[email protected]@D3C=.A/=165,3::AC=1?&=A-C51:=A@=1B=<<= B4= ;/4165A= &$/= .DA4AC= ?41::AC51C>= D4@= .DA= C2144?C>= .A4= A:+/*3C1BAC= %@3&&-A654AB4= 1C= .DA= DC@/1?@A/DCAC=EC@-D6,B?C>4+A.DC>?C>AC=-15/465ADCBD65== %AD@= .A/= A/4@:1BD>AC= E/&144?C>= = -D/.= (5/BD65= ADCA= ,3C@DC?DA/BD65A= ?C15:A= !3C= D1+A@D,A/C= +A3+165@A@= A?@465A/= D1+A@A4A4?C.5AD@4+A/D65@= <= <= -1/AC= -AB@-AD@= = DBBD3CAC= AC465AC= 1C= ADCA:= D1+A@A4= :ABBD@?4= A/,/1C,@= DA= 15B= -D/.= +D4= <= 1?&= <= DBBD3CAC= 4@AD>AC= ?.A:=@/D@@=.DA=E/4@:1CD&A4@1@D3C=DC=ADCA:=D::A/=&/$5A/AC=A+AC41B@A/=1?&=D1+A@A4= @B14=;2.1@A'= C@A/C1@D3C1B= D1+A@A4= A.A/1@D3C= <<= DA4A= EC@-D6,B?C>= 42DA>AB@= 4D65= 1?65= DC= .AC= 4@AD>AC.AC= 15BAC= 465-1C>A/A/= /1?AC= :D@= ADCA:= D1+A@A4= :ABBD@?4= -DA.A/= D1+A@A4= :ABBD@?4= D4@'= CA+AC= :$@@A/BD65A:= +A/>A-D65@'= .DA= 5(?&D>4@A= :A@1+3BD465A= %65-1C>A/4651&@4,3:2BD,1@D3C= 1+AD= ,1CC= ADC= D1+A@A4= :ABBD@?4= [email protected]/= .?/65= .AC= 1+43B?@AC= 1C>AB= 1C= C4?BDC= *2= = D1+A@A4= :ABBD@?4'= '=1B4=3B>A=ADCA4=%AC4D@D!D@(@4!A/B?4@A4=>A>AC$+A/=C4?BDC=*2=<=D1+A@A4=:ABBD@?4'=<=3.A/= 1B4= B?,34ADC@A/3B1C)= -(5/AC.= .A/= %65-1C>A/4651&@= A4@[email protected]+A@A4'= = 5A/!3/>A/?&AC= -A/.AC=DA4=&$5/@=DC=1BBAC=./AD=(BBAC=)?=ADCA/=E/595?C>=.A4=B?@>B?,34A-A/@A4=.A/=1@DAC@DCCAC== <= = BA@?>A=<@;: *)*)*)('&%$#"!#% #%((#%(##%(#&$!$(!%(!$!%(!(#%(#%#%#%( &( 8A>: B76>5<@;>@: 4>7: 3>7A@2=2?1=2=A1=A0: /.-/: ,>A;>@+: 4211: A@: 8><=1*6?2@4: 5>A: *2): -:37(,>@=: 2??>7: '*6&2@;>7>@: 5>7>A=1: %(7: 4>7: $(@,>#=A(@: >A@: 8A25>=>1: "!-8 !/8 : 5>02@@=: &27): >A: >67: 2?1: :37(,>@=:4>7:'*6&2@;>71*62=>@:=7A==:>A@:8 :2<):8A>1>:<112;>@:>@=1#7>*6>@:>A@>7:>74(##?<@;: 5>A: >A@>: #70(@,>#=A(@>??>@: 8A25>=>1: <@4: >A@>7: >747>A2*6<@;: 5>A: >A@>: 8 : A@@>762?5: 4>7: ?>=,=>@:-.:267>): <4>: &A74: %>7<=>=+:4211: A@: 8><=1*6?2@4: 7<@4:.:4>7:72<>@:A=:>A@>:8 : 2<;7<@4: >6?>@4>7: 8A2;@(1=A0: 5>71>6>@: &>74>@: "8><=1*6>7: 8A25>=>1>1<@46>A=15>7A*6=: /.-: "55):-):: : )(*(( ($&!#( !##%(#$( &% #&%##%(##$(*(!%((!%(#$( #$&%$##$((%(#!$%(&%(($(**((( "2<1:8><=1*6>7:8A25>=>1>1<@46>A=15>7A*6=:/.-:: >5>@: 4>: 0?211A1*6>@: >A=1#=(: : 4>7: #>7;?0A>: : 0(@@=>@: 5>A: 8A25>=A0>7A@@>@: <@=>7: 2@4>7>: >7@4>7<@;>@: %(@: 2*61=<16(7(@>@: "A@1<?A@27=A;>@: 2*61=<120=(7>@+: 1+: 5>A: 4A#(,=(0A@>@: "4A#(@>0=A@: <@4: A: A@(1<7>: <@4: A#A4>=25(?A1<1: @2*6;>&A>1>@: &>74>@: ">?A;:-+:2;2&2:>=:2?):/../+:?((;274>@:/../+:!>##2?2:2@4:'62@027:/.-.):: BA@: ==>7?A*6>7: 8A25>=>1: >??A=<1: %>7@4>7=: 421: A@=72<=>7A@>: A?A><: A@: 4>7: '*6&2@;>71*62=): 8A>: >*62@A1>@+: 4A>: 4<7*6: 4A>: ;>1=7=>: >71(7;<@;: A=: 671=(>@+: 2*61=<120=(7>@: <@4: (7(@>@: 4>@: =<1: 5>>A@?<11>@: <@4: 4A>: 42A=: %>75<@4>@>@: (?;>@: 1A@4: @(*6: @A*6=: 2<17>A*6>@4: 2<;>0?7=):>02@@=:A1=+:4211:4A>:$(@1><>@,>@:%A>?:1=70>7:,<:!72;>@:0(>@+:>:;72%A>7>@4>7:4>7: 9: : KJIHGJFEIDC A@FFG>HJ=<GC ;GF:98HJ7AE7C 9GF>866GIC J7F5C 4EAC :I3G>GI5C 3:77C 3G>C 2GJF1EI0FC 3G>C /F.>EIDC JIC 3G>C KA9>-8DGIG7GC GIF7=<GJ3GI3C 6@>C 3:7C ,9G>HG9GIC 3G7C KA9>-87C J7F)C KJIC 1>(08I4G1FJ8IGHHG>C 'J:9GFG7C AGHHJFE7C &(<>GI3C 3G7C %)C $>JAG7FG>7C 6@<>FC <(E6JDC 4EC #:=<7FEA7"G>4.DG>EID5C !G<HDG9E>FGIC EI3C :IDG98>GIGIC!G<H9JH3EIDGIC ,9G>7J=<F7:>FJ0GHC#:H0JI7<:&C%5CH:FFCGFC:H)CC#:H0JI7<:&C)C $>JFFCGJIC'J:9GFG7CAGHHJFE7CJAC)CEI383G>C)C$>JAG7FG>C:E65C7JI3C3JGCJI3G>C<(E6JDCA:0>878AC C 5C 0.IIGIC :9G>C :E=<C &:=<7FEA7"G>4.DG>FC /C 7GJIC EI383G>C &GJ7GIC AGF:98HJ7=<GC 3:1F:FJ8I77F.>EIDGIC :E6D>EI3C GJIG>C -1G>JI7EHJI(AJGC :E6C ,9G>7J=<F7:>FJ0GHC#:H0JI7<:&C%5CK"G>7CGFC:H)CB5CE=<:I:IC:I3CJ:IDC)CK1J3GAJ8H8DJ7=<GC /FE3JGIC 9GHGDGIC 4E3GAC H:ID6>J7FJDGC 8I7GEGI4GIC 6@>C 3JGC :=<08AAGI5C &JGC GJIGC GJIDG7=<>(I0FGC A8F8>J7=<GCEI3CJIFGHHG0FEGHHGCKIF&J=0HEIDCEI3CAGF:98HJ7=<GCG>(I3G>EIDGI5C3JGC4ECGJIGACG><.<FGIC J7J08C6@>C3J187JF:7CEI3C'J:9GFG7CAGHHJFE7C6@<>GIC <E>=<JHHCGFC:H)C%5C/FG<9GI7CGFC:H)C%5CGFFJFFC GFC:H)C%5C/JH"G>A:ICGFC:H)C%%5C/GHH7CGFC:H)C%B5C'.>IG>C:I3CH:DGA:IIC%B5C':9GHG:CGFC:H)C%5C ':9GHG:C:I3CGFFJFFC%5CH:E7GICGFC:H)C5C>EAGCGFC:H)C%%5C,9G>7J=<F7:>FJ0GHCH:DGA:IIC%%)C /8&8<HC 3JGC 7FGJDGI3GIC 2:<HGIC 7=<&:IDG>G>C !>:EGIC AJFC GJIGAC 'J:9GFG7C AGHHJFE7C :H7C :E=<C 3JGC 3>:A:FJ7=<GICE7&J>0EIDGIC:E6C3GICG>H:E6C3G>C/=<&:IDG>7=<:6FCEI3C:=<08AAGIC9GD>@I3GIC3JGC '>JIDHJ=<0GJF5C AJFC 3G>C &GJFG>GC K>0GIIFIJ77GC @9G>C 3GIC KJI6HE77C GJIG>C HE087G7F866&G=<7GH7F.>EIDC :E6C 3JGC /=<&:IDG>7=<:6FC DG&8IIGIC &G>3GIC A@77GI)C E7C GF<J7=<GIC >@I3GIC 0.IIGIC G1G>JAGIFGHHGC IFG>7E=<EIDGIC 3G>C GA9>-8I:HA:FG>I:HGIC IFG>:0FJ8IGIC EI3C 18FGIFJGHHGC 3:1F:FJ8I71>84G77GC &(<>GI3C 3G>C >(JA1H:IF:FJ8I71<:7GC IJ=<FC :IC 'J:9GFJ0G>JIIGIC EIFG>7E=<FC &G>3GI)C AC 3JGC &J77GI7=<:6FHJ=<GIC >EI3H:DGIC 4EC 0H(>GI5C &G>3GIC 3G7<:H9C I7(F4GC AJFC 3J:9GFJ7=<GIC $JG>A83GHHGICEI3C G>7E=<GCAJFCKA9>-8IGIC3E>=<DG6@<>FC G>=<G":HCGFC:H)C%5C'GCG>F8D<C GFC:H)C%%5C'GCG>F8D<CGFC:H)C%5C:A16G>CGFC:H)C%5C;8HG-C%C:AJICGFC:H)C%)CC G>7E=<7FJG>GC AJFC GJIGAC 'J:9GFG7C AGHHJFE7C &GJ7GIC 3GEFHJ=<C DG>JIDG>GC KA9>-8IGI4:<HGI5C GJIGIC <.<G>GIC IFGJHC :IC 6G<HDG9JH3GFGIC KA9>-8IGIC EI3C G><.<FGC 181F87G>:FGIC GA9>-8I:HG>C 2GHHGIC :E6CC G>=<G":HCGFC:H)C%5C'GCG>F8D<CGFC:H)C%5C:AJICGFC:H)C%)CIC3G>C"8>HJGDGI3GIC>9GJFC78HHFGIC 3JGC2E7:AAGI<(IDGC4&J7=<GICGJIG>C3J:9GFJ7=<GIC;EFFG>CEI3C3GAC;GF:98HJ7AE7C3G7CGIF&J=0GHI3GIC KA9>-87C :IC H:7F84-7FGIC "8IC :IJI=<GIC AJFC GJIGAC G1G>JAGIFGHHC JI3E4JG>FGIC 'J:9GFG7C AGHHJFE7C EIFG>7E=<FC&G>3GI)C 'G>C $%';C &E>3GC 9GJC &GJ9HJ=<GI5C 6G>FJHGIC :IJI=<GIC 3E>=<C GJIGC GJIA:HJDGC :9GC 3G>C 3J:9GF8DGIGIC <GAJ0:HJGCHH8:ICJI3E4JG>F)CHH8:I5C&GH=<G7C7GHG0FJ"C3E>=<C3GICHE087GF>:I718>FG>C$-1CC $5C GIC /C JIC 3JGC 1:I0>G:FJ7=<GC GF:2GHHGC :E6DGI8AAGIC &J>35C 6@<>FC JIF>:4GHHEH(>C 4EC GJIG>C A:77J"GIC I<(E6EIDC "8IC >G:0FJ"GIC /:EG>7F86671G4JG7C /)C ':C 3JGC 1:I0>G:FJ7=<GC GF:2GHHGC 0:EAC AJFC1>8FG0FJ"GICKI4-AGIC:E7DG7F:FFGFCJ7F5C08AAFCG7C4ECGJIG>CI<(E6EIDC"8IC/CAJFCI:=<68HDGI3GAC BC C HGFEDGCBFA@ >=<;<:GD=CDF@ 9DEEC<87@ DGFD=@ 6D5=<4D3@ 2FFD=10E/@ ;<F@ .-@ +CBF8DF@ F0*1@ 8D=@ *1D)G4*1DF@ (D10F8EBFA@ DC0/EGD=C@ 4G*1@ DGF@ GF4BEGF0/1'FAGAD=@ %G0/DCD4@ )DEEGCB4@ )GC@ DGFD=@ $#>D=AE#5')GD@ "!? ))<EE@ BF8@ DGFD=@ $#><GF4BEGF')GD@ "0)GF@ DC@ 0E3@ !3@ )@ DGFD@ DC<0:G8<4D@ 8D=@ BCCD=@ :B@ ;D=)DG8DF7@ B=8D@ 8D=@ (EBC:B*5D=@ 8D=@ D=4B*14CGD=D@ C'AEG*1@ 5<FC=<EEGD=C@ BF8@ 8B=*1@ DGFD@ 4B/5BC0FD@ 2F4BEGFGFD5CG<F@ 0B@ DGFDF@(EBC:B*5D=D=C@;<F@!. ?))<EE@DGFAD4CDEEC3@+D*14@0AD@F0*1@8D=@D=>00=BFA@"0A@@@8D=@ 8G0/DCG4*1DF@0FGF*1DF@B=8DF@8GD@(E04C<:#4CDF@AD<FFDF3@%04@8G0/DCG4*1D@0FGF*1DF@B=8DF@0E4@ D>=<8B5CG<F4 @ BF8@ D)/=#<E<AG4*1D4@ D=4B*14CGD=)<8DEE@ /D=DGC4@ ;<=@ E'FAD=D)@ DC0/EGD=C@ BF8@@ D=4B*14/D4*1=DG/BFA@ BF8@ H=AD/FG44D@ 80:B@ >B/EG:GD=C@ "0)GF@ DC@ 0E3@ !7@ 1GD)D@ DC@ 0E3@ !07@ +*1GF8ED=@DC@0E3@!7@+*1GF8ED=@DC@0E3@!.@"//3@3@@@@@@@ @ %D=@ %G0/DCD4@ )DEEGCB4@ #>@ !@ B=8D@ /DG)@ 0FGF*1DF@ 8B=*1@ 8GD@ DGF)0EGAD@ @ "@ 0/D@8D=@8G0/DC<ADFDF@1D)G50EGD@EE<0F@GF@8GD@ @GF8B:GD=C3@'AEG*1@ B=8D@ 8D=@ (EBCAEB5<4D4>GDADE@ :DG)0E@ 5<FC=<EEGD=C@ BF8@ 8B=*1@ 8GD@ 0/D@ ;<F@ 2F4BEGF@ 0B@ !.@ ))<EE@/G4@?))<EE@DGFAD4CDEEC3@9B=@+CDGAD=BFA@8D=@H)/#=<FDF:01E@D=<EACD@8GD@+CG)BE0CG<F@ )GC@@"+@BF8@@0AD@4>'CD=@8GD@D=>00=BFA@)GC@:DG@ D=CGEDF@ ( *5DF@ BFCD=@ :B4'C:EG*1D=@ 0/D@ ;<F@ 1B)0FDF@ 1<=G<FA<F08<C=<>GF@ "13@ @ 0AD@ F0*1@ 8D=@ 00=BFA@ B=8DF@ 8GD@ +>DF8D=50FGF*1DF@ ADC CDC@ BF8@ 8GD@ (E04C<:#4CDF@ )GC@ +>E)D8GB)@ "(040ED4@ +#FC1DCG4*1D4@ D8GB)@ "(+@ 22@ )GC@ 7!@ (+@ 0B4@ 8D)@ CD=B4@ 0B4AD4>EC3@"@@@@@ @ %GD@ ='G)>E0FC0CG<F4>104D@ B)044C@ 8GD@ HFCG*5EBFA@ 8D4@ H)/=#<4@ ;<F@ 8D=@ <F:D>CG<F@ /G4@ :B=@ HGFFG4CBFA@ "6G80CG<F3@ %04@ 0FGF*1DF@ G4C@ DGF@ /D50FFCD4@ D)/=#<E<AG4*1D4@ <8DEE@ =@ 8GD@ =1DFCG*5EBFA@ ;<F@ +'BADCGD=D)/=#<FDF@ "G4*1D=@ DC@ 0E3@ !3@ HGFD@ (D4<F8D=1DGC@ 8D4@ 0FGF*1DF4@ /D4CD1C@80=GF7@8044@8GD@;BE0CG<F@8B=*1@8GD@D=>00=BFA@0B4ADE 4C@G=8@"GF8B:GD=CD@;BE0CG<F3@ %B=*1@ 8GD@ DFFCFG4@ 8D4@ D=>00=BFA4:DGC>BF5CD4@ " @ 3@ G4C@ DGFD@ D05CD@ (D4CG))BFA@ 8D4@ ECD=4@ 8D=@ H)/=#<FDF@ ) AEG*13@ %GD@ ='G)>E0FC0CG<F4DFCG*5EBFA@ /G4@ :B=@ (E04C<:#4CD@ B=8D@ G)@ 0FGF*1DF@ GFCDF4G;@ BFCD=4B*1C@ BF8@ G4C@ G)@ /D=4G*1C40=CG5DE@ G4*1D=@ @ 8DC0GEEGD=C@ /D4*1=GD/DF@ ?@ @ @?>=<?;:>98 54?321<08<;8/=.8-,+-*.8)?0(/8+'8&;:>%<>88?3;8%/38-$)<==3;/%?:#83?21;"/0.8!#8 /98-88<>;3;<1;8%?<8 0:=/8%?<8/:38-8/>>1<0>%89=<?2190<>8=/3;#<0<>8"<3;<1;.8?38:#8 /9888<0%?21;<;83?218 %?<80:=/8<?;<08539<>/>>;<8(#/(;?<0;<80:=/*8:>%89<=/>9;8#8@?=<?;<08?>8%<>8;<0:3883?<8 3?218 :08 01<>8 =/3;3;<8 <>;?2(<=;.8 :0218 <03;<8 )<==%?<0<>?<0:>930<33<8 <>;3;<1;8 %<08 @#"0"=/3;8 5@8 8 *8 /:38 %<#8 ?#8 <?;<0<>8 <0=/:8 %<08 @#"09<><3<8 %<08 <?9<>;=?21<8 @#"08 <>;3;<1;8 :>%8 %<08 01"=/3;8 5 *8 %<08 3?218 :3/##<>8 #?;8 %<#8 #;;<0=?21<>8 <>%#<;0?/=<>88<<"<8:08 =/<>;/8<>;?2(<=;.88 !"8 %<#8 7.8 @>;?2(=:>93;/98 5%78 *8 %?<0<>?<0<>8 3?218 %?<8 )<==<>8 %<38 @#"0"=/3;<>8 <?;<0.8 @38 <>;3;<1;8 %?<8 %0<?"=;;0?9<8 <?#321<?"<8 5@>;%<0#8 <3%<0#8 @(;%<0#*8 #?;8 <?><08 21/0/(;<0?3;?321<>8 <>;?2(=:>93/"1>9?9<>8 01=9?<8 5/3;0:=/;?>*8 53?<1<8 !"".8 *.8 !:8 0:>%=/9<8 %<08 3?218 %?<0<>?<0<>%<>8 <?#321<?"<8 (>><>8 "?38 :08 #=/>;/;?>8 ?<08 <0321?<%<><8 @>;?2(=:>933;/%?<>8 5&;/%?<>8 ,$'*8 %<38 @#"038 =?21;#?(03(?3218 "<:0;<?=;8 :>%8 <?>9<;<?=;8 <0%<>8 5?<1"/1>8+*.8#8&;/%?:#8,8?3;8%?<8<?#321<?"<85@#"0"=/3;*8>/218/:<>8=2(<08/"9<90<>;8:>%8 "<3;<1;8 /:38 #01=9?3218 9=<?21<>8 )<==<>.8 @?><8 /?/=<8 ?<0<>?<0:>98 ?3;8 <03;8 /"8 &;/%?:#8 +8 <0(<>>"/0.8!#8/>;<0?0<>8@>%<8%<08<?#321<?"<8"?=%<;83?218<?><81/="#>%0#?9<8<0%?21;:>98%<08 )<==<>8%<080%<0<8/>%"9<>85*.8#8&;/%?:#8-8"?=%<;83?218/#83;<0?0<>8@>%<8%?<83?21<=0#?9<8 /3;0:=/;?>3<;<>3?>85 @*.8>8%?<3<#8&;/%?:#8?3;8/:218%<08<03;<8#<3%<0#/=<8/0(<080/21:08 >/21<?3"/08 5 1?<#<8 <;8 /=.8 -,+-"*.8 ?<8 ?=%:>98 %<38 0?#?;?3;0<?<>38 >8 3;<0?08 >/218 />;<0?08 <0=9;8 ?#8 &;/%?:#8 .8 /38 &;/%?:#8 '8 ?3;8 %:0218 %?<8 ==<>%:>98 %<38 0?#?;?3;0<?<>38 :>%8 %<08 !>=/9<8 %<38 0?#?;?(>;<>38 5<>3<>$>;<>*8 /#8 3;<0?0<>8 @>%<8 21/0/(;<0?3?<0;.8 ?<8 0?#=/>;/;?>3<>;?2(=:>98<>%<;8#?;8%<08#=/>;/;?>8/#8 /9878.2.8578 /9<8:>%8+8&;:>%<>*.8888 8 8 78 8 CBA@?B>=A<; ; 98765@?; 4=36B21>?A; 06/B=/; .060-,+3B*B?7>?7; )?B/621?B(?A; .C/(7'8(@56>,; &?7; %56>7=@5>B8A66>5&B?A; $; (B6; -; =A&; ?A>6#7?21?A&?; 621?/5>B621?; 9576>?@@=A<"; !>5&B=/; $; B6>; &=721; ?BA?; @82 ?7; 5(<7?A>?; )?B/621?B(?; !>5&B=/; ; B6>; &=721; &?A; 87&?7?A; 5A&(8<?A; .,; !>5&B=/; ; &=721; &B?; #86>?7B87?; %56>7=@5?*>?A6B8A; .%C,; !>5&B=/; ; &=721; &?A; 7B/B>B6>7?B3?A;=A&;!>5&B=/;-;&=721;&?A;7B/B>B A8>?A;<? ?AA?B21A?>";A>?7;&?A;!>5&B?A; B6>; &56; &=721621AB>>@B21?; CA>B2 @=A<65@>?7; BA; 5<?A; A521; &?7; ?7#557=A<; 5A<?<?(?A; . ; ,";.5=6;B?1(51A;5'?7;=A&;B?>1BA<;,; ; 9B?;?7?A&=A<;&?6;)5ABA21?A6;5@6;?76=216/8&?@@;(B?>?>;51@7?B21?;87>?B@?";=/;?BA?A;(?6B>>;&56; )5ABA21?A; ?BA?A; 11?7?A; #1'@8<?A?>B621?A; ?75A&>62153>6<75&; =/; ?A621?A; 5@6; =/; 5<?7; .%75=7; ?>; 5@"; ; !#7BA<?7; 5A&; =7#1'; $$:,"; 4=?7&?/; B6>; ?6; 5@6; ?7<@?B21?A&?6; 8&?@@; =7; /?A621@B21?A; C/(7'8<?A?6?; <=>; <??B<A?>; &5; ?6; B621?A; (?B&?A; !#?B?6; %?/?BA65/ ?B>?A; BA; &?7; 87#18@8<B?; &?7; )?B/621?B(?; 17?A&; &?7; %56>7=@5>B8A; =A&; &?7; 47>; &?7; @5?A>5>B8A; <B(>; .(?76B21>657>B ?@;B621?7;?>;5@";$,";;; =&?/; (B?>?>; &B?; ?7?A&=A<; 8A; )5ABA21?A?/(7'8A?A; A?(?A; &?7; ?*5 >?A; ?6>B//=A<; &?6; C/(7'8A5@5@>?76;?B>?7?;?*#?7B/?A>?@@?;87>?B@?";9=721;&B?;?7<@?B216?B6?;6#>?;/#@5A>5>B8A;.5<; ;=A&;;!>=A&?A;#"2",;.9?A ?7;::,;=A&;&B?;%7?;&?7;@56>8'6>?A;.25";//;5/;5<;;#"2",;6BA&; &B?; C/(7'8A?A; @?B21>; =; <?BAA?A"; 9B?; 181?; ?@@51@; ?7/<@B21>; &B?; 4A5@'6?; BA&BB&=?@@?7; @56>8'6>?A; =A&; &?7; B68@B?7>?A; ?@@@BAB?A; C/(7'8(@56>; .C,; =A&; 78#18(@56>; .,; 68B?; &?7; @56>8'6>?A11@?A3@66B< ?B>";;;;;; :; ; LKJIHKGFJED AHKGD@HEKJJD?H>DKJD=KG><;L:9>8<7FIGF>D6K>?D?HFGIK543D?211D?H>D0HG29<IK1:F1DHKJHJD6HKG2F1DE>/-H>HJD LKJ,IF11D 2F,D ?KHD LJG6K57IFJED FJ?D +KG2IKG*GD ?H1D 4H>2J62541HJ?HJD L:9>8<J1D 2F1)9G3D 2I1D =<>4H>D 2JEHJ<::HJ(D':D&24>HD%$$%D6F>?HD=<JD#(D"HH1HD?KHD! D2F,EH1GHIIGD"HH1HD %$$%(D 0HG29<IK154D !KJ27GK=H D L:9>8<JHJ3D 1<D "HH1H3D 1HKHJD =KG2IH>3D ?2D HJ<:3D >2J17>KG<:D FJ?D ><GH<:D JK54GD )9H>,I)11KED 9H2J1>F54GD 6H>?HJ(D A<:KGD 6H>?HJD =<JD ?KH1HJD L:9>8<JHJD 6HJKEH>D *4>1G<,,HD FJ?D A2FH>1G<,,D =H>9>2F54G(D #KJEHEHJD 6HK1HJD L:9>8<JHJD :KGD HKJH>D 154IH54GHJD F2IKG*GD HKJHJD 4<4HJD *4>1G<,,;D FJ?D A2FH>1G<,,F:12GD 2F,(D KH1HD :HG29<IK154D !48H>27GK=HJ D L:9>8<JHJD HJG1GH4HJD =<>D 2IIH:D ?F>54D H<EHJHD AG>H11<>HJ3D 6KHD :)GGH>IK54HD L>7>2J7FJEHJD FJ?D AG>H11D <?H>D 1F9<GK:2IHD ;FIGF>9H?KJEFJEHJD "HH1HD HGD 2I(D %$$3D "HH1HD HGD 2I(D %$$C(D @HIHEH3D ?211D ?H>D H:9>8<J2IHD0HG29<IK1:F1DD1K54D?HFGIK54D=<:D;*4>1G<,,F:12GDFJGH>154HK?HG3DEK9GDH1D =KHI,*IGKEHDK154H>DC3D9H>1K54G12>GK7HID@2>JHGGD2J?D@2=K1GH>D3D"HH1HDHGD2I(D%$$3D"HH1HDHGD2I(D %$$C(D KHD I2JE,>K1GKEHJD <J1H FHJHJD ,)>D ?KHD 2547<::HJD 6H>?HJD :<:HJG2JD KJGHJ1K=D ?K17FGKH>G(D @HK:D 0HJ154HJD 6K>?D 9H<9254GHG3D ?211D KJ?H>3D ?KHD ?F>54D '+D <?H>D 'A'D 211K1GKH>GHJD H><?F7GK<J1:H?KKJD D EHHFEGD 6F>?HJ3D HKJD 4/4H>H1D >)4EH9F>G1>K1K7<3D HKJD EH>KJEH>H1D H9F>G1EH6K54G3D HKJHJD 4/4H>HJD @IFG?>F573D 4/4H>HD H6K54G1FJ24:HD 1<6KHD 4/4H>HD )54GH>JEIF7<1H;D FJ?D >KEI85H>K?6H>GHD 2F,6HK1HJD #HI:H>4<>1GD HGD 2I(D %$$3D &2571<JD HGD 2I(D %$$3D HHIHJDHGD2I(D%$$3DHHIHJDHGD2I(D%$$C3DHHIHJDHGD2I(D%$$3D05<J2I?DHGD2I(D%$$3DF:<FIKJDHGD2I(D%$$3D =2JD 0<JG,<<>GD HGD 2I(D %$%(D KH1HD @H<9254GFJEHJD I211HJD =H>:FGHJ3D ?211D ?KHD J211FJED ?H1D H:9>8<J2IHJD 0HG29<IK1:F1D 2JD ?KHD ;FIGF>9H?KJEFJEHJD I2JE,>K1GKEHD L,,H7GHD 429HJD 72JJ(D KHD +H>:KGGIH>D?KH1H1D?2G2GK<J1><H11H1D1KJ?D9K14H>DH?<54DFJ9H72JJG(DDDDDD *4>HJ?D ?H>D ,>)4HJD L:9>8<J2IHJG6K57IFJED 6K>?D ?H>D L:9>8<D ?F>54D ?KHD 0FGGH>D :KGD *4>1G<,,HJD IF7<1H3D :KJ<1*F>HJD FJ?D "KK?HD FJ?D 2541GF:1,27G<>HJD =H>1<>EG(D >FJ?IHEHJ?HD L>7HJJGJK11HD F:D0HG29<IK1:F1DKJD>*K:I2JG2GK<J1H:9>8<JHJD7<JJGHJD9H>HKG1DKJD?HJD$H>DFJ?D,>)4HJD$H>D EH6<JJHJD 6H>?HJD >K?42J?IH>D 3D AFEF62>2D 2J?D :HFD 3D 0KII1D 2J?D @>KJ1GH>D 3D @KEEH>1D 2J?DAGH>JDDFJ?D9KI?HGHJD?KHD>FJ?I2EHD,)>D?KHDLJG6K57IFJED=<JDFIGF>:H?KHJDKJD?H>D211K1GKH>GHJD H><?F7GK<J1:H?KKJD (D H>D >*K:I2JG2GK<J1H:9>8<D K1GD =<JD ?H>D +H>1<>EFJED :KGD *4>1G<,,HJD =<JD2F-HJD294*JEKE(D@K1DF>D<:27GKH>FJED?H>D0<>FI2HD6H>?HJD42FG1*54IK54D"27G2GDFJ?D8>F=2GD 2I1D AF91G>2GHD =H>9>2F54GD >K?42J?IH>D 3D @>KJ1GH>D 3D @>KJ1GH>D 3D @>KJ1GH>D C(D 0KGD ?H>D @I21G<81GHJHJG6K57IFJED6K>?D?H>DH:9>8<J2IHDAG<,,6H541HID2F,DIF7<1HDF:EH1GHIIGD0HJ154D2IH1D HGD2I(DC3D2J;<<>DHGD2I(D3DKJ?D4<:1<JDHGD2I(D3D4F>2J2D2J?DKH:2JJD%$$$3DA546HKJD I<<?D2J?DKH9<I?DCC3D2JKJ54HJDK7HDC3D02F1D"HH1HD2J?D@2>G<JDC3D2>?JH>D2J?D"HH1HD CC3D 2GGHD F,>21JH1D HGD 2I(D (D KH1HD :1GHIIFJED K1GD 2JD ?KHD 7GK=KH>FJED ?H1D A54>KGG:254H>HJ8:1D ?H>D I87<I81H3D ?KHD 4<14<,>F7G<7KJ21H3D EH9FJ?HJD @2>9H4HJJD HGD 2I(D 3D @2>9H4HJJD HGD 2I(D CD FJ?D K1GD ?F>54D HKJHJD H>4/4GHJD @H?2>,D 2JD 0HG29<IKGHJD ,)>D =H>154KH?HJHD CD D EDCBAD@?C>= AC;:>ACA=9D:87C@6A8AC=5A;DC>@4=3A2=1A068AB=/:C=ADCA2=.72?/-@,+*-)@-@/A2(A2@?C>='?=&B?):8A=(D2;= ;?206= ;DA= %$8@ABB?C>= ;A8= -A2:5AC= -?#= ADCAC= -C-A2:5AC= "@:##(A068AB= 5A>BAD@A@= ?C;= !-88@= ;AC= E$527:=-C=;DA=8-?A28@:##-2$A=%$>A5?C>=/:2=?C;=( 62AC;=;A2=$!B-C@-@D:C=-C=D806A2=-C;=9-/D8@A2= <<=:6C8:C=A@=-B4=4== 1 62AC;=;DA=9A;A?@?C>=/:C=&B?):8A=.72?/-@=?C;=*-)@-@=#2=;DA=.2 D$!B-C@-@D:C8!6-8A=8AD@=$A62=-B8= = -62AC= A2#:2806@= (D2;= -$$:C;= <<= 16D@@AC= <= 16D@@AC= <= AC@;A0)AC= A28@= CA?A2A= 25AD@AC=;DA=9A;A?@?C>=-C;A2A2=A@-5:BD@A4=:2=-BBA$=*D!D;A=20)AC=/A28@ 2)@=DC=;AC=:)?8="@?2$A7= A@=-B4=="@?2$A7=A@=-B4=<-="@?2$A7=A@=-B4=<5=3?CCDC>=A@=-B4==?C>6AD$=A@=-B4== -C= :A0)= A@= -B4= 4= .2 D$!B-C@-@D:C8A$527:CAC= (A2;AC= 5A2= ;-8= ?@A2DCA= "A)2A@= $D@= *D!D;AC= /A28:2>@=?C;=8DC;=DC=;A2=*->A=;DA8A=-?#'?CA6$AC=?C;='?=$A@-5:BD8DA2AC4=3A2=E$527:=8AB58@=D8@=DC=;A2= *->A=A@@8 ?2AC=?C;=):$!BA A2A=*D!D;A='?=87C@6A@D8DA2AC=?C;='?=8!AD06A2C=5A28D06@8-2@D)AB=8?DD= A@= -B4= 4= EDCA= A266@A= DC@2-'ABB?B 2A= "!AD06A2?C>= /:C= *D!D;AC= 806ADC@= A;:06= CA>-@D/A= ?8(D2)?C>AC= -?#= ;DA= .2 D$!B-C@-@D:C8AC@(D0)B?C>= '?= 6-5AC4= EDC= 6:6A2= &A6-B@= -C= *D!D;/A8D)ABC= D8@= $D@= ADCA2= >A2DC>A2AC= EC@(D0)B?C>8):$!AC@AC'= 806BA06@A2AC= E$527:?-BD@ @= ?C;= 27:):C8A2/DA25-2)AD@=5AD$=DC;=?C;="06(ADC=-88:'DDA2@=3:52DC8)7=A@=-B4=<<<=->-C:=A@=-B4== A:C>= A@= -B4= <4= C= ADCA$= )2'BD06= A2806DACACAC= 5A28D06@8-2@D)AB= /:C= 2D86A2= ?C;= .2-@6A2= (D2;= !:8@?BDA2@= ;-88= /D@-BA= E$527:CAC= &B?):8A= C?2= '?= ADCA$= >A2DC>AC= C@ADB= #2= ;DA= ECA2>DA>A(DCC?C>= /A2(AC;AC= ?C;= ;DA= 3A0)?C>= ;A8= ECA2>DA5A;-2#8= 5A2= A@@8 ?2AC= -5>A8D06A2@= (D2;4= 3DA= -?#>AC:$$ACA= &B?):8A= 6DC>A>AC= (D2;= -B8= &2?C;>A28@= #2= ;DA= AC;:>ACA= 9D:87C@6A8A= /:C= -)2:$:BA)BAC= (DA= 3= ?C;= = /A2(AC;A@= 2D86A2= -C;= .2-@6A2= 4= 3DA8= (2;A= ;DA= 9A;A?@?C>= /:C= A@@8 ?2AC= #2= ;DA= .2 D$!B-C@-@D:C8AC@(D0)B?C>= ?C@A28@2AD06AC4= 3DA8A= 7!:@6A8A= (D2;=;?206=ADCAC=9A#?C;=-?8=;AC=<D>A2=-62AC=DC=-CDC06ACA$527:CAC=?C@A28@@'@=5AD=;A$=>A'AD>@= (?2;A= ;-88= &B?):8A= 6-?!@8 06BD06= #2= ;AC= ?#5-?= /:C= -)2:$:BA)BAC= (DA= *D!D;AC= &B?):>AC= .2:@ADCAC=?C;=?)BADC8 ?2AC=-C8@-@@=#2=;DA=ECA2>DA>A(DCC?C>=/A2(AC;A@=(D2;=:5DC8:C=-C;=9AC:8= <<4=== C(DA(AD@= :6BAC67;2-@A= *D!D;A= :;A2= .2:@ADCA= '?2= EC>A2>DA5A2AD@8@ABB?C>= /A2(AC;A@= (A2;AC= ?C@A2BDA>@= ADCA2= 8@2AC>AC= :C@2:BBA= -C= ;A2= ?C@A2= -C;A2A$= :2$:CA= 1-068@?$8#-)@:2AC= ?C;= ;D!:)DCA=5A@ADBD>@=8DC;4=3-8=:2$:C=C8?BDC=;-8='?$=C8?BDC,&,A'A!@:2,"78@A$="=>A62@=D8@= ADB=;A2="@:##(A068AB6:$:8@-8A4== = = <= = HGFEDGCBFA@ =E<@ ;D:9GCCED:@ 8D:@ D97:65493CD:F3EDF@ 2599BFG13CG5F@ 8GDFDF@ BFCD:@ 3F8D:D9@ 05:95FD@ BF8@ /3.-<CB9<,31C5:DF+@*GD<D@)D:8DF@(B9@DGFDF@'5F@8D:@&BCCD:@7D:DGCAD<CDEEC%@1$FFDF@37D:@3B.-@'59@ H97:65@<DE7<C@":58B(GD:C@)D:8DF+@=B,@8GD<D@/DG<D@7DDGF,EB<<DF@<G.-@8D:@9!CCD:EG.-D@ :A3FG<9B<@BF8@ 8D:@ -D:3F)3.-<DF8D@ H97:65@ ADADF<DGCGA@ BF8@ D:9$AEG.-DF@ 838B:.-@ DGFD@ 5"CG93ED@ =F"3<<BFA@ 8D:@ HFC)G.1EBFA@8D<@H97:65<@BF8@<GF8@839GC@D<<DFCGDEE@,!:@8GD@=B,:D.-CD:-3ECBFA@8D:@.-)3FAD:<.-3,C+@ DGE@8GD<D<@159"EDDF@DC()D:1D<@G<C@83<@+@ B@8DF@259"5FDFCDF@8D<@@AD-$:DF@8GD@GA3F8DF@F<BEGF%@8GD@F<BEGF-FEG.-DF@/3.-<CB9<,31C5:DF@ @ @ ?@ BF8@ %@ <5)GD@ 8D:DF@ D(D"C5:DF@ F<BEGF4D(D"C5:@ %@ ?4 D(D"C5:@ ?@ BF8@ 4D(D"C5:@ +@ =B,A:BF8@ 8D:@ <C:B1CB:DEEDF@ 0595E5AGD@ GF@ 8D:@ D"CG8<C:B1CB:@7GF8DF@8GD@[email protected]@FB:@G-:DF@D)DGE<@(BAD5:8FDCDF@D(D"C5:%@<5F8D:[email protected]@3F@ 8GD@3F8D:DF@D(D"C5:DF@8D<@%@D85.-@9DG<C@9GC@DGFD:@AD:GFAD:DF@=,,GFGCC@5C)DGF@??%@;3F@8DF@ :3F8D@ ?%@ -35@ 3F8@ *=95:D@ >>@ <GD-D@ =77+@ +@ *B:.-@ 8GD@ BFCD:<.-GD8EG.-DF@ GA3F8DF4 D(D"C5:4GF8BFA<D,,G(GDF(DF%@ 37D:@ 3B.-@ 8B:.-@ 8GD@ -GA1DGC%@ BFCD:<.-GD8EG.-D@ GFC:3(DEEBE:D@ GAF3E95ED1!ED@(B@31CG'GD:DF%@1$FFDF@F<BEGF@BF8@8GD@<@GF@"-6<G5E5AG<.-DF@25F(DFC:3CG5FDF@8G'D:<D@ DEE,BF1CG5FDF@ <CDBD:F@ -35@ 3F8@ *=95:D@ >>+@ *D:@ @ BF8@ 8D:@ ?@ )DG<DF@ -5-D@ <C:B1CB:DEED@ -FEG.-1DGCDF@3B,@EE:G.-@DC@3E+@?+@DG8D@D(D"C5:DF@7D<CD-DF@3B<@D)DGE<@()DG@3E"-34@BF8@()DG@ 7DC34FCD:DGF-DGCDF+@ *GD@ 3E"-34FCD:DGF-DGC@ DFC-EC@ 8GD@ GF8BFA<859FD@ ,!:@ 8GD@ GA3F8DF@ BF8@ 8GD@ 7DC34FCD:DGF-DGC%@ 8GD@ GF@ 8D:@ &D97:3F@ 'D:3F1D:C@ G<C%@ 8GD@ 6:5<GF1GF3<D859FD%@ 8GD@ F3.-@ GA3F8DF7GF8BFA@ 31CG'GD:C@ )G:8@ BF8@ (B:@ =BC5"-5<"-5:6EGD:BFA@ 8D:@ F<BEGF4D(D"C5:4B7<C:3CD@ @ ,!-:C+@*D:@@DG<CGD:C@GF@()DG@'D:<.-GD8DFDF@<5,5:9DF%@4=@BF8@4+@DG8D@<5,5:9DF@7D<GC(DF@DGFD@ BFCD:<.-GD8EG.-D@GF8BFA<3,,GFGCC@(B@8DF@GA3F8DF@=77+@+@5@13FF@8D:@4=@@9GC@8D:@AEDG.-DF@ -5-DF@=,,GFGCC@)GD@F<BEGF@7GF8DF@:3<.3@DC@3E+@?%@.G3..3@DC@3E+@>>%@3):DF.D@DC@3E+@>>+@*D:@ @ )DG<C@ 83ADADF@ 1DGFD@ DC:39D:D4C:B1CB:@ 3B,%@ <5F8D:F@ -FDEC@ G9@ =B,73B@ 8DF@ &3FF5<D44 -5<"-3C4D(D"C5:DF+@ *GD<D@ DGF1DCCGADF@ GFCDA:3EDF@ &D97:3F":5CDGFD@ 7D<GC(DF@ DGFDF@ E3FADF@ DC:3(DEEBE:DF@BF8@DGFDF@1B:(DF@GFC:3(DEEBE:DF@=FCDGE@-5<-@>>%@8D:@8DF@E6<5<593EDF@=773B@8D:@ AD7BF8DF@GA3F8DF@DGFEDGCDC@ 13@DC@3E+@?%@2GD<<@DC@3E+@?%@5E3F@3F8@3)E5:@?+@@ @ ?>@ @ JIHGFIEDHCB B ! @IFB?IC>H=FHB<D;=FHBDHEF;B:F;9765I74EICDHCBI4;F;B322IHIE1EB=FHB0F/F.E-;FHB/DCF-;=HFE,B@F;B +H5DGIH;F/F.E-;B*+0)BF(I5EIF;EBIHB'B&F;574IF=FHFHB+5-2-;%FH$B+0#3BDH=B+0#:,B@F;B+0BDH=B *+"!A0)B 6 HHFHB ;I=;F/F.E-;FHB *+0+"!A0)B IG=FH,B @IF5FB 0F/F.E-;FHB FHE5EF4FHB =D;74B =>5B D5>%%FHG>CF;HB FIHF;B ##@-%1HFB =F5B +0B DH=B FIHF;B /<FIEFHB =F5B +"!A0,B >74B ?IC>H=FHIH=DHCB <F;=FHB 9F;B =FHB +0B DH=B +"!A0B =F;B /FGGDG1;FB FE>-GI5%D5B@I22F;FH/IF;DHCBDH=B.;-GI2F;>EI&FBDH=B>HEI>.-.E-EI574FB;-/F55FB;FCDGIF;E,B@F;B +"!'0BIH=FEBHD;B+"!'B=>5B>H574GIFFH=BIHEF;H>GI5IF;EBDH=B>CF>DEB<I;=,BB *%-=I2I/IF;EBH>74B4>-B')B @>5B++0B5.IFGEB<14;FH=B=F;B;1I%.G>HE>EI-H5FHE<I76GDHCB>G5BF=I>E-;BI%BF%;-#%>EF;H>GFHB@I>G-CB FIHFB /FHE;>GFB 0-GGF,B @F;B /FGGDG1;FB FE>-GI5%D5B DH=B /FGG.;-GI2F;>EI&FB ;-/F55FB <F;=FHB <14;FH=B =IF5F;B5F4;B2;94FHB4>5FB=F;BF%;-H>GFHBJHE<I76GDHCB9F;B=>5B++0B6--;=IHIF;E,B@F;BJ%;-B5FG5EB 6>HHB +"!AB DH=B +"!'B >G5B >DE-#B DH=B .>;>6;IHB <I;6FH=FB !>6E-;FHB .;-=D/IF;FHB HI74EB F=-74B +H5DGIHB *>D5B*@-4F;EBFEB>G,BAB>HE>GF-HB>H=B>FBA )B0IH=B*>E5-HBFEB>G,BA')B74>2B*>E5-HBFEB >G,B A),B @IFB <FIEF;FB F;5-;CDHCB <I;=B >D5B =F%B %9EEF;GI74FHB :GDE6;FI5G>D2B 9F;B =>5B EF;D55F6;FEB F<F;65EFGGICEB *FH=-6;IH),B D51E/GI74B 6 HHFHB >D74B =IFB %9EEF;GI74FHB ;F.;-=D6EI&FHB ;C>HFB EF;D5B DH=B JIGFIEF;B 9F;B =IFB G-6>GFB ;-=D6EI-HB =F;B +"!5B =IFB ;1I%.G>HE>EI-H5FHE<I76GDHCB FFIH2GD55FHB *.>;>6;IH)B*>D5B*>;&FB>H=B>FBA)B*>6>;I>B')B0IH=B*>E5-HBFEB>G,BA')B*F;65BFEB>G,B A)B *>E4F5B FEB >G,B A)B DH=B FH574B *"ID=I7FB A),B JIHFB 0FCDG>EI-HB F;2-GCEB 5-%IEB 9F;B G-6>GFB DH=B /FHE;>GFB F74>HI5%FH,B +H5DGIHB 4IHCFCFHB 6>HHB HI74EB 5FG5EB &-%B ;1I%.G>HE>EI-H5F%;-B .;-=D/IF;EB<F;=FHB*>FBA)B*?IC4EFHBFEB>G,BA),B-%IEB%D55BFIHFBF;5-;CDHCB9F;B=>5BDEF;IHFB F6;FEB =F;B DEEF;B F;2-GCFHB D%B FIHFB H-;%>GFB JHE<I76GDHCB /DB CF<14;GFI5EFH,B @IFB ;-5IH6IH>5F# AAB B IHGFEHDCGBA >E=E<D;:EGA9E8A77>6A5E:9EGA8;5;4FA3;2A1:0H2<F-GD-DH;G8E2,:+;A-F8A-C*4AH2A)DE:C8ACG9AIHFEHDE:A9E:A (CDDE:A E'<:H2HE:DA &(EG8*4A &%HB4DEGA EDA -F$A @##" A (-C8A &>-<<;FEEA EDA -F$A @##?A E+GE:A EDA -F$A @#"# A -GHG*4EGA &-3-::EDEA 6-GD;8A EDA -F$A ?"A >-2HGA EDA -F$A ?@A 4HE2EA EDA -F$A ?@?- $A 7GA -GHG*4EG,F-8D;=+8DEGA5EH8EGA9HEA>E=E<D;:EGAEHGA8<E=HH8*4E8AE:DEHFCGB82C8DE:A-C$A04:EG9A9E:A I2,:+;,F-8DA 3;:A -FFE2A 9EGA 7@>A CG9A 7>A E'<:H2HE:DA 5E:9EGA 3;2A :;<4;,F-8DEGA ,EH9EA 7> 78;;:2EGA8+GD4EDH8HE:DAA&-3-::EDEA6-GD;8AEDA-F$A?" $A6;2HDA5E:9EGA,E:A9HEA78A<:;FHE:-DH3EACG9A 2HD;BEGEA 6HBG-FEA H2A I2,:+;,F-8DEGA ;:*HE:D$A 72A :;<4;,F-8DEGA 4HGBEBEGA GGEGA 9HEA 78A HGA <4+8H;F;BH8*4EGA ;G=EGD:-DH;G8,E:EH*4EGA -CB:CG9A 9E:A BE:HGBEGA 7@>H*4DEA -C2A 5H:EG$A 7G8CFHGA 8DECE:DA 8;5;4FA H2A I2,:+;,F-8DEGA CG9A -C*4A H2A :;<4;,F-8DEGA <:;FHE:-DH3EA CG9A 2ED-,;FH8*4EA 1:;=E88E$AAAA E:8*4HE9EGEA D:-G8BEGEA HE:2;9EFFEA ,E5EH8EGA 9HEA E88EGDHEFFEA E9ECDCGBA 9E:A 78A HGA 9E:A I2,:+;BEGE8EA CG9A 6*45-GBE:8*4-D$A E:A (-GBEFA -GA 7@1:;DEHGA 4:DA H2A (-C82;9EFFA =CA EHGE:A ED-FEGA -*48DC28:ED-:9HE:CGBA CG9A EHGE:A 4;4EGA <E:HG-D-FEGA %ED-FHD0DA &%HCA EDA -F$A @##A -E:A EDA -F$A @##A1;5EFF:-'D;GAEDA-F$A@## $AC9E2A5EH8EGA7@9EH=HEGDEA(0C8EA3E:8*4HE9EGEA6D:CGBEGAHGA 9E:A:B-G;BEGE8EA-CACG9A8HG9AHGE:DHFA&-E:AEDA-F$A@##A -2-*4;,GE:A-G9A6-3-BEA?@ $A7? GCFF(CD-GDEGA 8HG9A E,EG-FF8A 5-*48DC28:ED-:9HE:DA EGD5H*EFGA 8H*4A G-*4A 9E:A E,C:DA E9;*4A G;:2-FA &E 4H-:-AEDA-F$A@##AE 4H-:-AEDA-F$A@##@ $A72AE:BFEH*4A=CA7@AH8DA7?A8;2HDAGH*4DAE88EGDHEFFA:A 9HEA E2,:+;G-FEA CG9A ED-FEA IGD5H*FCGB$A HEA E9ECDCGBA 3;GA 7@A :A 9HEA 4C2-GEA 1:0H2<F-GD-DH;G8EGD5H*FCGBA,FEH,DAC28D:HDDEGA9-AH2AE:BFEH*4A=C2A-GHG*4EGACG9A(-C8AEHGEA7@ 1:;9CDH;GA H2A 4C2-GEGA I2,:+;A ,H8A =C2A F-8D;=+8DEG8D-9HC2A GH*4DA G-*4BE5HE8EGA 5E:9EGA ;GGDEA &%HB4DEGAEDA-F$A@## $AA HEA -,EA 3;GA 7G8CFHGA CG9A 78A :9E:DA 9HEA 2E8;9E:2-FEA EFF<:;FHE:-DH;GA CG9A 9HEA -:9H;BEGEA HE:EG=HE:CGBA &4HE2EA EDA -F$A ?@?,A IGBEF8A EDA -F$A ?@ A E88EGDHEFFEA 1:;=E88EA 9E:A :4EGA I2,:+;BEGE8E$A C9E2A :EBCFHE:DA 9-8A 77>8A 9HEA CG-42EA 9E8A =EGD:-FEGA (ED-,;FHDEGA FC;8EA &,E:8H*4D8-:DHEFA &-:GEDDA -G9A -3H8DE:A @## $A 7GA (-C8,F-8D;=+8DEGA 5H:9A 9HEA FC;8E-CG-42EA 9C:*4A 7G8CFHGA CG9A 7@A ;:*HE:DA &1-GD-FE;GA -G9A -+EA @##A >HFE+A EDA -F$A ? $A 7GA -GHG*4EG,F-8D;=+8DEGA4:EGA5E9E:A7G8CFHGAG;*4A7@A=CAEHGE:AI:44CGBA9E:AFC;8E-CG-42EA&9A A,=5$A=CAEHGE:AA:-G8F;-DH;GA9E8AFC;8ED:-G8<;:DE:A+<AAA&9A A&%)AEGA6% ? ACG9A 8;2HDA =CA EHGE:A HG8CFHG-,40GBHBEGA 6DEHBE:CGBA 9E:A FC;8E-CG-42EA &-3-::EDEA 6-GD;8A EDA -F$A ? $A E,EGA 7G8CFHGA H8DA -C*4A 9-8A ;:2;GA 9H<;GEDHGA HGA 9E:A %-BEA 9HEA FC;8E42E;8D-8EA =CA :EBCFHE:EGA &H8*4E:A EDA -F$A ?@ $A 6;2HDA H8DA 9H<;GEDHGA EHGA 5EHDE:E:A <;DEGDHEFFE:A -G9H9-DA :A EHGEA 9H:EDEA CG9A HG9H:EDEAH:CGBAHGA9E:AE2,:+;2-DE:G-FEGA7GDE:-DH;G$ @?A A JIHGFIEDHCB ?>I=<HF;EIH:B >98B 9D76B 9G8B ?>I=<5B DH>B ?74=@3B 2F;9HHEB I8E:B 1I4>B 8FIEB>F4BF48EFHB0F8764FI2DHCB/IEEFB >F4BA..3F4B-964FHBIHEFH8I,BDHEF48D76EB+*76F4F4BFEB9G)BA..(:B'DBFEB9G)BA..&:B/9F>9BFEB9G)BA..&:B$9;9H<B FEB 9G)B A..&#)B J8B CF6"4EB DB >F4B 4D==FB >F4B ?>I=< E<;IHFB +?>I=<;IHF#:B >IFB 69D=E876GI76B ,<HB ?>I=< EFHB =4<>D IF4EB 1F4>FH)B B F4CGFI76B DB >FHB 9H>F4FHB ?>I=< E<;IHFHB I8EB >IFB *F4D;<H FHE49EI<HB,<HB?>I=<HF;EIHBIEB>FB"4=F4CF1I76EBIH,F48B;<44FGIF4EB+'DBFEB9G)BA..&:B?4IE9B FEB9G)BA...#BDH>BIHBFIHF4BA333976B6"6F4FHB<H FHE49EI<HB9G8B>IFB9H>F4FHB?>I=< E<;IHFBIB0GDEB DB IH>FHB +*EF9HB FEB 9G)B 33@#)B F4B '9D=EEFIGB >F8B IB *F4DB ,<4;<FH>FHB ?>I=<HF;EIH8B 8E9EB 9D8B >FBFEECF1F2F)B?D76BIHB>F4BF2F4B+98F4BFEB9G)B33(#:BIHB/D8;FG FGGFHB+*E9ICF4BFEB9G)B33@:BFG9ICGFB FEB9G)B33#:B8EF<2G98EFHB+0F4HF4BFEB9G)B33#BDH>BIB4I=G9HE9EI<H8F24<B+*76I>EBFEB9G)B33:B I;<8BFEB9G)B3A3#B;<HHEFB?>I=<HF;EIHB$?BDH>B4<EFIHBH976CF1IF8FHB1F4>FH)B4B>IFB4<>D;EI<HB DH>B*F;4FEI<HB,<HB?>I=<HF;EIHB9D8B>FB,I8 F49GFHBFEECF1F2FBHIEBH8DGIHBFIHFB FHE49GFB*EFGGDHCB FIHB+0<C9HB9H>B<>I86BA...:B09769BFEB9G)B33#)BB ?>I=<HF;EIHB I8EB 1IFB H8DGIHB IHB >F4B 9CF:B >FHB FGGFE92<GI8D8B DB 4FCDGIF4FH)B J8B ,F4CEB 2F4B FIHB FICFHF8B F F=E<4B DH>B *ICH9G88EF)B ?>I=<HF;EIHB FHE9GEFEB 8FIHFB FE92<GI876FB I4;DHCB 2F4B 1FIB F F=E<4FHB ?>I=<AB DH>B ?>I=<B +99D76IB FEB 9G)B 33@#)B 64FH>B >F4B ?>I=<AB D2IDIE4B ,<4;<E:B IH>FEB 9HB >FHB ?>I=<B ,<4B 9GGFB IHB >F4B F2F4B +8D76I>9B FEB 9G)B 33#)B F8B FIEF4FHB 2IH>FEB ?>I=<HF;EIHB >FHB 9>6F4IHF F=E<4B +'DCB FEB 9G)B 33#)B IFB ?;EI,IF4DHCB I8EB 4B >IFB FE92<GI876FB FCDG9EI<HB >D476B ?>I=<HF;EIHB HI76EB 4FGF,9HE:B ;9HHB 92F4B >IFB ?HCI<CFHF8FB 2FFIHGD88FH+'DCB FEB 9G)B 33:B 6IEF6F9>B FEB 9G)B 33&:B 94;F4DFHB FEB 9G)B 3A@:B 94;F4DFHB 9H>B 9G86B3A#)B 0FI>FB ?>I=<8B 8IH>B 9D8B 8IF2FHB 49H8F249H><HFHB 9DCF29DEB DH>B 9;EI,IF4FHB H976B IC9H>FH2IH>DHCB 2F4 >98 B AB +?A#B DH>B ?/9;EI,IF4EFB 4<EFIH;IH98FB +?/#B FIHFB IFG 96GB 9HB *76G88FGFH FHB DHEF4876IF>GI76F4B *E<1F768FG=4< F88F)B ?DB >IF8FB FCFB ;"HHFHB >IFB GD;<8F9DH96F:B GD;<HF<CFHF8F:B >IFB F48E<1F768FGDHCB ,<HB FEE8D4FH:B >IFB 4ICG7F4I>B DH>B 6<GF8EF4IH8HE6F8FB CF8EFDF4EB 1F4>FHB +4DF2I8BFEB9G)B33A:B/9<BFEB9G)B33&:BDF44F/IGG<B33:B 69<BFEB9G)B33.:B2F48I76E894EI;FGB99D76IB FEB9G)B3A#)B2F4B>IFB?;EI,IF4DHCB>F8BF4<I8<FH4<GIF49E<49;EI,IF4EF4BF F=E<48B9G=69B+?#B 8<1IFB FIHF4B F46"6EFHB 49H8;4I=EI<HB ,<HB 94HIEIH9GIE<GE49H8F498FB AB 0B +A0#B DH>B >F4B >9IEB ,F42DH>FHFHB CF8EFICF4EFHB F48E<1F768FGDHCB ,<HB FEE8D4FH:B ;<EB ?>I=<HF;EIHB FIHFB 8FIHF4B FE92<GI876FHBDH;EI<HFHBH976B>F4BFCDG9EI<HB>F4BH8DGIH8FH8IEI,IEEB+99D76IBFEB9G)B33@:B<28B FEB9G)B33#)BHB?22IG>DHCB(B8IH>B>IFB*ICH9G1FCFBDH>BDH;EI<HB,<HB?>I=<HF;EIHB D89FHCF988E)BB A@B B A@?>=@<;?:9 9 65439 2@?1;?:9 0/?9 .1@-/?=,<@?9 5?9 1=++=?9 *=)=-</(9 '.1@-/*+&9 .1@-/?=,<@?9 *=)=-</(9 89 '.1@-/*8%9;?19.1@-/?=,<@?9*=)=-</(9$9'.1@-/*$%%9@?<=(5:@=(<91@=+=(9#@<91=#9.%$#"! !" !"$ " !!! !$9 '.""!8% 9 65439 "3/+-3/(>@=(;?:9 1=(9 ."5,<@0@=(<=(9 "(/<=@?,@?5+=9 '."%9 ,5??9 );#9 =@?=?9 1@=9 >;,/?=/:=?=+=9 =(9 1@=9 *=:;>5<@/?9 1=(9 "3/+-3/=?/>-(;05<45(/,@?5+=9 '"A"%9 ;?19 1=(9 >;,/+="3/+-35<5+=9 '"%9 :=+<=;=(<9 =(1=? 9 ;#9 5?1=(=?9 @(19 1=(9 !@-@1#=<5/>@+#;+9 (=:;>@=(<9 =(9 1@=9 "3/+-3/(>@=(;?:9 1=(9 .4=<>/.95(/>5+=9'.%9;?195?+43>@==?1=?9<(5?+,(@-<@/?=>>=?9*=:;>5<@/?91=(95(?@<@? "5>#@</><(5?+=(5+=9 89 '"82%9 +/@=9 1=(9 .,<@0@=(;?:9 1=+9 (5?+,(@-<@/?+5,</(+9 "=(/@+/# "(/>@=(5</(5,<@0@=(<=(9 *=)=-</(9 9 '"".*% 9 "".*9 ,/?<(/>>@=(<9 1@=9 "(/#/</(5,<@0@<<9 0@=>=(9 =?=9 1=+9 =<<+;(=#=<5/>@+#;+ 9 5);9 )3>=?9 " ! "$"! 9 '% 9 " ! $"! "%# !"89'*A2"8%9;?19$""$%" $#! " # !"'."+% 9@=9 @?<(5)=>>;>(=9 >;,/+=5;?53#=9 @(19 .";?53?:@:9 =(9 $"% # !" $ ;?191@=9(5?+>/,5<@/?91=+9>;,/+=<(5?+-/(<=(+979'!7%9:=+<=;=(< 9 9 %"%%#!"#"! " % #$"$"!" #9=?+43=?9@+<9=(91@=9;?,<@/?90/?9.1@-/?=,<@?93(=?191=(9(3=?9"35+=91=(9435?:=(+435<9 @+3=(9 =?@:9 =,5??< 9 ?9 0=(+43@=1=?=?9 ;:=<@=(+-=)@=+9 +@?19 .1@-/?=,<@?9 ;?19 +=@?=9 *=)=-</(=?9 .1@-/*89 ;?19 .1@-/*$9 @?9 "(@#->5?<5<@/?+=#(/?=?9 ;?19 (=-(/1;,<@0=?9 (:5?=?9 ?543:=@=+=?9 /(1=?9'5;+9'43#@1<9=<95> 9$ 9@,/+9=<95> 9$8 9@#9=<95> 9$88% 943=@?9'35--5)9=<95> 9$% 9 *@?19 '5@>>5(19 =<9 5> 9 $8% 9 5?@?43=?9 '43#@1<9 =<9 5> 9 $ 9 @+43=(9 =<9 5> 9 $8% 9 =(+@43<+5(<@,=>9 "5>@?9 =<9 5> 9 $8$% 9 @=9 *=)=-</(=?9 =(1=?9 35;-<+43>@439 @#9 A#(/>5+<=?9 ;?19 );9 =@?=#9 :=(@?:=?9 879 9 DCBA@C?>B=< 9B?@CA<C8<7654352A10?@B</@6<.A10?5-,0?@B<@+46C8C@6?<*)(38C/?<@?<1A'<&%%$"<!C8<@?<1A'<&%;;"< C0(3@6<@?< 1A'<&%;%'<36@B/</C@<@-@4?56@B<0(35B<12</@8<5-,?@B0?1/C>8<B1(3=@C@0@B<@6/@B<5BB?@B"< @65A=?< /C@< ),B?3@0@< 5B< 9/C45B@?CB< 0@A20?< CB< 1>0< >B/< !1BCB(3@B@826,5B@B< @60?< 12< /@8< .A10?5-,0?@B0?1/C>8< *)(38C/?< @?< 1A'< &%%$"< C50< @?< 1A'< &%;%'< C@< !5845B@B?@B< /@0< 9/C45B@?CB )C=B1A@=@0"< C@< 9!"< 9< >B/< < * 97< ;< >B/< @CB< >B?C5B@AA@6< 9/C45B@?CB)C=B1A@=<0CB/<C8<D826,5<5631B/@B<* C0(3@6<@?<1A'<&%;%"<!C8<@?<1A'<&%;;'<C@< )?C8>A1?C5B< 8C?< 43,0C5A5=C0(3@B< 9/C45B@?CB5B-@B?61?C5B@B< 0?@C=@6?< /C@< 3504356,AC@6>B=< /@6< 9!< >B/< 9?"< 10< />6(3< /C@< 761B0A51?C5B< 5B< 7< CB< /C@< @8261B< ->< @CB@6< @633?@B< A>50@1>B138@<CB</C@<@AA@<>B/<@CB@6< @88>B=<</@6<D!<36?<* C0(3@6<@?<1A'<&%;%'<9/C45B@?CB< C0?< CB< /@6< 1=@"< CB< 6C84A1B?1?C5B0@826,5B@B< A100C0(3@< 8@?125AC0(3@< >B?C5B@B< /@0< B0>ACB0< ->< 2@6B@38@B'< ??@6AC(3@< D661B>B=@B"< /C@< /10< @826,5B1A@< 9/C45B@?CB@-@4?56),0?@8< 2@@CBA>00@B"< BB@B< 2@6< /C@< 9/C45B@?CB6@=>A1?C5B< @CB@B< =61C@6@B/@B< DCBA>00< 1>< /@B< @?125AC08>0< >B/< /C@< @C?@6@< DB?C(A>B=< /@0< D826,50< 312@B'< ??@6AC(3@< 9/C450C?10< 5/@6< D661B>B=@B< C@< C12@?@0< 8@AAC?>0< 7,4< ;< >B/< &< 05C@< /10< 45A,-,0?C0(3@0< 160,/658< *)< 0CB/< 0553A< 8C?< @CB@8< @6B/@6?@B< 9/C45B@?CB04C@=@A< 1A0< 1>(3< 8C?< )>2@6?CAC??< >B/< @CB@6< @633?@B< @826,5B1A@B<@?1AC??<1005-CC@6?<*81=11<@?<1A'<&%%&"<65?3<&%;%'<8<1>085/@AA<5BB?@B<1<>B/< !51>?56@B< @CB@B< >0188@B31B=< -C0(3@B< /@8< 1B=@A< 1B< >B?C5B@AA@8< 9/C45B@?CB< >B/< /@6< @6?CAC??<-@C=@B<*1<@?<1A'<&%%&'<< D+?61-@AA>A6@< )C=B1A@< BB@B< 2@6< )C=B1A101/@B< 1>0=@3@B/< 5B< /@6< @-@4?C5B< 2C0< ->8< 761B06C4?C5B01?56</C@<D+46@00C5B<5B<@B@B<6@=>AC@6@B<>B/<5B?65AAC@6@B'<@6<761B06C4?C5B01?56< < *D.< >B=C@6?< 1A0< -@B?61A@6< @68C??A@6< -@AA>A6@6< 65-@00@'< 5685B@"< 1(30?>801?56@B"< @>65?61B08C??@6"< 12@6< 1>(3< @?125AC?@< C@< A>50@< 36@B< ->< @CB@6< 9?CC@6>B=< 5B< D.< >B/< 058C?< ->6< ?61B06C4?C5B@AA@B< @=>A1?C5B< 5B< C@A=@B@B'<.C0A1B=<0CB/<8@36<1A0<%%<)?C8>AC<2@1BB?"</C@<2@6<@60(3C@/@B@<!CB10@B<D.<18<)@6CB ;< 43504356,AC@6@B< >B/< 058C?< 1?CC@6@B< *5B-1A@-< 1B/< 5B?8CB,< ;$"< 1,6< 1B/< 5B?8CB,< &%%;'< C@0@< ?61B0C@B?@< D.3504356,AC@6>B=< @66@C(3?< B1(3< (1'< ;%;:8CB< @CB< 1+C8>8< >B/< 0CB?< /1BB< 5B?CB>C@6AC(3< C@/@6< 12< *>< @?< 1A'< &%%;"< CB< 1B/< @CAA< &%;%'< 10< 43504356,AC@6?@< D.< 2CB/@?<1A0<C8@6<1B<0@CB@<04@-CC0(3@<9D6@BB>B=00@>@B-"</10<<*D"<CB< 6@=>A1?56C0(3@B< @=C5B@B< /@0< C@A=@B@0'< 12@C< @65A=?< /C@< .CB/>B=< 5B< D.< 1B< D)@>@B-@B< @B?@/@6< 1A0< 585/C8@6< 5/@6< 1A0< @?@65/C8@6< ->0188@B< 8C?< < *97 ;< 5/@6< < *D< * 1C< @?< 1A'< ;$"< 12@B@6< @?< 1A'< ;%"< 5>A@0< @?< 1A'< ;;"< @,@6< 1B/< 12@B@6< ;&'< C@< .CB/>B=< 1A0< @?@65/C8@6< 36?< C88@6< ->< @CB@6< =@6CB=@6@B< ?61B06C4?C5B@AA@B< 9?CC??< *56C1>+< @?< 1A'< ;'< )553A< 97 ;< 1A0< 1>(3< D< =@36@B"< C@< D."< ;:< < JIHGFIEDHCB IHHF>=<G;B:F>B9FD8IH7I66F>6>5EFIHFB7D>B=58=45H3F>2IF>EFHB10J/.-,+*)HEF>(<'IGIFBDH:B;F3IE7FHB3F=>B =5=FB3E>D4ED>FGGFB&=HGI8=4FIEFHB7DFIH<H:F>B$#<IBFEB<G"BA! !B0D66F>EBFEB<G"BA!!BFF>B<H:B#<;FHF>B A!!BFG'<3BFEB<G"BA!!B$3IF=FB-;;"B@"BB B IFB=D'<HFHB B$10J/B B $-,+AB 5:F>B B $10JB ;F3IE7FHB =5=FB 3E>D4ED>FGGFB &=HGI8=4FIEFHB IHB I=>F'B CFH5'I38=FHB -D(;<D"B ;F>FIH3EI''FH:FB /F>FI8=FB IHB :F>B GDE<'IH>FI8=FHB $A.*B IH<3F*IH:D7IF>;<>FB $*B DH:B 9FD8IH* I66F>B$;*5'HFB3IH:BDHEF>38=IF:GI8=B(<>;ICB:<>CF3EFGGE"BB $'5:I(I7IF>EBH<8=B<>B<H:B5HEF'IHBAB B IFB =536=5>GIF>DHCB 25HB 10J/B I3EB HI8=EB <D3>FI8=FH:B D'B :IFB ,><H34>I6EI5HB :F>B IFGCFHFB 7DB '5:DGIF>FHB$=<HCBFEB<G"B"BD3E7GI8=B'D33BFIHFB,><H3G54<EI5HBIHB:FHBFGG4F>HBDH:BFIHFBFIEF>FB HEF><4EI5HB'IEB:FHB5<4EI2<E5>FHB10J/* B$1/BDH:B6BF>(5GCFHB$1=>I2I<BFEB<G"BA!!B <>B <H:B 5HE'IHB A"B )'(<33FH:FB -H<G3FHB 7FICFHB :<33B 'F=>B <G3B AB 'D>IHFB DH:B A@B 'FH38=GI8=FBFHFBFIHFB10J*F DFH7B<D(FI3FHB$15H4>IC=EBFEB<G"BB=<HCBFEB<G"B"BF>BC>5FB )'(<HCBDH:B:IFB(DH4EI5HFGGFBIFG(<GEB<HB65EFHEIFGGFHB10J/*IFGCFHFHB7FICEB:IFB7FHE><GFBEFGGDHCB25HB 10J/BIHB:F>B0FCDG<EI5HB7FGGDG>F>B>57F33FBIFB7D'B/FI36IFGBFGG6>5GI(F><EI5HBDH:BFGG:I((F>FH7IF>DHC"B F>B >5EFIGB :F>B 10J*F DFH7*FHE=<GEFH:FHB FHFB 45HE>5GGIF>EB F:58=B :FHB 7FGGDG>FHB FE<;5GI3'D3"B <7DB CF=>FHB 7D'B /FI36IFGB :<3B B $+-/B B :IFB +FEE3D>F*HE=<3F $+-B =536=5FH5G6>D2<E*1<>;54IH<3FB $J1B #F54IH<3FB B B $)1B AB DH:B B $55GFBFEB<G"BA!!!B0FD38=BFEB<G"BB=<HCBFEB<G"BB;F>3I8=E3<>EI4FGB-GE<>F53B<H:B5HE'IHB AAB <EFH;<H4B =EE6..H<ED><G"3<G4":FD.10J/"B 10J/B F>==EB :IFB F>(C;<>4FIEB 25HB GD453FB DH:B ,>ICG8F>I:FHB DH:B FIEF>F>B FE<;5GIEF"B FIEF>=IHB >FCDGIF>EB 10J/B <;F>B <D8=B :IFB J6>F33I5HB 25HB ,><H34>I6EI5H3(<4E5>FHBIFBF>5I35'*>5GI(F><E5>*<4EI2IF>EFB0F7F6E5>FHBC<''<B$-0 A@B B GFEDCFBAE@? $#"! #$!"$#?<;:987?AE6?549321?230FC?/.5-2BA,2+.*B3)CE?AE6?;6F(3*FEC1?0FC?'E2ADFE1?&C(BFE? AE6? ;6F(3EC*BFE%? $#G"? *.EE? 2303-D? !A? CFEC)? 93)5FC)AE@? .D2? .A5-? !A? CFEC)? 'E-F FC)AE@? 6C)? FCD@CEB).E2*)F(BF3E? +-)CE%? FC? :).E2*)F(BF3E2-C,,AE@? 0F)6? AEBC)? .E6C)C,? C)? CFEC? F,C)F2FC)AE@?,FB?.E6C)CE?9.,FDFCE,FB@DFC6C)E1?0FC?6C)?#C()C223)4'23+3),?3E?$#G?<$#G4'$G#71? ;:98?36C)?;:9?)C.DF2FC)B?<.F?.E6?.)B,.E?>1?3-.EEC22CE?CB?.D%?7%??? C CE? $#G"? AE6? ;:9>? @C-)CE? .A5-? ;:9? F2? ;:9? !A)? $#G";:949.,FDFC%? ',? [email protected]!? !A? $#G"? 36C)?;:9>? C2FB!CE?6FC?0CFBC)CE?;:92?CFEC?.E6C)C?2B)A*BA)CDDC?3)(-3D3@FC?<.F?.E6?.)B,.E?>7%? '-)C?+AE*BF3ECDDCE?GF@CE25-.+BCE?2FE6?F,?C)@DCF5-?!A?$#G"?E35-?0CFB@C-CE6?AE C*.EEB?<C)2CE@FC? .E6? )CCE? 87%? ;:91? ;:98? AE6? ;:9? 25-CFECE? CFEC? #3DDC? FE? 6C)? !CDDAD)CE? B)C22.EB03)B? !A? C)EC-,CE? <.F? CB? .D%? > 1? .F? .E6? .)B,.E? >1? "-3A,F*? CB? .D%? 7%? ;:9? F2B? 3)? .DDC,? .D2? 'E-F FB3)?6C)?$#G"4. -E@F@CE?:).E2*)F(BF3E? C*.EEB?<.F?.E6?.)B,.E?>7%?A6C,?)C@ADFC)B?;:9? 6CE? DA*32C,CB. 3DF2,A2? FE? A2CE? 6A)5-? 6FC? C,,AE@? 6C)? 'E2ADFE2C*)CBF3E? AE6? #[email protected]? 6C)? 'E2ADFE2CE2FBFFBB?FE?&C C)41?A2*CD4?AE6?9CBB@C0C C?<32-F!.0.?CB?.D%? 1?AE6.).,?CB?.D%?87%? ;:91? .A5-? C!CF5-ECB? .D2? ;:94? 36C)? ;:9=1? 0F)6? C23E6C)2? -35-? FE? 6C)? .6ADBCE? &C C)? C()F,FC)B? <-F,F!A?CB?.D%? 7%? $!#" #!##!" !$ ! 'E? .A2C, )3ECE? *3EEBC? 6FC? G()C22F3E? 3E? $#G"? AE6? ;:9>? ,FBBCD2? #:4$#? AE6? ',,AE-F2B35-C,FC? E.5-@C0FC2CE? 0C)6CE? <"DC5*,.EE? CB? .D%? 1? FE? .E6? CFDD? =1? FE? .E6? CFDD? >71? 03 CF? C2? EBC)25-FC6C? FE? 6C)? C)BCFDAE@? @F B%? /-)CE6? ;:9>? FE? 6C)? @C2.,BCE? "D.2B3!2BC? C()F,FC)B? 0F)61? *.EE? CFE? +AE*BF3ECDDC2? $#G"4)3BCFE? EA)? FE? 6C)? !!# " ? <'$? G, )3 D.2BCE7? 6CBC*BFC)B? 0C)6CE? <"DC5*,.EE? CB? .D%? 7%? GFEC? G()C22F3E? 3E? $#G? *3EEBC? 0-)CE6? 6C)? ,A)FECE? )F,(D.EB.BF3E2CEB0F5*DAE@? EF5-B? E.5-@C0FC2CE? 0C)6CE? <"DC5*,.EE? CB? .D%? 7%?"CF6C?:).E2*)F(BF3E2+.*B3)CE1?$#G"?AE6?;:9>1?)C@ADFC)CE?0-)CE6?6C)?G, )3E.DCEB0F5*DAE@? 3)?.DDC,?()3DF+C).BFC?)3!C22C?<"DC5*,.EE?CB?.D%?1?FE?.E6?CFDD?=1?FE?.E6?CFDD?>7%? 303-D? $#G"? .D2? .A5-? ;:9>? *EECE? 6.2? 9C-DCE? 6C2? .E6C)CE? 0-)CE6? 6C)? +)-CE? G, )3E.DCEB0F5*DAE@? *3,(CE2FC)CE? <A,,DC)? CB? .D%? > 1? "DC5*,.EE? CB? .D%? 7%? GFE? 3((CD4 *E35*?3AB?3E?$#G"?AE6?;:9>?+-)B?!A)?C, )3E.DCE?&CB.DFBB?E35-?3)?6C)?',(D.EB.BF3E?<"DC5*,.EE? CB? .D%? 7%? .2? AEBC)2B)CF5-B? 6FC? !CEB).DC? "C6CABAE@? 3E? $#G"? AE6? ;:9>? +)? 6FC? )F,(D.EB.BF3E2CEB0F5*DAE@%?;:9>? C2FB!B?C635-?CFEC?@C)FE@C)C?B).E2*)F(BF3ECDDC?;*BFFBB?.D2?$#G"1? 6.? F-,? 6FC? DAB.,FE)CF5-C? 3,EC? AE6? 23,FB? CFEC? :).E2.*BFFC)AE@263,EC? +C-DB? <#C-+A22? CB? .D%? > >7?<; %?7%?.2?!CF@B?2F5-?6.)FE1?6.22?6C)?-E3B(?6C)?$#G"444.A2?.A2@C()@BC)?F2B1?.D2? CF?6C)? ;:9>444.A2%? A2C1? 6FC? *CFE? +AE*BF3ECDDC2? $#G"4)3BCFE? ()36A!FC)CE? *EECE1? 0CF2CE? CFE? 6CABDF5-? C),FE6C)BC2? C A)B2@C0F5-B? .A+? AE6? C)2BC) CE? *A)!? E.5-? 6C)? C A)B? .E? CFEC)? ;BCDC*B.2C? <"DC5*,.EE? CB? .D%? 7%? ;:9>4EADD4AB.EBCE? 2FE6? 6.@C@CE? (-E3B(F25-? AE.A++DDF@? <"DC5*,.EE? CB? >=? ? GFEDCFBAE@? ;D:? 98897:? 6E? ? 5A43C? 2FB? 1FD0C? 3C4? 6E/C.BF-ECE? ,-E? 3-2FE;EB+EC@;BF,C2? *)G(? 3FC? (C3CABAE@?,-E?*)G(?0'4?3FC?%;$B4AD;BF-E?AE3?(FD3AE@?3C$?#CA4;D4-"4C$?!C5FC$CE? AB?CB?;D:?>? AE3;4;2?CB?;D:?9887:?? FC? (C3CABAE@? 3C4? ;E3C4CE? *)G(+;2FDFCE2FB@DFC3C4? FE? 3C4? 04'"CE? G2!4-@CEC$C? F$B? E-"? 5CFB@C"CE3? AE!C.;EEB:? GFECE? 2@DF"CE? GFE0DA$$? 3C4? $? ;A0? 3FC? 4E;B;DC? GEB5F.DAE@? D$$B? $F"? !F$"C4? EA4? ;E";E3? ,-E? +FC42-3CDDCE? ;!DCFBCE:? A4"? 9+B4;E$@CEC? A$CE? F$B? !CDC@B? 3;$$? 9? CFEC? 5C$CEBDF"C? )-DDC? 0'4? 3FC? 4@;E-@CEC$C? AE3? -$BE;B;DC? !C4DC!CE$0"[email protected]? $FCDB:? 9+3C0FFCEBC?A$C?$BC4!CE?.A4?E;"?3C4?%C!A4B?AE3?5CF$CE?.-2DC C?GEB5F.DAE@$$B4AE@CE? ;A0? 3FC? ,-4? ;DDC2? 3;$? #C4,CE$$BC2? 3CE? BC2B4;.B? AE3? 3FC? "-E34;DC? $$F0F.;BF-E? !CB4C00CE? )CF2-D3?CB?;D:?>?;C.;5;?CB?;D:?>?(4CFB5FC$C4?CB?;D:?9887:??F$B?EF"B?C$$CEBFCDD?0'4?3FC? C2!4-E;DC? AE3? 0CB;DC? GEB5F.DAE@? 3;? +++A$C? .CFECE? ;A00DDF@CE? "E-B? ;A05CF$CE? 1;4B2;E?CB?;D:?9887:?+EADD+AB;EBCE?$FE3?3'EE?AE3?5;"$BA2$4CB;43FC4B? ;E@?CB?;D:?9887:? ?4C@ADFC4B?3CE?C2!4-E;DCE?AE3?0CB;DCE?FF32CB;!-DF$2A$?FE3C2?C$?3FC?F-D$C?$BCF@C4B?AE3? F-@CEC$C? 4C3AFC4B? C-? CB? ;D:? 988? ;E@? CB? ;D:? 98>87:? ? 5F43? E;"? 3C4? 62D;EB;BF-E? ,-2? G2!4-? C 4F2FC4B? AE3? '!C4EF22B? CFEC? )-DDC? !CF? 3C4? -$BC-@CECE? F00C4CEFC4AE@? 2C$CE"2;DC4? B;22CDDCE? *7? C-E@? CB? ;D:? 98>97? AE3? #CA4-@CEC$C? E@CD;$B4-? CB? ;D:? 988? E@CD;$B4-? CB? ;D:? 988?;$-E?CB?;D:?9887:?? A$;22CE0;$$CE3? D$$B? $F"? CFE$"BCE? 3;$$? $? EF"B? C$$CEBFCDD? 0'4? 3FC? 4F2D;EB;BF-E$";$C? $FE3? ;!C4? CFEC? 4C@AD;B-4F$"C? )-DDC? EF"B? ;A$@C$"D-$$CE? 5C43CE? .;EE? AE3? 3;"C4? 5CFBC4C? EBC4$A"AE@CE?C40-43C4B:??? >=? ? FEDCBADCC@?>= :E?= 98AAD6CE54D6= 3E21DADB= 9DCCEA@B= 0D6/?.D6A= .2B= E?A62@AD6E?D= -ECED@= @?.= .29EA= .ED= :?A,E5+C@?>B1D.E?>@?>D?= .DB= :916*)B(= 3EDBD= 'D6/?.D6@?>D?= &846D?= E9= %249D?= DE?D6= $.2#A2AE)?== .DB=:916*)B="@=DE?D6=!9BADCC@?>=E9=D916*)?2CD?=-DA21)CEB9@B(== $@B= 0)62?>D>2?>D?= [email protected]?= ,26= .ED= "D?A62CD= D.D@A@?>= .DB= $#"! #$" $$= &86= .ED= 6/E9#C2?A2AE)?B#42BD= E9= 2?E?54D?= 1D+2??A= 20266DAD= 2?A)B= = (= 3DB42C1= ,26= .2B= D6BAD= FEDC= .D6= 0)6CED>D?.D?= $61DEA= .D?= :E?&C@BB= DE?DB= 92AD6?2CD?= 3E21DADB= 9DCCEA@B= 2@&= .2B= % = ,DEAD6= "@= 54262+AD6EBED6D?(= 86= .ED= !?AD6B@54@?>D?= ,@6.D?= 2CB= 'D6B@54BAED69).DCC= .2B= 1D6DEAB= DA21CED6AD=.E21DAEB54D=2?E?54D?=0D6,D?.DA=%29E?=<=@?.="@?/54BA=&)C>D?.D=62>DBADCC@?>D?= 1D2?A,)6ADA • ED=,E6+A=BE54=DE?=?B@CE?92?>DC=2@&=.ED=:#6DBBE)?=.D6=E>2?.D?=@?.=%D"D#A)6D?=.DB=% =E9= @AD6E?D?=!9>D1@?>B9ECED@=.D6=C2BA)"*BAD=2@B= • DC54D=$@B,E6+@?>D?=BE?.=E?&)C>D=.DB=98AAD6CE54D?=?B@CE?92?>DCB=2@&=.2B=D916*)?2CD=% = 9DBB126= 3ED= D#D6E9D?ADCCD?= !?AD6B@54@?>D?= ,@6.D?= E9= ED69).DCC= .DB= .E21DAEB54D?= 2?E?54D?B= ,/46D?.= .D6= 6/E9#C2?A2AE)?B#42BD= .@654>D&846A(= 32&86= ,@6.D?= C2BA)"*BAD?= @?.= !AD6E= 29= 2>= = .D6= 620E.EA/A=>DB@?.D6=@?.=.E21DAEB54D6=2?E?54D?=4E?BE54ACE54=.D6=:#6DBBE)?=.DB=% =0D6>CE54D?(=!9= .ED=E6+@?>=0)?=?B@CE?=@?.=C@+)BD="@=@?AD6B54DE.D?=,@6.D?== 2>D=2CAD=C2BA)"*BAD?=#=9EA= ?B@CE?=@?.=C@+)BD=BAE9@CED6A(=3ED=:6>D1?EBBD=BE?.=E?=",DE=@1CE+2AE)?D?=# "" "! # # #"! # # $ ""# # """= @?.= $#"! # !"# # ## """ # !# ""! # "#" # "=D6B54ED?D?=%29E?=DA=2C(=<== 4ED9D=DA=2C(=<2(= $CB= "D?A62CD6= 'D69EAACD6= 9>CE54D6= ?B@CE?= @?.= 214/?>E>D6= E6+@?>D?= 2@&= .D?= D916*)?2CD?= A)&&,D54BDC=,@6.D==.D6= 62?B+6E#AE)?B&2+A)6=%:=9EA=&)C>D?.D?=62>DBADCC@?>D?=@?AD6B@54A== • DC54D= 29ECED?9EA>CED.D6= .D6= %:$ 62?B+6E#AE)?B&2+A)6D?= ,D6.D?= E9= 6/E9#C2?A2AE)?BD916*)=.DB=2?E?54D?B=D#6E9ED6A= • 2??= .ED= $+AE0EA/A= 0)?= %:= 81D6= D)>D?D= 254BA@9B&2+A)6D?= ?B@CE?= B= >DBAD@D6A= ,D6.D?= • 1D6= ,DC54D= %:0D69EAADCAD?= -D542?EB9D?= 0D6&8>A= .D6= :916*)= @9= .D?= -2?>DC= 2?= ?B@CE?="@=+)9#D?BED6D?= <;= = BA@?>=@??<;:9 6<549 4A@39 2<31@9 @A;@9 <0/.>>@;1@9 6;.?->@9 1@39 ,3+A0)?.;=.=A(;>@0'3-(;@;9 :@><;1@39 <;19 1A.'@=A>54@39 &.;A;54@;9 1<354:@/%43=$9 B<>+=#?A549 2<31@;9 ".:9 !9 ?.>=(#->=@;9 :@><;1@39 &.;A;54@;9 0A=9;><?A;9(1@39>9>=A0<?A@3=$96</93<;191@39<;=@3>54A@1?A54@;9@#@)=(3@3=@A?<;:91@>99A09 0'3-(9 <;19 "3()4('?.>=@;9 @3/(?:=@9 @A;@9 B@???A;A@;>)@#A/A>54@9 6;.?->@$9 .9 1.>9 BA@?:@;9 61A)(;@=A;9@A;@9#@;=3.?@9(??@9A09#@??<?+3@;9=(//2@54>@?91@>9&.;A;54@;@0'3-(>9@A;;A00=92<31@9 1@>>@;9"3.;>3A)=A(;9<;=@391@;9:@2+4?=@;9@1A;:<;:@;9.;.?->A@3=$99 A@9 3:@';A>>@9 >A;19 A;9 1@39 ,<'?A.=A(;9 9@3//@;=?A54=954A;1?@39@=9.?$987$999 $9 A;9 2@A=@3@>9 BA@?9 2.39 @>9 0:?A54@9 &(;>@<@;#@;9 @A;@>9 0%==@3?A54@;9 A.'@=@>9 0@??A=<>9 .</9 1@;9 @0'3-(;.?@;9@==>=(//2@54>@?9#<9<;=@3><54@;$9.'@A9>(??=@;9/(?:@;1@93.:@;9:@?+3=92@31@; 9 • >=9 '@3@A=>9 A;9 1@09 /3%4@;9 =.1A<09 1@39 542.;:@3>54./=9 @A;@9 @3+;1@3=@9 A;=3.#@??<?+3@9 )@A54@3<;:9(;9A)A1@;9A;9?.>=(#->=@;91A.'@=A>54@39&.;A;54@;9;.542@A>'.39 • @?54@9 #@;=3.?@;9 @;@9 1@>9 A)A10@=.'(?A>0<>9 2@31@;9 1<3549 @A;@;9 0%==@3?A54@;9 A.'@=@>9 3@:<?A@3=99 • @?54@9A30@54.;A>0@;9>A;19<3>+54?A549/%391A@9@:<?.=A(;9?A)(:@;@3954?%>>@?0(?@%?@9 A@9 3:@';A>>@9 #<09 A)A10@=.'(?A>0<>9 >A;19 A;9 1@39 ,<'?A.=A(;9 9 54A;1?@39 @=9 .?$9 879 >(2A@9A093:@';A>9<;19A><>>A(;>=@A?91A@>@3963'@A=91.3:@>=@??=9&.)A=@?9$$99 ,(=@;=A@??9 ?.;:/3A>=A:@9 6<>2A3<;:@;9 @A;@>9 0%==@3?A54@;9 A.'@=@>9 0@??A=<>9 .</9 1A@9 0@=.'(?A>54@9 ,3(:3.00A@3<;:9 A;9 1@39 0'3-(;.?@;=2A5?<;:9 2<31@;9 0A=9 A?/@9 1@39 9 =.00#@??1A//@3@;#A@3<;:9 .;9 @A;@39 )?<3A)(=@;=@;9 @0'3-(;.?@;9 =.00#@???A;A@9 1@39 .<>9 9 ;.54:@>=@??=$9A@9B@??@;9>A;19A;91@39.:@9#<93@A/@;961A)(#-=@;9#<91A//@3@;#A@3@;$9.'@A9?.:91@39(<>9 .</9@A;@390:?A54@;93@:<?.=(3A>54@;9<;=A(;9(;9$9(?:@;1@93.:@;92<31@;9'@.3'@A=@= 9 • @?54@9(??@9>)A@?=9@A;@96=AA@3<;:92+43@;191@39/3%4@;90'3-(;.?@;=2A5?<;:9/%391A@9 61A)(:@;@>@9<;192.>9>A;19)(=@;=A@??@9BA@?:@;@9(;99A;9=.00#@??@;9 • B<9 2@?54@09 B@A=)<;=9 <;19 2A@9 '@@A;/?<>>=9 61A)(;@=A;9 1A@9 6=AA@3<;:9 <;19 2.>9 >A;19 1A@90:?A54@;9&(;>@<@;#@;9/%391A@9@=@30A;A@3<;:9<;19A//@3@;#A@3<;:9(;961A)(#-=@;9 A@93:@';A>>@9>A;19'A>4@39;(549;A54=9)<'?A#A@3=9<;192@31@;9A09 3:@';A>9<;19A><>>A(;>=@A?91A@>@39 63'@A=9.<>/%[email protected]:@>=@??=9<;191A><=A@3=9&.)A=@?9$$$9 879 9 CBA@?>=><;:;?98>78<A CB6B 5;4><A 321A 0/>848A 521A .>-,/8?A +1A +,/><*:8?A )1A +,/4>*7A 01A .>-,/8?A (1A 3;';??878A +;<7&-A %BA );78?<;:A *>;9878-A >4$;>?-A =;-7?#:;7>&<A ;<*A ><-#:><A ;<*A "!. "A ?8,8$7&?A 8$?8-->&<A ><A ?;99>7A 9:;-7&,-7-BA<*&,?><&:&=BA66666BA CBB 0/>848A 521A +,/><*:8?A )21A 5;4><A 31A .>-,/8?A +1A )/:8,A (1A .>-,/8?A (1A 3;';??878A +;<7&-A %BA "<-#:><A=?&7/A;,7&?A;*#-748<7A><A$?8>4$:;<7;7>&<A?;99>7A9:;-7&,-7-A;<*A#78?><8A7>--#8-A><A ?8-$&<-8A7&A4;78?<;:A7$8A6A*>;9878-BA)&:A 8::A<*&,?><&:BA6ACA6CBA CBCB +,/><*:8?A )21A .>-,/8?A +21A 0/>848A 51A .>-,/8?A (1A 3;';??878A +;<7&-A %BA ,:>,A %)A ?8-$&<->'8A 8:848<7A 9><*><=A $?&78><A A ;A '>7;:A :><A ><A 849?&<>,A /&?4&<;:A ;*;$7;7>&<BA <*&,?><&:&=BA 6CA6 6A CBB +,/><*:8?A )1A 8<*>;:8A )1A 3;';??878A +;<7&-A %1A :-,/A 01A +8?><=A +1A A !?8A 1A ;#,8A 1AA <8:;<=8<A )1A .>-,/8?A (1A A 3;';??878A +;<7&-A %BA );78?<;:A *>;9878-A :8;*-A 7&A #<$/->&:&=>,;:A />=/A:>$>*A;,,#4#:;7>&<A><A?;99>7A$?8>4$:;<7;7>&<A849?&-BA<*&,?><&:&=BA6A CBB ;#,8A1A3;';??878 +;<7&-A%1A+>44A%1A8<<><=A /1A!:&49A)1A!?8A1A+,/><*:8?A)1A.>-,/8?A (1A 3;';??878A +;<7&-A %BA %,,#4#:;7>&<A &A ;*';<,8*A =:,;7>&<A 8<*A $?&*#,7-A ><A 7/8A ?;99>7A 9:;-7&,-7-A#<*8?A4;78?<;:A*>;9878-BA58$?&*#,7>&<A6A A A A A A A A A A A A DIABETES-INSULIN-GLUCAGON-GASTROINTESTINAL Maternal Diabetes Impairs Gastrulation and Insulin and IGF-I Receptor Expression in Rabbit Blastocysts Nicole Ramin,* René Thieme,* Sünje Fischer, Maria Schindler, Thomas Schmidt, Bernd Fischer, and Anne Navarrete Santos Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, D-06097 Halle (Saale), Germany Women with type 1 diabetes are subfertile. Diabetes negatively affects pregnancy by causing early miscarriage and poor prenatal outcomes. In this study we examine consequences of maternal type 1 diabetes on early embryo development, metabolic gene expression, and the pattern of insulin receptor (IR) and IGF-I receptor (IGF-IR) distribution in rabbit blastocysts. In female rabbits, type 1 diabetes was induced by alloxan treatment. Six-day-old blastocysts were recovered and assessed for receptor distribution and metabolic gene expression. In vitro culture of blastocysts was performed in medium containing 1 mM, 10 mM, or 25 mM glucose, simulating normo- and hyperglycemic developmental condition in vitro. The fertility rate of the diabetic rabbits clearly mirrored subfertility with a drop in blastocyst numbers by 40% (13.3 blastocysts in diabetic vs. 21.9 in control females). In blastocysts onset and progression of gastrulation was delayed and expression of IR and IGF-IR and their metabolic target genes (hexokinase, phosphoenolpyruvate carboxykinase), both in vivo and in vitro, was down-regulated. The amount of apoptotic cells in the embryonic disc was increased, correlating closely with the reduced transcription of the bcl-x(L) gene. Blastocyst development is clearly impaired by type 1 diabetes during early pregnancy. Insulin-stimulated metabolic genes and IR and IGF-IR are down-regulated, resulting in reduced insulin and IGF sensitivity and a delay in development. Dysregulation of the IGF system and embryonic glucose metabolism are potential reasons for diabetogenous subfertility and embryopathies and start as soon as during the first days of life. (Endocrinology 151: 4158 – 4167, 2010) omen with type 1 diabetes have a significantly higher risk of pregnancy loss and embryopathies compared with healthy women, indicating that a tight control of glucose and/or insulin is essential for proper embryo development. One of the most sensitive and vulnerable periods in ontogenesis is the formation and development of the embryoblast and trophoblast during blastocyst formation and differentiation. The mammalian preimplantation embryo is supplied with nutrients and growth factors such as glucose, amino acids, insulin, and IGFs by oviductal and uterine secretions. Glucose is an essential energy source of the blastocyst (1). Earlier cleavage stages favor pyruvate or lactate as the main energy substrate. The switch from pyruvate/lactate to glucose is considered to account for the increased energy require- ments due to blastocyst expansion and Na⫹/K⫹-ATPases that facilitate blastocyst cavitation and expansion (2). The embryo is able to tolerate variations in glucose concentration, but both, a diabetic condition and deprivation from glucose, are known to be detrimental for the developing embryo. Cell numbers are decreased and can result in abnormal morphogenesis (3– 6) and developmental arrest (7). Glucose itself is able to modulate the transcription of many genes, encoding enzymes typical for glycolytic and lipogenic pathways (8 –10) and gluconeogenesis (11, 12). Glucose homeostasis in mammals is tightly controlled by a balanced interaction of peripheral tissues and their sensitivity to insulin. The glycemic control of insulin is mediated by the insulin receptor (IR). The IR is highly ISSN Print 0013-7227 ISSN Online 1945-7170 Printed in U.S.A. Copyright © 2010 by The Endocrine Society doi: 10.1210/en.2010-0187 Received February 18, 2010. Accepted June 4, 2010. First Published Online July 14, 2010 * N.R. and R.T. contributed equally to this study. Abbreviations: HK, Hexokinase; IGF-IR, IGF-I receptor; IR, insulin receptor; p.c., post coitum; PEPCK, phosphoenolpyruvate carboxykinase; PVA, polyvinyl alcohol. W 4158 endo.endojournals.org Endocrinology, September 2010, 151(9):4158 – 4167 The Endocrine Society. Downloaded from press.endocrine.org by [${individualUser.displayName}] on 02 March 2015. at 22:20 For personal use only. No other uses without permission. . All rights reserved. Endocrinology, September 2010, 151(9):4158 – 4167 endo.endojournals.org 4159 homologue to the IGF-I receptor (IGF-IR). In IR-deficient cells insulin can mediate its metabolic effects via the IGF-IR (13). In physiological concentrations insulin acts only by the IR. The IR is detectable in embryos in all preimplantation stages in most species including the rabbit (14 –16). Hyperglycemia or type 2 diabetes induce an altered IR expression pattern in adult tissues leading to various degrees of insulin insensitivity (17, 18). Type 1 diabetes can be experimentally induced by alloxan or streptozotocin, an established type 1 diabetic model in laboratory animals (19). Alloxan causes a pancreatic  cell-specific necrosis resulting in type 1 diabetes with insulinopenia and hyperglycemia (20, 21). In mice both agents were used to investigate the influence of maternal type 1 diabetes on embryo development (22–24). For rabbits the alloxan-induced diabetes is routinely used in biomedical and pharmaceutical experimental approaches [see Winiarska et al. (25) for references]. At the third day after alloxan treatment the blood glucose concentration in the treated rabbits is in a hyperglycemic range (⬎14 mmol/liter). The rabbit embryo implants late at d 6 after mating [at 6 d 18 h, (26)]. During d 6 post coitum (p.c.; i.e. during the preimplantation period), the embryonic disc of the rabbit blastocysts develops from a nondifferentiated two cell layer gastrulation stage (epiblast and hypoblast) to three germ layers, allowing a subtle analysis of diabetogenous effects on gastrulation in this species. Using the advantages of the rabbit model such as induced ovulation, high embryo numbers, and large-sized blastocysts (with 2–5 mm in diameter at d 6 p.c.) and well defined gastrulation stages before implantation, we investigated the effects of type 1 diabetes on the maternal fertility rate and uterine glucose and serum insulin concentrations on the one hand and on the embryonic metabolic and insulin/IGF receptor gene expression, the early gastrulation, and apoptosis in the preimplantation blastocyst on the other hand. The in vivo findings were complemented by in vitro cultures of blastocysts in high glucose media with or without insulin supplementation. solution [27.5% (wt/vol)] was injected sc for a subcutaneous deposit of glucose. Furthermore, the drinking water was supplemented with 5% (wt/vol) glucose. These precautions prevented critical hypoglycemic conditions as the first phase response of the alloxan treatment after 6 – 8 h (see glucose profile in Fig. 1C). Hyperglycemia of the rabbit with a permanent blood glucose concentration of ⬎14 mmol/liter was established 36 to 48 h after alloxan injection (Fig. 1C). Rabbits were hold in diabetic conditions for 9 to 11 d before they were mated. Ketoacidosis was prevented by regular insulin supplementation (Insuman Rapid 40 IU/ml, Aventis, Frankfurt a.M., Germany) after feeding. The blood glucose level was monitored with MediSense Precision Xceed Diabetes Management System (Abbott, Wiesbaden, Germany) two times a day and kept in the range of 14 –25 mmol/liter (Fig. 1C). All animal experiments were in accordance with the principles of laboratory animal care and had been approved by the local ethical commission of the Landesverwaltungsamt Dessau (reference number: 42502-2-812). Embryo recovery and in vitro culture Embryos were collected from alloxan and control rabbits stimulated with 150 IU pregnant mare serum gonadotropin sc (PMSG, Intervet, Tönisvorst, Germany) 3 d prior to mating. After mating 75 IU human choriogonadotropin iv (hCG, Scher- Materials and Methods Alloxan treatment Female rabbits were adjusted to a feeding regime with a 3-h food interval in the morning and in the evening. Ten days before mating rabbits were fasted overnight, anesthetized with Dormitor im (0.25 mg/kg body weight, Pfizer, Karlsruhe, Germany) and analgized with Ketanest im (15 mg/kg body weight, Pfizer, Karlsruhe, Germany). Alloxan (120 mg/kg body weight, SigmaTaufkirchen, Germany) was injected in the marginal ear Aldrich, vein with a Multyfly needle followed by a 10 ml saline injection (0.9%). Fifteen minutes after alloxan injection 50 ml glucose FIG. 1. Insulin and glucose concentrations in type 1 diabetes and normoglycemic rabbits. A, Alloxan-treated type 1 diabetic females had no or only remnants of insulin-positive cells in pancreatic tissue. The  cells in the Langerhans Islands (*) were visualized by immunohistochemical detection (brown color) with an anti-insulin antibody. The plasma insulin concentrations were significantly decreased (B). A blood glucose profile of an individual female is shown in C, starting with the day of alloxan treatment. # indicates the starting point of insulin supplementation. A constant hyperglycemic level was achieved 3 d after alloxan treatment. Due to reduced insulin amounts, the glucose concentration was significantly increased in plasma (D) and uterine fluids (E) of type 1 diabetic rabbits (mean ⫾ SEM; n ⫽ 3; n ⱖ 5; *, P ⬍ 0.05). Bar, 100 m. The Endocrine Society. Downloaded from press.endocrine.org by [${individualUser.displayName}] on 02 March 2015. at 22:20 For personal use only. No other uses without permission. . All rights reserved. 4160 Ramin et al. Maternal Diabetes Restricts Embryo Development Endocrinology, September 2010, 151(9):4158 – 4167 ing AG, Berlin, Germany) was injected. Mating, embryo recov(27), and embryo culture (28) were performed as described ery before. At d 3, 4, and 6 p.c., embryos were flushed from the oviducts or uteri and washed two times with PBS and processed for subsequent analyses or in vitro experiments. At d 3 p.c. embryos are in the morula stage and develop to early blastocysts at d 4 p.c. The d 3 and d 4 embryos were analyzed by RT-PCR pooled in groups of 10 embryos. Individual d 6 blastocysts were analyzed directly after recovery or used for in vitro culture. The gastrulation stage was assessed by morphological examination of the embryonic disc (embryoblast) according to Viebahn et al. (29). For in vitro culture, embryos were pooled and randomly divided among experimental groups. To study the effect of varying glucose concentrations and insulin, d 6 blastocysts were cultured in groups of four to 10 embryos in basal synthetic medium II at 37 C in a saturated atmosphere of 5% O2, 5% CO2, and 90% N2 in a water-jacketed incubator (BB6060, Heraeus, Hanau, Germany). The standard glucose concentration in culture media for rabbit embryos is 10 mM (15, 30, 31). In current in vitro study, we mimicked normal in vivo uterine glucose concentration (1 mM) and hyperglycemic developmental conditions (25 mM) in vitro. After preculture for 2 h in serum- and insulinfree basal synthetic medium II containing 1 mM, 10 mM, or 25 mM glucose, 17 nM insulin (Sigma-Aldrich, Taufkirchen, Germany) was added to the culture medium for further 1 to 4 h. Controls were cultured in defined glucose concentrations without insulin but otherwise handled identically. After culture, embryos were washed twice in ice-cold PBS and transferred into ice-cold 0.05% polyvinyl alcohol (PVA)/PBS buffer. To investigate gene expression of receptors and key enzymes, blastocyst coverings (neozona, mucin coat) were mechanically removed and the single blastocysts were stored at ⫺80 C. For Western blot analysis, ten embryos were randomly pooled in each group. Samples were homogenized in 100 l RIPA buffer (PBS, 1% Nonidet P-40, 0.5% sodium deoxycholat, 0.1% SDS) with protease and phosphatase inhibitor cocktail (Roche, Mannheim, Germany) and stored at ⫺80 C. Insulin-ELISA The US Insulin ELISA (DRG Instruments GmbH, Marburg, Germany) was used for measurement of the insulin levels according to the manufacturer’s protocol using EDTA-plasma. Measurement of glucose concentration The glucose concentrations in the plasma and uterine fluid of alloxan-treated and control rabbits were assessed with an enzy- matic assay based on a turnover of glucose by exogenous added hexokinase (HK). The product of NADPH was measured spectrophotometrically at a wavelength of 334 nm. 2.8IU HK (Roche, Mannheim, Germany) was added to semimicro cuvettes (Brand, Wertheim, Germany) containing 2.5 mM Mg2⫹-ATP (Sigma-Aldrich, Taufkirchen, Germany) and 0.5 mM NADP (Applichem, Darmstadt, Germany) in 100 mM triethanol-buffer with a final volume of 1 ml. Before supplementation of HK, 3.5IU glucose-6-phosphat dehydrogenase (Roche, Mannheim, Germany) was added to remove endogenous glucose-6-phosphate. The extinction is proportional to the developed NADPH concentration reflecting the glucose concentration. The uterine was absorbed directly from the endometrial surface by usfluid ing glucose-free paper strips without any additional flushing, getting approximately 5 l of uterine fluid per uterus. Before measurement the fluid was washed out of the paper with a defined volume of deionized water (dilution 1:3). RNA extraction, RT reaction, and PCR detection of insulin RNA extraction was performed as previously described (15) by Dynabeads mRNA DIRECT Kit (Dynal, Oslo, Norway) according to the manufacturer’s instructions. The final volume for cDNA reaction was adjusted to 100 l. Total RNA extraction from pancreatic tissues and RT-reaction were performed as published before. PCR amplification was carried out with 3 l cDNA from tissues and blastocysts in a 50-l volume containing 200 M each dNTP and 2.5IU Taq polymerase, using the primer combination insulinfw 5⬘-TTTATACACCCAAGTCCCGCCG-3⬘/ insulinrev 5⬘-GAGCAGATGCTGGTGCAACACT-3⬘ (acc. U03610). Resulting PCR products of 147 bp were separated by electrophoresis on 2.0% agarose gel and stained with ethidium bromide. Cloning and sequencing of partial cDNA for rabbit HK A new partial HK (118bp, Acc.No. FJ848380) cDNA was amplified from rabbit kidney tissue using human primers. The sequence was identical with human HK-2 to 92% and 98% at the mRNA and the protein level, respectively, using alignment BLASTN and BLASTX modus. Real time RT-PCR for IR, IGF-IR, phosphoenolpyruvate carboxykinase (PEPCK), HK, Bcl-x(L), and GAPDH Samples were analyzed by real-time RT-PCR as described previously (15). The appropriate primer sets: rabGAPDHfw 5⬘-GCCGCTTCTTCTCGTGCAG-3⬘/ rabGAPDHrev 5⬘-ATGGATCATTGATGGCGACAACAT-3⬘ (acc. L23961), IRfw 5⬘-CCTGAAGGAGGTGGAGGAG-3⬘/IRrev 5⬘-GAGAATCCTGGGACTGTGG-3⬘ (acc. AY339877), IGF-IRfw 5⬘-CCCAAGCTCACGGTCATCACTG-3⬘/IGF-IRrev 5⬘-ATGGGCTTCTCCTCCAAGGTCC-3⬘ (acc. EF616472), rabPEPCKfw 5⬘-TGCGGCCTCCAAAGATGATG-3⬘/rabPEPCKrev 5⬘-CCCTGGAAACCTGGTGACAAGG-3⬘ (acc. EF616471), rabHKfw 5⬘-ACAGCAACCACATCCAGGTCAAAC-3⬘/HKrev5⬘-TTCTCCTCAAGTGGACGAAAGGCT-3⬘ (acc. FJ848380), and rabbcl-x(L)fw 5⬘-GGTATTGGTGAGTCGGATCG-3⬘/rabbcl-x (L)rev 5⬘-TGTTGCCGTAGAGTTCCACA-3⬘ (acc. AY005131) for rabbit GAPDH, IR, IGF-IR, PEPCK, HK, and bcl-x(L), respectively. Each assay included duplicates of each cDNA sample and a no template control for each primer set. Relative mRNA expression for IR, IGF-IR, PEPCK, HK, bcl-x(L), and GAPDH was calculated using the ⌬⌬CT method. The expression of GAPDH RNA was used to normalize samples for the amount of cDNA used per reaction. To confirm the amplification, the resulting real-time RTPCR products were analyzed by dissociation curves, visualized in an agarose gel (GAPDH 144bp, IR 150bp, IGF-IR 347bp, PEPCK 143bp, HK 118bp, bcl-x(L) 113bp) and sequenced. In each realtime RT-PCR, a calibration curve was included that was generated from serial dilutions (106, 105, 104, 103, 102, and 101 copies) of primer-specific DNA probes generated from cDNA plasmid clones. Analysis of the individual data therefore yielded values relative to these standards. For each group the number of analyzed The Endocrine Society. Downloaded from press.endocrine.org by [${individualUser.displayName}] on 02 March 2015. at 22:20 For personal use only. No other uses without permission. . All rights reserved. Endocrinology, September 2010, 151(9):4158 – 4167 endo.endojournals.org 4161 washed again in ice-cold PBS and transferred to 0.05% PVA/PBS. The embryonic disc was mechanically dissected with surgical forceps and scissors (Fine Science Tools GmbH, Heidelberg, Germany) and either used immediately for immunohistochemistry or stored in 100% methanol at ⫺20 C until use. Stored embryonic discs were rehydrated through a series of graded alcohols. The pancreatic tissue was fixed in 4% paraformaldehyde for 1 h, embedded in paraffin, and fixed on a slide in working sections of 5 m. Nonspecific antibody binding was blocked with 10% normal goat serum in PBS at room temperature for 1 h. The specimens were incubated with the monoFIG. 2. Insulin detection in rabbit embryos. A, Rabbit embryos did not express insulin mRNA clonal anti-insulin IgG1 mouse-antibody (1: neither at the morula (d 3), the early blastocyst (d 4), nor at the expanded blastocyst stage (d 200, I2018, Sigma-Aldrich, Taufkirchen, 6) during gastrulation [stage (St.) 0/1, 2, or 3]. RT-PCR analysis was performed at cDNA pools Germany) in 1% BSA/PBS overnight at 4 C. of 10 embryos for d 3, d 4, and individual blastocyst for d 6. Representative results of two Samples were washed with 0.05% PVA/PBS individual blastocysts per gastrulation stage (A–F) are shown (n ⫽ 2, n ⫽ 3). Pancreas was used as positive control for RT-PCR amplification. ntc, No template control. B, In in vivo rabbit and incubated with the secondary antiserum goat-antimouse-IgG (Dako EnViblastocysts (control) insulin protein is localized in the cytoplasm of embryoblast (Em) and sion, Hamburg, Germany). Embryonic discs trophoblast cells (Tr). The insulin was provided to the embryo by uterine secretions. An in vitro culture of blastocysts without insulin for 10 h strongly diminished the protein amount, and tissue sections were examined by light proving the degradation of insulin in embryonic cells. Blastocysts from type 1 diabetic females microscopy (Axioplan, Carl Zeiss, Jena, no detectable insulin protein. No staining was detectable in blastocysts when the Germany). The specificity of immunostainhad antiinsulin antibody was preabsorbed with insulin, demonstrating the specificity of the ing of the primary antibody was proven by antibody reaction (n ⫽ 3, primary antibody preabsorption control). Bar, 200 m. blocking the antibody binding with insulin, using insulin as blocking peptide (bovine 40 blastocysts is given in the diagram bar. Data are expressed as relamg/ml, Sigma-Aldrich, Taufkirchen, Gemany). The antibody tive values (%) to control blastocysts. was preincubated with insulin (1:200 in 1% BSA/PBST) for 2 h at 37 C and further 24 h at 4 C. Subsequent application of the Protein preparation and immunoblotting neutralized antibody to the IHC reaction did not show any pos Protein isolation and Western blot analyses were performed itive staining (Fig. 2B, primary antibody preabsorption control), with 20 g protein from whole blastocysts. The IR and IGF-IR demonstrating the specificity of the antibody to insulin. The protein expression was investigated with a monoclonal mouse IR antibody (1:2000, Calbiochem, Darmstadt, Germany) and rab- specificity of immunostaining of the secondary antibody reaction was proven by the absence of signals in sections processed bit IGF-IR antibody (1:1000, Santa Cruz, Heidelberg, Gerafter omission of the primary antibody. many). After blotting, the nylon membrane was stained with Ponceau. Apparent molecular weights were determined by comparison with PageRuler prestained molecular weight marker TUNEL (Fermentas, St. Leon-Rot, Germany). Afterwards the immunoBlastocysts exposed to a diabetic or normoglycemic uterine reactive signals were visualized by enhanced chemiluminescence environment were fixed in 4% paraformaldehyde and their emdetection (Millipore, Schwalbach, Germany) and quantified by ChemiDoc-It Imaging System (LTF Labortechnik, Wasserburg, bryonic discs were obtained as described before. The discs were permeabilized with 0.1% Tween 20 and incubated in fluoresceGermany). The amounts of receptor protein were evaluated by in-labeled dUTP and terminal transferase in the dark for 1 h at the membranes and reblotting with a mouse monoclostripping 37 C to label fragmented 3⬘ DNA (TUNEL, Cell Death In Situ nal -actin antibody (1:40000, Sigma-Aldrich, Taufkirchen, Kit, Roche, Mannheim, Germany). A rabbit kidney cell line Germany). Protein amounts were calculated as ratio of band (RK13) treated with or without DNase was used to establish and intensities (IR or IGF-IR vs.  -actin) in the same blot to correct test the TUNEL assay in rabbit cells (data not shown). The for differences in protein loading. The relative expression of IR TUNEL assays were performed with 9 and 15 blastocysts in and IGF-IR in embryos of normoglycemic or diabetic animals was calculated as ratio of expression signals of diabetic to nor- control and diabetic blastocysts, respectively. Counterstaining of all nuclear DNA was achieved by incubating the embryos with moglycemic controls. Hoechst staining (1 mg/ml, Sigma-Aldrich, Taufkirchen, Ger many) for 20 min. Embryos were visualized using fluorescence Immunohistochemical localization of insulin light microscopy (Axioplan, Carl Zeiss, Jena, Germany). The cell The localization of insulin was investigated in blastocysts and pancreatic tissue of type 1 diabetic and healthy female rabbits. number of the embryoblast cells was counted with ImageJ software (Fa. Wayne Rasband, National Institutes of Health, BeThe embryonic disc with the surrounding trophoblast was disMD) using the Cell Counter plug-in for digital images. An sected from whole blastocysts. In vivo derived or in vitro cultured blastocysts were washed twice in ice-cold PBS and fixed in 4% thesda, average cell number was counted. The number of apoptotic cells paraformaldehyde for at least 1 h. The fixed blastocysts were was related to the total number of counted embryoblast cells. The Endocrine Society. Downloaded from press.endocrine.org by [${individualUser.displayName}] on 02 March 2015. at 22:20 For personal use only. No other uses without permission. . All rights reserved. 4162 Ramin et al. Maternal Diabetes Restricts Embryo Development Endocrinology, September 2010, 151(9):4158 – 4167 Statistics Levels of significance between groups were calculated using Student’s t test after proving normal distribution (SigmaPlot v. 11.0). Data are expressed as mean ⫾ SEM. The difference in the mean values of the two groups is greater than would be expected by chance. There is a statistically significant difference between input groups. The levels of significance were P ⬍ 0.05, P ⬍ the 0.01, and P ⬍ 0.001. Results Insulin and glucose concentration in uterine fluids and in blastocysts Alloxan caused a destruction of pancreatic  cells (Fig. 1A) and a massively reduced insulin secretion (Fig. 1B). In the serum of females with type 1 diabetes (d 6 p.c.) the plasma insulin concentration was decreased by 85% to 15 pM (Fig. 1B), and blood glucose concentration rose to ⱖ14 mmol/liter (Fig. 1, C and D). At the third day after alloxan treatment the blood glucose concentration was held steady to 18 –25 mmol/liter, defining strong hyperglycemia. All females were profiled twice daily for their blood glucose levels (example in Fig. 1C). Blood glucose levels ⱖ25 mmol/liter were prevented by external insulin supply for each individual female. Hyperglycemia was reflected by 3.5-fold elevated uterine glucose levels (Fig. 1E). The rabbit blastocyst itself does not express insulin. The cDNA samples from morulae at d 3, early blastocysts at d 4, and expanded blastocysts at d 6 from gastrulation stage 0/1, 2, and 3 were tested negatively for insulin RNA by RT-PCR (Fig. 2A). The protein, however, was present in the cytoplasm of in vivo grown blastocysts when analyzed directly after recovery embryoblast and trophoblast cells (Fig. 2B). In blastocysts of type 1 diabetic rabbits neither the embryoblast nor the trophoblast showed a positive staining for insulin (Fig. 2B). In vitro culture of blastocysts in serum-free media for up to 10 h diminished the amount of insulin protein substantially (Fig. 2B). Developmental competence of blastocysts from type 1 diabetic rabbits In type 1 diabetic animals the number of corpora lutea (Fig. 3A) and flushed blastocysts (Fig. 3B) were significantly lower than in non-alloxan-treated controls. Blastocysts from type 1 diabetic rabbits were developmentally retarded. At d 6.0 p.c. a lower number had developed to stage 2, and no embryo had reached gastrulation stage 3 (Fig. 3C). A 12 100 80 * 60 40 20 0 21 20 control type 1 diabetes C * 10 8 6 4 2 0 9 15 control type 1 diabetes embryoblast control positive apoptotic cells per embryoblast [%] relativve bcl-x(L) transcripts [%] B 120 type 1 diabetes FIG. 3. Fertility of type 1 diabetic rabbits. The number of (A) corpora lutea and (B) blastocysts at d 6 p.c. (n ⫽ 5) of type 1 diabetes (n ⫽ 11) and normoglycemic animals (control, n ⫽ 20) were significantly reduced (mean ⫾ SEM; **, P ⬍ 0.001). C, The developmental competence was assessed by morphological classification of the embryonic disc. A significantly higher rate of blastocysts from type 1 diabetes animals was arrested in stage 0/1. Only a low number developed to stage 2, and no blastocysts in stage 3 were detectable at d 6.0 p.c. (*, P ⬍ 0.01; **, P ⬍ 0.001). The results of three individual experiments (mean ⫾ SEM, n ⫽ number in the bar) are shown. FIG. 4. Apoptosis in blastocysts from type 1 diabetic females. A, RNA expression of bcl-x(L) in d 6 blastocysts of normoglycemic (control) and type 1 diabetes rabbits was significantly decreased by type 1 diabetes developmental conditions (*, P ⬍ 0.001). The result of three individual experiments are summarized in the diagram (mean ⫾ SEM, n ⫽ number in the bar). B, Standardized counting of embryoblast resulted in an increase in TUNEL-positive nuclei in embryos grown under type 1 diabetic conditions. The average number of apoptotic cells per embryoblast is given in percent of totally counted embryoblast cells (mean ⫾ SEM, n ⫽ 2, n ⫽ number in the bar; *, P ⬍ 0.001). C, Embryos were counterstained with the nuclear dye Hoechst (blue). The panel shows representative embryos grown in a normoglycemic (control) or type 1 diabetic uterine milieu. Bar, 50 m. In the control embryoblast the apoptotic cells are marked by arrows. The Endocrine Society. Downloaded from press.endocrine.org by [${individualUser.displayName}] on 02 March 2015. at 22:20 For personal use only. No other uses without permission. . All rights reserved. Endocrinology, September 2010, 151(9):4158 – 4167 endo.endojournals.org 4163 in two samples of three (with 10 pooled blastocysts each) (Fig. 5, B and D). Metabolic target gene expression in blastocysts from type 1 diabetic rabbits The gene expression of the metabolic key enzymes PEPCK and HK was analyzed by real-time RT-PCR. Compared with in vivo-derived d 6 blastocysts from normoglycemic controls, the RNA levels of both enzymes were significantly decreased in blastocysts from type 1 diabetic animals. The transcript numbers for PEPCK (Fig. 6A) and HK (Fig. 6B) were 50% and 60% lower, respectively. IR, IGF-IR, and metabolic target gene expression in blastocysts cultured with 1, 10, or 25 mM glucose in vitro To further analyze the hyperglyce mic and hypoinsulinemic effects observed in vivo, blastocysts from control rabbits were cultured in vitro with varyFIG. 5. IR and IGF-IR expression in blastocysts of type 1 diabetes rabbits. The mRNA ing glucose concentrations. Six-day-old transcripts for both receptors (A and B) were detected by real-time RT-PCR (mean ⫾ SEM; n ⫽ 3). Differences in IR (C, E) and IGF-IR (D, F) protein expression were determined by Western blot (C, blastocysts were cultured for 3 to 6 h in D) and densitometrical analyses (mean ⫾ SEM; n ⫽ 3). The numbers of pooled blastocysts used for media containing glucose concentraall analysis are inserted in the bars. The type 1 diabetic uterine milieu led to a significant reduction tions of 1, 10, or 25 mM, respectively, of receptor quantity (*, P ⬍ 0.05; **, P ⬍ 0.01) on mRNA (IR, IGF-IR) and protein level (only IR) compared with blastocysts derived from normoglycemic mothers (control). representing normal glucose concentration in uterine secretions (1 mM), stan To assess the apoptotic state of the blastocysts grown dard in vitro levels (10 mM), and hyperglycemic developunder type 1 diabetic conditions, the transcription level of ment concentration (25 mM). Analyzed by real-time the antiapoptotic gene bcl-x(L) and the number of apo- RT-PCR, transcripts of IR, IGF-IR, PEPCK, and HK were ptotic cells were quantified (Fig. 4). The RNA amount for distinctly changed (Figs. 7 and 8). Increasing glucose conthe bcl-x(L) gene was reduced by 40% (Fig. 4A). Consis- centrations up to 25 mM for 3 h caused a reduction in IR tent with this decrease in gene expression was a 4.3-fold and IGF-IR expression by 43% and 58%, respectively, higher percentage of apoptotic cells in the embryoblast compared with blastocysts cultured in medium containing (Fig. 4, B and C). No differences were found in the averaged embryoblast cells from stage 1 blastocysts from diabetic mothers with 1974 ⫾ 139 cells per embryoblast compared with controls with 2173 ⫾ 180 cells per embryoblast (P ⫽ 0.43). IR and IGF-IR expression in blastocysts from type 1 diabetic rabbits The receptors for insulin (IR) and IGF (IGF-IR) are present in rabbit blastocysts at d 6 of gestation (15, 16). When exposed to a hyperglycemic milieu IR RNA and protein levels decreased dramatically by approximately 80% (Fig. 5, A and C). Also for IGF-IR a significant decrease in transcript numbers was found in all embryos, whereas the protein amounts where down-regulated only FIG. 6. PEPCK and HK expression in blastocysts from type 1 diabetes rabbits. The mRNA transcripts for both enzymes (A and B) were quantified by real-time RT-PCR (mean ⫾ SEM; n ⫽ 3). Blastocysts were cultured in pools of three to four embryos, and transcript numbers were quantified in single blastocysts. The numbers of blastocysts per group are indicated in the bars. The type 1 diabetic uterine milieu led to a significant reduction in PEPCK and HK transcript numbers (*, P ⬍ 0.05). The Endocrine Society. Downloaded from press.endocrine.org by [${individualUser.displayName}] on 02 March 2015. at 22:20 For personal use only. No other uses without permission. . All rights reserved. 4164 Ramin et al. Maternal Diabetes Restricts Embryo Development Endocrinology, September 2010, 151(9):4158 – 4167 FIG. 7. IR and IGF-IR expression in rabbit blastocysts cultured in vitro. The blastocysts were cultured in pools of three to four embryos for 3 (3h) or 6 h (6h) in medium containing 1 mM, 10 mM, or 25 mM glucose. The mRNA transcripts in single blastocysts for IR (A) and IGF-IR (B) were quantified by real-time RT-PCR (mean ⫾ SEM; n ⫽ 3). The numbers of blastocysts per group are indicated in the bars. A 3-h hyperglycemic milieu led to a significant reduction of IR transcripts, an effect which could be seen also after 6 h (**, P ⬍ 0.01). While IGF-IR mRNA was decreased by high glucose concentration after 3-h culture, it was restored after 6 h in 25 mM glucose. in high glucose concentrations the RNA amount for PEPCK was decreased with concomitantly increased HK transcripts. Culture for additional 3 h with 25 mM glucose did not change the PEPCK level, whereas HK transcript numbers showed a further 4-fold increase (Fig. 8, A and B). Insulin treatment of blastocysts cultured with 1 mM or 10 mM glucose significantly reduced the number of PEPCK transcripts numbers and elevated the HK RNA levels. In blastocysts from the 25 mM glucose group, neither 3 h nor 6 h insulin stimulation affected PEPCK or HK mRNA (Fig. 8, A and B). Discussion Maternal diabetes impairs ovulation and embryo development, a phenomenon which has been confirmed in several mammalian species [rats (32–34); mice (22, 23); rab bit, current study]. 1 mM glucose. A longer incubation for up to 6 h in 25 mM One hypothesis for the developmental effects of diabeglucose led to an IR expression level down to only 18% tes is the primary toxic effect of hyperglycemic glucose, compared with 1 mM glucose concentration (Fig. 7A). In leading as consequence to an accumulation of metabolites contrast, the same conditions reincreased IGF-IR expres- and programmed metabolic dysfunction. By Moley and sion to the basic expression level observed in the 1 mM co-authors (35, 36) a metabolic explanation for the degroup (Fig. 7B). velopmental retardation seen in the preimplantation emA glucose-dependent change was also detectable for bryos from diabetic mice was supposed. In these studies PEPCK and HK transcripts (Fig. 8). After culture for 3 h only at dramatically high glucose concentrations accumulation of glucose in the embryo and developmental delay were observed, clearly disproving the hypothesis of a primary toxic effect of high glucose. In the diabetic rabbit we could show that the uterine glucose concentration was 3-fold increased. In absolute concentrations, however, it was as low as 1.5 mmol/liter and therefore considerably lower than in hyperglycemic blood serum or in standard in vitro culture experiments. So far, the down-regulation of IR and IGF-IR in embryos from diabetic mothers has not been described in other experi mental models. Our findings strongly FIG. 8. PEPCK and HK expression in rabbit blastocysts cultured in vitro. The blastocysts were support the view that the disturbance cultured in pools of three to four embryos for 3 (3h) or 6 h (6h) in medium containing 1 mM, 10 in insulin-mediated glucose metabolism mM, or 25 mM glucose with (17 nM insulin, black bars) or without insulin (control, white causes ramifications of embryo developbars). The mRNA transcripts for PEPCK (A) and HK (B) were quantified by real-time RT-PCR in single blastocysts (mean ⫾ SEM; n ⫽ 3). The numbers of blastocysts per group are indicated in ment. In a first step the decrease in the the bars. A 3-h culture with high glucose concentrations (25 mM) led to a significant insulin concentration leads to an inhireduction in PEPCK transcription. This down-regulation still persists after 6 h (6h) (**, P ⬍ bition of the insulin-driven glucose 0.01). Insulin treatment in the 1-m M and 10-mM glucose groups significantly reduced the number of transcripts. In 25-mM glucose neither 3-h nor 6-h insulin stimulation affected the metabolism which then results in an inPEPCK mRNA. The opposite trend was seen for HK mRNA. It was elevated with increasing tracellular accumulation of nonmetaboglucose concentration, most pronounced after 6-h culture time. An insulin treatment in the lized glucose as a major pathophysiolog1-mM and 10-mM glucose groups increased the RNA levels, whereas in less than 25 mM glucose no insulin effect was detectable. ical mechanism. The Endocrine Society. Downloaded from press.endocrine.org by [${individualUser.displayName}] on 02 March 2015. at 22:20 For personal use only. No other uses without permission. . All rights reserved. Endocrinology, September 2010, 151(9):4158 – 4167 endo.endojournals.org 4165 We could demonstrate that embryonic insulin sensitivity is heavily disturbed, as shown by the strongly reduced receptor expression. The disturbed glucose metabolism is proven by changes in key enzymes of glycolysis (HK) and gluconeogenesis (PEPCK) in the blastocyst. PEPCK is a rate-limiting enzyme of gluconeogenesis in the liver. Its gene expression is controlled at the transcriptional level and is induced by glucagon and glucocorticoids and inhibited by insulin (37–39). Earlier studies led to the assumption that gluconeogenesis is an essential metabolic pathway in the rabbit blastocyst (15). By inhibiting PEPCK gene transcription, glucose participates in a feedback control loop governing its production by gluconeogenesis. A related feedback regulation was observed for hexokinase. As a key enzyme in glycolysis, HK initiates the phosphorylation of glucose to glucose-6-phosphate, an intermediate for several principal metabolic pathways like glycogen synthesis, pentose phosphate pathway, and hexosamine biosynthesis. These pathways are of vital importance for the preimplantation embryo (40 – 42). In the adult liver, glucose is a well-known transcriptional regulator of lipogenic, glycolytic, and gluconeogenic enzymes (43). In the rabbit blastocysts we could demonstrate the transcriptional regulatory capacity of glucose in vitro and in vivo. The concrete mechanisms involved need to be clarified. Conceivably the transcription factors C/EBP and FoxO1 could be responsible, which are on the one hand direct regulators of PEPCK expression (44, 45) and are on the other hand themselves modulated by glucose (46, 47). However, short-term exposure of the blastocyst to glucose mediates embryonic genes involved in glucose homeostasis, both positively and negatively. It is not unexpected that glucose participates in the regulation of its own production and utilization in the preimplantation embryo. Elevated glucose levels in the uterine secretions leads to a decrease in embryonic PEPCK expression. The insulin stimulus, normally responsible for a decreased PEPCK ex pression, is missing in blastocysts from mothers with type 1 diabetes. This implicates that glucose is the more potent regulator for PEPCK in blastocysts than insulin. In case of HK the opposite effect was observed. In blastocysts from type 1 diabetic rabbits, HK transcription was down-regulated. The dramatic HK down-regulation can either be caused by the absence of an adequate insulin stimulus or the insensitivity of the blastocyst to IGFs. The down-regulation of both key enzymes, HK and PEPCK, seems to be a complex reaction of the blastocyst to the type 1 diabetic situation of the mother. It cannot be explained by a simple metabolic adaptation. The downregulation of both enzymes has consequences for the utilization of glucose as energy substrate and substrate in biosynthesis. The deficiency in glucose utilization is the most likely reason for the impaired preimplantation development of embryos from type 1 diabetic rabbits. It is known from studies in various cell lines that a hyperglycemic condition leads to oxidative stress and induction of stress-activated signaling pathways, resulting in inflammation and apoptosis. Apoptosis in preimplantation embryos exposed to hyperglycemia has been shown in present study and in a previous study (48). The link between hyperglycemia, inflammation, and inactivation of glucose-dependent transcription is currently missing, but it is supposed that the modulation of intracellular phosphorylation events leads to the disruption of major glucose-dependent pathways, thus contributing to metabolic disorders, lipid accumulation, insulin resistance, diabetes, and the metabolic syndrome (49). In preimplantation embryos insulin also acts as an important mitogenic factor mediating cell proliferation and initiation of gastrulation, and it prevents apoptosis (14, 30). Under physiological concentrations it exerts these effects mainly via the IR. Due to high homology, it is also able to bind to the IGF-IR (50, 51). The rabbit blastocyst, as other mammalian preimplantation embryos too (52– 54), is not able to produce endogenous insulin. The transcription of the insulin gene is switched off as shown by RT-PCR (Fig. 2B). Preimplantation embryos rely on maternally provided insulin. This insulin was detectable with a significant staining in the embryoblast and trophoblast in rabbit blastocysts immediately after recovery from the uterus (Fig. 2B). The presence of insulin in blastocysts can be explained by transcytosis of the peptide from maternal blood through the uterine epithelium into the uterine secretions. Transcytosis of insulin has been shown in the oviduct and uterus in mouse embryos (52, 54). The maternal insulin was detectable in the cytoplasm of Em and Tr cells, indicating that the insulin protein was taken up into the embryonic cells. For insulin it is known that the aggregated hormone-receptor complex is internalized into endocytic vesicles (55, 56). In the cytoplasm ligand and receptor are sorted and insulin is targeted to lysosomes for degradation. Insulin degradation is inevitably linked to insulin action. All insulin-sensitive tissues degrade the hormone (57). This is apparently also applicable for the rabbit blastocyst. An in vitro culture without insulin reduced the detectable insulin signal in blastocysts within 10 h compared with in vivo blastocysts (Fig. 2B), demonstrating the clearance of the insulin peptide within a fairly short time period. Blastocysts grown in diabetic mothers do not show insulin staining (Fig. 2B), indicating that the maternal plasma insulin level is directly correlated with the insulin amount in blastocysts provided by uterine secretions. Next to the loss of insulin, the signaling of the hormone is The Endocrine Society. Downloaded from press.endocrine.org by [${individualUser.displayName}] on 02 March 2015. at 22:20 For personal use only. No other uses without permission. . All rights reserved. 4166 Ramin et al. Maternal Diabetes Restricts Embryo Development Endocrinology, September 2010, 151(9):4158 – 4167 impeded due to IR and IGF-IR down-regulation. Nor mally, in adult tissues, the receptor is up-regulated to sensitize cells for insulin when its concentration is low (58). In the type 1 diabetic situation, however, both receptors are down-regulated. The in vitro culture results clearly show that the high glucose concentration is the major factor responsible for decreased receptor expression. Furthermore, our results show that the time interval of hypergly cemia is not pivotal, as short (6 h in vitro culture; Fig. 7) and long-time exposure (diabetes; Fig. 5) result in a strongly reduced receptor expression. We consider this regulation not to be adaptive but rather a pathological response, as seen by the missing feedback of insulin-regulated PEPCK and HK transcription under hyperglycemic in vitro culture condition (Fig. 8). As shown in the current study, type 1 diabetes during pregnancy has detrimental effects on glucose metabolism and differentiation of the blastocyst. The dysregulation of embryonic development due to maternal lack of insulin and hyperglycemia appears at a time when the woman is not yet aware of her pregnancy. Acknowledgments We thank Michaela Kirstein and Sabine Schrötter for excellent technical assistance. Address all correspondence and requests for reprints to: Dr. Navarrete Santos, Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, D-06097 Halle (Saale), Germany. E-mail: [email protected]. This work was supported by the German Research Council (DFG; grant number NA 418/4-2) and the Wilhelm Roux Program of the MLU, Faculty of Medicine. Present address for T.S.: Department of Cell Biology, Ludwig Maximilians University, 80539 Munich, Germany. Disclosure Summary: The authors have nothing to declare. Anne References 1. Leese HJ, Barton AM 1984 Pyruvate and glucose uptake by mouse ova and preimplantation embryos. J Reprod Fertil 72:9 –13 2. Houghton FD, Humpherson PG, Hawkhead JA, Hall CJ, Leese HJ 2003 Na⫹, K⫹, ATPase activity in the human and bovine preimplantation embryo. Dev Biol 263:360 –366 3. Moley KH 2001 Hyperglycemia and apoptosis: mechanisms for congenital malformations and pregnancy loss in diabetic women. Trends Endocrinol Metab 12:78 – 82 4. Fraser RB, Waite SL, Wood KA, Martin KL 2007 Impact of hyperglycemia on early embryo development and embryopathy: in vitro experiments using a mouse model. Hum Reprod 22:3059 –3068 5. Pampfer S, de Hertogh R, Vanderheyden I, Michiels B, Vercheval M 1990 Decreased inner cell mass proportion in blastocysts from diabetic rats. Diabetes 39:471– 476 6. Pampfer S 2000 Peri-implantation embryopathy induced by maternal diabetes. J Reprod Fertil Suppl 55:129 –139 7. Bavister BD 1999 Glucose and culture of human embryos. Fertil Steril 72:233–234 8. Girard J, Ferré P, Foufelle F 1997 Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes. Annu Rev Nutr 17:325–352 9. Foufelle F, Gouhot B, Pégorier JP, Perdereau D, Girard J, Ferré P 1992 Glucose stimulation of lipogenic enzyme gene expression in cultured white adipose tissue. A role for glucose 6-phosphate. J Biol Chem 267:20543–20546 10. Doiron B, Cuif MH, Kahn A, Diaz-Guerra MJ 1994 Respective roles of glucose, fructose, and insulin in the regulation of the liver-specific pyruvate kinase gene promoter. J Biol Chem 269:10213–10216 11. Shao J, Qiao L, Janssen RC, Pagliassotti M, Friedman JE 2005 Chronic hyperglycemia enhances PEPCK gene expression and hepatocellular glucose production via elevated liver activating protein/ liver inhibitory protein ratio. Diabetes 54:976 –984 12. Kahn CR, Lauris V, Koch S, Crettaz M, Granner DK 1989 Acute and chronic regulation of phosphoenolpyruvate carboxykinase mRNA by insulin and glucose. Mol Endocrinol 3:840 – 845 13. Baudry A, Lamothe B, Bucchini D, Jami J, Montarras D, Pinset C, Joshi RL 2001 IGF-1 receptor as an alternative receptor for metabolic signaling in insulin receptor-deficient muscle cells. FEBS Lett 488:174 –178 14. Kaye PL 1997 Preimplantation growth factor physiology. Rev Reprod 2:121–127 15. Navarrete Santos A, Ramin N, Tonack S, Fischer B 2008 Cell lineage-specific signaling of insulin and insulin-like growth factor I in rabbit blastocysts. Endocrinology 149:515–524 16. Navarrete Santos A, Tonack S, Kirstein M, Kietz S, Fischer B 2004 Two insulin-responsive glucose transporter isoforms and the insulin receptor are developmentally expressed in rabbit preimplantation embryos. Reproduction 128:503–516 17. Haring HU, Kellerer M, Mosthaf L 1994 Modulation of insulin receptor signalling: significance of altered receptor isoform patterns and mechanism of hyperglycaemia-induced receptor modulation. Diabetologia 37(Suppl 2):S149 –S154 18. Haring HU, Kellerer M, Mosthaf L 1994 Modulation of insulin signalling in non-insulin-dependent diabetes mellitus: significance of altered receptor isoform patterns and mechanisms of glucoseinduced receptor modulation. Horm Res 41(Suppl 2):87–91; discussion 92 19. Lenzen S 2008 The mechanisms of alloxan- and streptozotocininduced diabetes. Diabetologia 51:216 –226 20. Dunn J, Sheehan H, NGB M 1943 Necrosis of islets of Langerhans produced experimentally. Lancet 244:484 – 487 21. Peschke E, Ebelt H, Brömme HJ, Peschke D 2000 ‘Classical’ and ‘new’ diabetogens– comparison of their effects on isolated rat pancreatic islets in vitro. Cell Mol Life Sci 57:158 –164 22. Diamond MP, Moley KH, Pellicer A, Vaughn WK, DeCherney AH 1989 Effects of streptozotocin- and alloxan-induced diabetes mellitus on mouse follicular and early embryo development. J Reprod Fertil 86:1–10 23. Moley KH, Vaughn WK, DeCherney AH, Diamond MP 1991 Effect of diabetes mellitus on mouse pre-implantation embryo development. J Reprod Fertil 93:325–332 24. Beebe LF, Kaye PL 1990 Preimplantation development in the streptozotocin-induced diabetic mouse. Reprod Fertil Dev 2:407– 412 25. Winiarska DJ, Drozak J, Wegrzynowicz M, Fraczyk T, Bryla J 2004 Diabetes-induced changes in glucose synthesis, intracellular glutathione status and hydroxyl free radical generation in rabbit kidneycortex tubules. Mol Cell Biochem 261:91–98 26. Denker H 1977 Implantation: the role of proteinases, and blockage of implantation by proteinase inhibitors. Adv Anat Embryol Cell Biol 53/5 27. Santos AN, Korber S, Kullertz G, Fischer G, Fischer B 2000 Oxygen The Endocrine Society. Downloaded from press.endocrine.org by [${individualUser.displayName}] on 02 March 2015. at 22:20 For personal use only. No other uses without permission. . All rights reserved. Endocrinology, September 2010, 151(9):4158 – 4167 endo.endojournals.org 4167 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. stress increases prolyl cis/trans isomerase activity and expression of cyclophilin 18 in rabbit blastocysts. Biol Reprod 62:1–7 Kietz S, Fischer B 2003 Polychlorinated biphenyls affect gene expression in the rabbit preimplantation embryo. Mol Reprod Dev 64:251–260 Viebahn C, Mayer B, Hrabe de Angelis M 1995 Signs of the principle body axes prior to primitive streak formation in the rabbit embryo. Anat Embryol (Berl) 192:159 –169 Herrler A, Krusche CA, Beier HM 1998 Insulin and insulin-like growth factor-I promote rabbit blastocyst development and prevent apoptosis. Biol Reprod 59:1302–1310 Navarrete Santos A, Tonack S, Kirstein M, Pantaleon M, Kaye P, Fischer B 2004 Insulin acts via mitogen-activated protein kinase phosphorylation in rabbit blastocysts. Reproduction 128:517–526 Giavini E, Broccia ML, Prati M, Roversi GD, Vismara C 1986 Effects of streptozotocin-induced diabetes on fetal development of the rat. Teratology 34:81– 88 Vercheval M HR, Pampfer S, Vanderheyden I, Michiels B, Bernardi P, Meyer R 1990 Experimental diabetes impairs rat embryo development during the preimplantation period. Diabetologia 33:187–191 De Hertogh R, Vanderheyden I, Pampfer S, Robin D, Delcourt J 1992 Maternal insulin treatment improves pre-implantation embryo development in diabetic rats. Diabetologia 35:406 – 408 Moley KH, Chi MM, Manchester JK, McDougal DB, Lowry OH 1996 Alterations of intraembryonic metabolites in preimplantation mouse embryos exposed to elevated concentrations of glucose: a metabolic explanation for the developmental retardation seen in preimplantation embryos from diabetic animals. Biol Reprod 54: 1209 –1216 Moley KH, Vaughn WK, Diamond MP 1994 Manifestations of diabeters mellitus on mouse preimplantation development: effect of elevated concentration of metabolic intemediated. Hum Reprod 9:113–121 Pilkis SJ, Granner DK 1992 Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu Rev Physiol 54: 885–909 Hanson RW, Reshef L 1997 Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression. Annu Rev Biochem 66:581– 611 Quinn PG, Yeagley D 2005 Insulin regulation of PEPCK gene expression: a model for rapid and reversible modulation. Curr Drug Targets Immune Endocr Metabol Disord 5:423– 437 Pantaleon M, Scott J, Kaye PL 2008 Nutrient sensing by the early mouse embryo: hexosamine biosynthesis and glucose signaling during preimplantation development. Biol Reprod 78:595– 600 Hsieh B, Chi MM, Knor J, Lowry OH 1979 Enzymes of glycogen metabolism and related metabolites in preimplantation mouse embryos. Dev Biol 72:342–349 O’Fallon JV, Wright Jr RW 1986 Quantitative determination of the pentose phosphate pathway in preimplantation mouse embryos. Biol Reprod 34:58 – 64 Meugnier E, Rome S, Vidal H 2007 Regulation of gene expression by glucose. Curr Opin Clin Nutr Metab Care 10:518 –522 44. Croniger C, Trus M, Lysek-Stupp K, Cohen H, Liu Y, Darlington GJ, Poli V, Hanson RW, Reshef L 1997 Role of the isoforms of CCAAT/enhancer-binding protein in the initiation of phosphoenolpyruvate carboxykinase (GTP) gene transcription at birth. J Biol Chem 272:26306 –26312 45. Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, Kitamura Y, Altomonte J, Dong H, Accili D, Spiegelman BM 2003 Insulin-regulated hepatic gluconeogenesis through FOXO1PGC-1␣ interaction. Nature 423:550 –555 46. Kuo M, Zilberfarb V, Gangneux N, Christeff N, Issad T 2008 Oglycosylation of FoxO1 increases its transcriptional activity towards the glucose 6-phosphatase gene. FEBS Lett 582:829 – 834 47. Housley MP, Rodgers JT, Udeshi ND, Kelly TJ, Shabanowitz J, Hunt DF, Puigserver P, Hart GW 2008 O-GlcNAc regulates FoxO activation in response to glucose. J Biol Chem 283:16283–16292 48. Moley KH, Chi MM, Knudson CM, Korsmeyer SJ, Mueckler MM 1998 Hyperglycemia induces apoptosis in pre-implantation embryos through cell death effector pathways. Nat Med 4:1421–1424 49. Uyeda K, Repa JJ 2006 Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metab 4:107–110 50. Lamothe B, Baudry A, Christoffersen CT, De Meyts P, Jami J, Bucchini D, Joshi RL 1998 Insulin receptor-deficient cells as a new tool for dissecting complex interplay in insulin and insulin-like growth factors. FEBS Lett 426:381–385 51. Blakesley VA, Scrimgeour A, Esposito D, Le Roith D 1996 Signaling via the insulin-like growth factor-I receptor: does it differ from insulin receptor signaling? Cytokine Growth Factor Rev 7:153–159 52. Heyner S, Rao LV, Jarett L, Smith RM 1989 Preimplantation mouse embryos internalize maternal insulin via receptor-mediated endocytosis: pattern of uptake and functional correlations. Dev Biol 134: 48 –58 53. Lighten AD, Hardy K, Winston RM, Moore GE 1997 Expression of mRNA for the insulin-like growth factors and their receptors in human preimplantation embryos. Mol Reprod Dev 47:134 –139 54. Schultz GA, Hogan A, Watson AJ, Smith RM, Heyner S 1992 Insulin, insulin-like growth factors and glucose transporters: temporal patterns of gene expression in early murine and bovine embryos. Reprod Fertil Dev 4:361 55. Knutson VP 1991 Cellular trafficking and processing of the insulin receptor. FASEB J 5:2130 –2138 56. Schlessinger J, Shechter Y, Cuatrecasas P, Willingham MC, Pastan I 1978 Quantitative determination of the lateral diffusion coefficients of the hormone-receptor complexes of insulin and epidermal growth factor on the plasma membrane of cultured fibroblasts. Proc Natl Acad Sci USA 75:5353–5357 57. Duckworth WC, Bennett RG, Hamel FG 1998 Insulin degradation: progress and potential. Endocr Rev 19:608 – 624 58. Marshall S, Olefsky JM 1981 Characterization of insulin-induced receptor loss and evidence for internalization of the insulin receptor. Diabetes 30:746 –753 The Endocrine Society. Downloaded from press.endocrine.org by [${individualUser.displayName}] on 02 March 2015. at 22:20 For personal use only. No other uses without permission. . All rights reserved. Molecular and Cellular Endocrinology 358 (2012) 96–103 Contents lists available at SciVerse ScienceDirect Molecular and Cellular Endocrinology journal homepage: www.elsevier.com/locate/mce Insulin growth factor adjustment in preimplantation rabbit blastocysts and uterine tissues in response to maternal type 1 diabetes René Thieme 1, Maria Schindler 1, Nicole Ramin, Sünje Fischer, Britta Mühleck, Bernd Fischer, Anne Navarrete Santos ⇑ Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany a r t i c l e i n f o Article history: Received 17 October 2011 Received in revised form 17 February 2012 Accepted 12 March 2012 Available online 20 March 2012 Keywords: IGF1 IGF2 Exp IDD Rabbit preimplantation embryo a b s t r a c t Insulin-like growth factors (IGFs) are well-known regulators of embryonic growth and differentiation. IGF function is closely related to insulin action. IGFs are available to the preimplantation embryo through maternal blood (endocrine action), uterine secretions (paracrine action) and by the embryo itself (autocrine action). In rabbit blastocysts, embryonic IGF1 and IGF2 are specifically strong in the embryoblast (ICM). Signalling of IGFs and insulin in blastocysts follows the classical pathway with Erk1/2 and Akt kinase activation. The aim of this study was to analyse signalling of IGFs in experimental insulin dependent diabetes (exp IDD) in pregnancy, employing a diabetic rabbit model with uterine hypoinsulinemia and hyperglycaemia. Exp IDD was induced in female rabbits by alloxan treatment prior to mating. At 6 days p.c., the maternal and embryonic IGFs were quantified by RT-PCR and ELISA. In pregnant females, hepatic IGF1 expression and IGF1 serum levels were decreased while IGF1 and IGF2 were increased in endometrium. In blastocysts, IGF1 RNA and protein was approx. 7.5-fold and 2fold higher, respectively, than in controls from normoglycemic females. In cultured control blastocysts supplemented with IGF1 or insulin in vitro for 1 or 12 h, IGF1 and insulin receptors as well as IGF1 and IGF2 were downregulated. In cultured T1D blastocysts activation of Akt and Erk1/2 was impaired with lower amounts of total Akt and Erk1/2 protein and a reduced phosphorylation capacity after IGF1 supplementation. Our data show that the IGF axis is severely altered in embryo-maternal interactions in exp IDD pregnancy. Both, the endometrium and the blastocyst produce more IGF1 and IGF2. The increased endogenous IGF1 and IGF2 expression by the blastocyst compensates for the loss of systemic insulin and IGF. However, this counterbalance does not fill the gap of the reduced insulin/IGF sensitivity, leading to a developmental delay of blastocysts in exp IDD pregnancy. Ó 2012 Elsevier Ireland Ltd. All rights reserved. 1. Introduction IGF1, IGF2 and insulin belong to the insulin-like growth factor (IGF) family. They play a fundamental role in embryo-maternal crosstalk and in early embryo development. The specific importance of IGF signalling pathways during early embryogenesis is pointed out by knockout studies for IGF1, IGF2 and IGF1R which all result in a reduced birth weight (40–60%) and an increased neonatal lethality (Baker et al., 1993; Liu et al., 1993). A lack of insulin typically caused by type 1 diabetes mellitus (T1D), leads to maternal subfertility and an increase in miscarriage rates and congenital ⇑ Corresponding author. Address: Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, D-06097 Halle (Saale), Germany. Tel.: +49 345 5571718x01; fax: +49 345 5571700. E-mail address: [email protected] (A. Navarrete Santos). 1 Both authors contributed equally to this work. malformations (Casson et al., 1997; Penney et al., 2003; Verheijen et al., 2005; Yang et al., 2006). It is known that IGFs have the ability to compensate for each other in a distinct manner. Mode and mechanisms of compensation during early pregnancy and diabetic pregnancy, however, are not known. In the oviductal and uterine lumen, insulin reaches the preimplantation embryo via transcytosis from the maternal blood flow (Heyner et al., 1989; Schultz et al., 1992). As the embryo cannot produce insulin itself (Heyner et al., 1989; Lighten et al., 1997; Ramin et al., 2010; Rappolee et al., 1992; Schultz et al., 1992), it is dependent on maternal supply. In contrast, IGF1 and IGF2 are produced by the embryo itself and by maternal reproductive tissues (Lighten et al., 1997). IGFs play an essential role not only in early embryo development, growth and differentiation but also in the implantation process. IGF1 has been shown to induce Akt phosphorylation in human endometrium. Akt phosphorylation was restricted to the 0303-7207/$ - see front matter Ó 2012 Elsevier Ireland Ltd. All rights reserved. http://dx.doi.org/10.1016/j.mce.2012.03.007 97 R. Thieme et al. / Molecular and Cellular Endocrinology 358 (2012) 96–103 glandular epithelium during implantation (Toyofuku et al., 2006). Activation of the PI3K-Akt signalling pathway seems to be essential for successful implantation by maintaining cell survival, trophoblast invasion and induction of extracellular matrix remodelling (Prast et al., 2008; Toyofuku et al., 2006). Insulin, IGF1 and IGF2 act via the insulin (IR) and IGF1 receptor (IGF1R). In women physiological IGF1 concentrations of 8.0 and 10.9 nM were found in the Fallopian tube and in uterine secretions, respectively (Lighten et al., 1998). Human embryos supplemented with IGF1 in vitro (1.7 nM) showed an increase in blastocyst development and in the number of ICM cells by 19% and 59%, respectively (Lighten et al., 1998). Compared with healthy patients, diabetic patients show a decrease by 55% in serum IGF1 due to an increased GH level (Colao et al., 2008; Shishko et al., 1994). The predominant source of the circulating IGF1 is the liver, regulated by GH (Schwander et al., 1983), but a local IGF1 synthesis is seen in many tissues and can potentially compensate for a loss of systemic IGF1. Recently, we have shown that the expression of IR and IGF1R is down-regulated in blastocysts grown in diabetic rabbits markedly (Ramin et al., 2010). The aim of current study was to further elucidate maternal and embryonic synthesis of IGFs and potential interactions during early pregnancy in an experimental insulin dependent diabetes (exp IDD) animal model. 2. Material and methods 2.1. Animals, embryo recovery and in vitro culture 2.1.1. In vivo model of experimental insulin dependent diabetes (exp IDD) in rabbit preimplantation development Exp IDD was induced by alloxan treatment as described before (Ramin et al., 2010). Hyperglycaemia with a permanent blood glucose concentration of >14 mmol/L was established 36–48 h after alloxan injection. The blood glucose level was monitored two times a day and kept in the range of 14–25 mmol/L. Ketoacidosis was prevented by regular insulin supplementation (Insuman Rapid 40 IU/mL, Aventis, Frankfurt a.M., Germany) after feeding. Rabbits held in diabetic conditions for 9–11 days before they were were mated. All animal experiments were in accordance with the principles of laboratory animal care and had been approved by the local ethics committee (Landesverwaltungsamt Dessau, reference number 42502-2-812). 2.1.2. Embryo sampling Blastocyst recovery was performed as described before Santos et al., 2000; Ramin et al., 2010). Briefly, blasto(Navarrete cysts were collected from sexually mature rabbits which had been stimulated with 110 I.U. pregnant mare serum gonadotropin (PMSG, Intervet, Unterschleißheim, Germany) 3 days prior mating and with 75 I.U. human chorionic gonadotropin (hCG, Intervet, Unterschleißheim, Germany) after mating. Superovulation allowed embryos use from the same animals for in vivo and in vitro analyses from control and diabetic animals. The embryos were flushed from the uteri at day 6.0 post coitum (p.c.), washed two times in basal synthetic medium II (BSM, serum- and growth-factor-free) (Maurer, 1978), pooled and randomly divided amongst the experimental groups. 2.1.3. Embryo in vitro culture In vitro culture was conducted to verify and strengthen findings from the in vivo studies. Short cultures of 10 min and 1 h and longer culture times of 12 h were performed with 6 day old blastocysts. They were cultured in groups of 4 to 8 in 4 mL BSM II medium ± supplementation of IGF1, IGF2 or insulin at 37 °C in a water saturated atmosphere of 5% O2, 5% CO2 and 90% N2 in a water-jacketed incubator (Heracell 150i, Heraeus, Hanau, Germany). Insulin, IGF1 or IGF2 were pre-diluted in 100 lL culture medium and then used in 4 mL culture medium. Either 17 nM insulin (Sigma–Aldrich, Taufkirchen, Germany), 1.3 nM IGF1 (Sigma–Aldrich, Taufkirchen, Germany) or 13 nM IGF2 (Sigma–Aldrich, Taufkirchen, Germany) were added. These concentrations had been chosen according to physiological ranges (Chi et al., 2000) and have been employed in various other studies before (Navarrete Santos et al., 2000,2004b,2008; Ramin et al., 2010; Thieme et al., 2012). Controls were handled in the same manner without growth factors supplementation. PD98059 (20 lM) or LY294002 (20 lM) (Sigma–Aldrich, Taufkirchen, Germany) dissolved in DMSO (Sigma–Aldrich, Taufkirchen, Germany) were used for specific inhibition of the MAPKK (MEK1) or PI3K and added 30 min prior to IGF2 supplementation. IGF1 treatment was performed at the same day with Erk and Akt phoshorylation measured in corresponding blastocysts from control and exp IDD animals. After culture the blastocysts were washed two times in ice cold phosphate buffered saline (PBS) and transferred into ice cold 0.05% polyvinylalcohol (PVA)/PBS buffer. For RNA isolation, the extracellular coverings were removed mechanically. To investigate spatial expression of IGF2 and to discriminate its effects in Tr and Em, the embryonic discs were microdissected from the trophoblast under a stereomicroscope (Navarrete Santos et al., 2004a). Isolated Em and Tr of single blastocysts were stored separately at 80 °C until processed for gene expression analysis. 2.2. IGF1-ELISA For the measurement of the IGF1 concentration in EDTA plasma and in single blastocysts the Active IGF1 ELISA (Diagnostic System Laboratories Inc., Webster, USA) was used according to the manufacturer’s protocol. Plasma samples were collected from control and diabetic females at day 6 p.c. and 50 ll plasma was used for analysis. Determination of embryonic IGF1 concentration was performed on single blastocysts. After measurement of blastocyst size (by diameter), the extracellular coverings were removed mechanically and the blastocysts were lysed in ice cold 50 ll lysis buffer by ultrasonication for 10 min. IGF1 concentrations were quantified by an IGF1 standard curve in each ELISA. The absolute amount of embryonic IGF1 was related to the blastocyst surface (in mm2) to correct for differences in blastocysts sizes. 2.3. RNA extraction, RT reaction RNA extraction for blastocysts was performed as previously described (Navarrete Santos et al., 2004a) using Dynabeads mRNA DIRECT Kit (Dynal, Oslo, Norway) according to the manufacturer’s instructions. The final volume of the cDNA reaction was adjusted with water to 100 ll for blastocysts and to 50 ll for separated embryoblast and trophoblast. Total RNA extraction from liver tissues were performed as published before (Navarrete Santos et al., 2008). RT-PCR for IGF1 and IGF2 was done as described before (Navarrete Santos et al., 2004a). 2.4. Cloning and sequencing of partial cDNA for rabbit IGF2 A new partial IGF2 (286 bp) cDNA was amplified from the rabbit kidney cell line RK13 using human primers. The sequence was identical with human IGF2 to 92% and 98% at the mRNA and the protein level, respectively, using the alignment BLASTN and BLASTX tool. 98 R. Thieme et al. / Molecular and Cellular Endocrinology 358 (2012) 96–103 Table 1 Oligonucleotides. Gene Primer sequence Length Tm Acc. No. Rabbit GAPDH 144 bp 60 °C L23961 Rabbit IGF1 fw: GCCGCTTCTTCTCGTGCAG rev: ATGGATCATTGATGGCGACAACAT fw: TGGTGGATGCTCTCAGTTCGTGT rev: GCTGATACTTCTGAGTCTTGGGCA fw: TTCCGATTGCTGGCCATCTCTG rev: TGTTTCCGCAGCTGTGACCTGG fw: TGGAAGAACTTGCCCACGGAG rev: GCTGCATTGCTGCTTACCGC fw: CGGCATGGCAACCTGTATGACC rev: TGTCGATGGTCGGGCAGATGTC fw: CCCAAGCTCACGGTCATCACTG rev: ATGGGCTTCTCCTCCAAGGTCC fw: ACCGACTACCTGCTGCTGTT rev: TGACCAGCGCATAGTTGAAG 237 bp 60 °C NM_001082026.1 308 bp 60 °C NM_000612.4 286 bp 60 °C JN825734.1 127 bp 60 °C AF339157.1 347 bp 60 °C EF616472 112 bp 60 °C AY339877.1 Human IGF2 Rabbit IGF2 Rabbit IGF2R Rabbit IGF1R Rabbit IR *** 5 4 3 2 1 0 control C B F1-RNA IGF A amoount 3 [per 10 GAPD DH mo olecules] 6 1000 1800 1600 1400 1200 1000 800 600 400 200 0 *** 800 600 400 200 0 exp p IDD reelative IGF1-- and 22-RNA A amouunts [% oof controls] A F1 conncentraation [n seru um IGF nM] ** ** IGF1 IGF2 control exp p IDD control exp IDD Fig. 1. IGFs in pregnant rabbits. (A) ELISA quantified IGF1 serum concentration and (B) hepatic IGF1 RNA expression are decreased, while (C) endometrial IGF1- and IGF2-RNA expression are increased in exp IDD animals at day 6 of pregnancy (mean ± SEM; N = 3; n = 6; ⁄⁄p < 0.01; ⁄⁄⁄p < 0.001). B A d3 d4 d6 ntc IGF1 IGF2 GAPDH reelativee IGF1-- and IGF2-R I RNA aamountts [% % of tottal IGF F per blastocy yst] 120 100 trophoblast embryoblast *** *** IGF1 IGF2 80 60 40 20 0 Fig. 2. IGFs expression in the embryoblast and trophoblast of rabbit blastocysts at day 6 (A) Embryonic expression (RT-PCR) of IGF1 and IGF2 was determined in an ontogenetic series at day 3 (morula), 4 (early blastocyst) and 6 p.c. (expanded blastocyst). (B) Relative amounts of IGF1 and IGF2 mRNA are quantified by real time RT-PCR in embryoblast and trophoblast. The expression level of both growth factors is clearly higher in the embryoblast. (mean ± SEM, N = 3, n P 4; ⁄⁄⁄p < 0.001). 2.5. Real time RT-PCR Samples were analysed by real time RT-PCR as reported before (Navarrete Santos et al., 2008). The primers are given in Table 1. Each assay included duplicates of each cDNA sample and a no template control for each primer set. The expression of GAPDH RNA was used as reference for the amount of cDNA used per reaction. GAPDH levels of day 6 blastocysts from control and exp IDD animals were comparable with ct values for controls 17.67 ± 0.27 and exp IDD 17.41 ± 0.49 (p = 0.6225). In each real time RT-PCR, a calibration curve was included that was generated from serial dilutions (108–103 copies) of primer-specific DNA probes generated 99 A 1000 ** 800 600 control exp IDD ** 400 200 0 IGF1 IGF2 B relaative IG GF1 protein peer blasttocystss surfacce [ng//mm²] relatiive IGF Fs RNA A amoount [% off controls] R. Thieme et al. / Molecular and Cellular Endocrinology 358 (2012) 96–103 # 6 5 4 3 2 1 0 control exp IDD 3. IGFs mRNA expression and IGF1 protein amounts in blastocysts from exp IDD rabbits. (A) IGF1 and IGF2 transcript amounts were measured in blastocysts from exp Fig. IDD and control rabbits by real time RT-PCR. The transcript levels of both, IGF1 (7.5-fold) and IGF2 (5-fold), are increased in blastocysts from diabetic mothers. (B) The IGF1 protein was quantified by ELISA using single blastocysts from control and exp IDD rabbits and is increased under diabetic conditions. The IGF1 protein amount was normalized by the area of the blastocyst surface (mean ± SEM, N = 3, n P 4; #p = 0.087; ⁄⁄p < 0.01). A B C D Fig. 4. IGF2 mediated activation of Erk1/2 (A and B) and Akt (C and D) in the rabbit blastocyst. Day 6 rabbit blastocysts were cultured in groups of 10 with or without 13 nM IGF2 for 10 min with/without the Erk or Akt specific inhibitors PD98059 (20 lM) or LY294002 (20 lM) 30 min prior to IGF2 supplementation. (A and B) The ratio of phosphorylated Erk1/2 and (C and D) Akt related to the total Erk1/2 and Akt amount for the same sample and Western blot were calculated with a strong activation by IGF2, while the use of PD98059 or LY294002 prevented the IGF2 mediated increase in phosphorylated Erk1/2 and Akt, respectively (mean ± SEM; one-way ANOVA, a < 0.001). The increase in Erk1/2 and Akt phosphorylation is present in both embryonic compartments. Detailed analysis of Erk1/2 (B) and Akt (D) phosphorylation by IGF2 in embryoblast (Em) (a p < 0.001) and trophoblast (Tr) (b p = 0.019 and c p = 0.004) revealed an increase in both cell lineages, with a strong Erk1/2 phosphorylation in the embryoblast (d p = 0.003, tow-way ANOVA with p = 0.008 (B) and p = 0.012 (D), mean ± SEM, N = 3, n = 10). from cDNA plasmid clones. Analysis of the individual data therefore yielded values relative to these standards. 2.6. Protein preparation and immunoblotting isolation and Western blot analyses were performed withProtein 20 lg protein. Phosphorylated und non-phosporylated Erk and Akt expression was investigated with an anti-phospho-Akt1 (S473) (mouse mAb, 1:1000, #4051), anti-Akt1 (mouse mAb, 1:500, #2967), anti-phospho-Erk1/2 (Thr202/Tyr204) (rabbit Ab, 1:1000, #4051) and anti-Erk1/2 (mouse mAb, 1:1000, #9107) antibody (all NEB, Frankfurt, Germany). After blotting, the nylon membranes were stained with Ponceau-S. Molecular weights were determined by comparison with PageRuler™ prestained molecular weight marker (Fermentas, St. Leon-Rot, Germany). Afterwards the immunoreactive signals were visualized by enhanced chemilumi- nescence detection (Millipore, Schwalbach, Germany) and quantified by ChemiDoc-It Imaging System (LTF Labortechnik, Wasserburg, Germany). The amounts of phosphorylated protein were evaluated by re-blotting with an antibody against the nonphosphosphorylated Erk1/2, Akt or the mouse monoclonal beta-actin antibody (1:40,000, Sigma–Aldrich, Taufkirchen, Germany) after stripping the membranes. Protein amounts were calculated as ratio of band intensities (pErk1/2 or pAkt vs. Erk1/2 or Akt vs. beta-actin, respectively) in the same blot in order to correct for differences in protein loading. 2.7. Statistics If not stated otherwise, levels of significance between groups were calculated using student’s t-test after proving normal distribution. Multiple comparisons were made by factorial variance 100 R. Thieme et al. / Molecular and Cellular Endocrinology 358 (2012) 96–103 analysis (SigmaPlot v. 11.0). Data are expressed as mean value ± standard error (mean ± SEM). Levels of statistical significance are indicated as follows ⁄p < 0.05, ⁄⁄p < 0.01 and ⁄⁄⁄p < 0.001. N represents the number of experimental replicates, n the number of samples (e.g. blastocysts) per experiment. 3. Results 3.1. Maternal IGF1 at day 6 of pregnancy IGF1 serum levels were clearly reduced in exp IDD rabbits. The plasma IGF1 level of 1.9 nM was decreased by 60% compared with normoglycemic controls (5.3 nM) (Fig. 1A). The hepatic IGF1 transcription, the major source of circulating IGF1, was decreased by 85% in the liver of exp IDD females at day 6 p.c. (Fig. 1B). 3.2. Expression pattern of IGF1 and IGF2 in the endometrium In exp IDD animals a 11-fold and 13-fold increase in the endometrial IGF1 and IGF2 RNA expression level, respectively, was measured at gestational day 6 (Fig. 1C). 3.5. Kinase content and phosphorylation of Akt and Erk by IGF1 in blastocysts from exp IDD animals The total amount of Akt and Erk protein in exp IDD blastocysts was reduced to 45% and 20%, respectively (Fig. 5A). The relative phosphorylation levels of both kinases closely resembled those in control blastocysts (Fig. 5B). Following supplementation of 1.3 nM IGF1 in vitro, Akt and Erk phosphorylation was 6-fold and 4.5-fold higher in control blastocysts than in blastocysts from exp IDD animals, demonstrating a reduced sensitivity to IGF1 in exp IDD blastocysts (Fig. 5C). 3.6. IGF1, IGF2, IR and IGF1R expression in cultured blastocysts Maternal exp IDD leads to marked decrease in IR and IGF1R expression in 6 day old rabbit blastocysts (Ramin et al., 2010). In this study, day 6 blastocysts were cultured with 17 nM insulin or 1.3 nM IGF1 for 1 h or 12 h in vitro. When analysed after 1 h A 3.3. Embryonic IGF1 and IGF2 at day 6 of pregnancy IGF1 and IGF2 transcripts were present in all investigated embryo stages from morula (d3), early blastocyst (4d) to expanded blastocyst at day 6 p.c. (Fig. 2A). IGF1 and IGF2 RNA amounts were quantified and analysed by real time RT-PCR in separated embryoblast and trophoblast. Transcript numbers of IGF1 and IGF2 in the embryoblast exceeded those in the trophoblast by approximately 4-fold (Fig. 2B). In exp IDD blastocysts IGF2 transcript levels and IGF1 RNA and protein levels were clearly elevated. The rises in IGF1 and IGF2 RNA levels added up to 7.5 and 5-fold, respectively (Fig. 3A). IGF1 pro(controls) to increased from 2.81 ± 0.25 ng/mm2 tein 4.59 ± 0.82 ng/mm2 (1.6-fold increase) in exp IDD blastocysts. This increase was consistent and independent from blastocyst size (Fig. 3B). IGF2 could not be determined due to lack of a specific ELISA detecting rabbit IGF2 protein. 3.4. IGF2 activates Akt and Erk in rabbit blastocysts in vitro we have reported on Akt and Erk activation by insulin andRecently IGF1 in day 6 p.c. rabbit embryos and their differential signalling in embryoblast and trophoblast cells (Navarrete Santos et al., 2008). Because of endometrial and embryonic increase in IGF2 expression in diabetic animals (Figs. 1 and 2), the IGF2 signalling was analyzed in preimplantation embryos, too. Therefore 6 day old blastocysts were stimulated with IGF2 (13 nM) in vitro. Erk1/2 and Akt phosphorylation increased 8.3-fold and 3.1-fold, respectively, compared with untreated controls (Fig. 4A and C). Using the MEK1 specific inhibitor PD98059 and the PI3K specific inhibitor LY294002 30 min prior to IGF2 supplementation revealed IGF2 specific signalling as the increase in Erk1/2 and Akt phosthe phorylation by IGF2 was diminished to control levels (Fig. 4A and C). To discriminate IGF2 mediated activity between embryoblast and trophoblast, these cell lineages were separately analysed after IGF2 treatment. The increase was 7-fold and 3.2-fold for phopsphoErk1/2 (Fig. 4B) and phosphor-Akt (Fig. 4D), respectively, in the embryoblast and 2.3-fold and 3.3-fold in the trophoblast. Phosphorylation of Erk1/2 was significantly higher in the embryoblast than in the trophoblast. The activation of Erk and Akt by IGF1 and insulin has recently been shown by Navarrete Santos et al., 2008. B C Fig. 5. Kinase activation by IGF1 in blastocysts from exp IDD animals. Total Akt and Erk protein (A) and their phosphorylation levels (B) were analyzed by western blot in in vivo grown blastocysts from exp IDD and normoglycemic rabbits at day 6 p.c. There was no change in the ratio of phospho-Akt/Akt and phospho-Erk1/2/Erk1/2 but in the total level of the protein (⁄p < 0.05). (C) In vitro cultured blastocysts from exp IDD and normoglycemic rabbits supplemented with 1.3 nM IGF1 for 10 min show a clearly lower increase in the ratio of phospho-Akt/Akt and phospho-Erk2/ Erk2 compared to blastocysts from control animals (mean ± SEM; N = 3; n = 10; tow-way ANOVA, ⁄⁄p = 0.01; ⁄⁄⁄p < 0.001). by 55% while IGF1 supplementation decreased the ligands differently by 70% and 50%, respectively (Fig. 6A/B). Like in vivo, both receptors were downregulated. After 12 h culture, IGF1R RNA expression was decreased by 70% by IGF1 and insulin, and IR RNA by 50% by insulin and 65% by IGF1 (Fig. 6C and D), closely reflecting receptor downregulation in vivo in exp IDD mothers. 4. Discussion The preimplantation embryo is a sensitive target of IGFs. Except for insulin, the whole range of the insulin/IGF ligand and receptor system is expressed during preimplantation development. These hormones are known key players in embryo growth and differentiation and synchronise and balance the crosstalk between mother and embryo during early pregnancy. Disturbances of the insulin/ axis by diabetes mellitus or other metabolic diseases result IGF in embryonic loss and miscarriages. In general IGF homoeostases is regulated by the growth hormone and the local synthesis in tissues. During pregnancy the IGF1 serum level is increased by 3-fold (third trimester) compared to the serum level of a non-pregnant women. Systemic IGF2 levels do not change (Gargosky et al. 1990). During gestation in the rabbit the IGF2 and IGF1 serum levels increase from 4 to 810 nM (IGF2) and from 23 to 38 nM (IGF1), respectively, from day 0 to 23 (Nason et al., 1996). The increase in both growth factors is closely correlated with implantation and formation of a functional placenta (Nason et al., 1996). In this study, in exp IDD rabbits, we show a remarkable increase in IGF1 and IGF2 production by the embryo and endometrium to compensate locally, in a paracrine fashion, for the dramatic loss of circulating insulin (Ramin et al., 2010) and IGF1 levels (Fig. 1). Unlike insulin, the IGFs are present in most tissues and cell types. The liver is the major source for systemic IGFs (Schwander et al., 1983). This has been shown for IGF1 by a liver specific knock-down (Yakar et al., 1999) with a 75% drop in systemic IGF1. If ALS (IGF1-IGFBP3-ALS), a factor essential for IGF1 synthesis, was additionally eliminated in these mice IGF1 serum level decreased to 5% (Yakar et al., 2002). It is important to emphasise that 120 a 80 b 40 b 20 0 no treatment insulin C 120 a 100 100 60 120 80 40 20 0 no treatment insulin D a 100 b b 60 IGF1 120 rrelativee IR-R RNA am mount % of co [% ontrolss] rrelativee IGF11-RNA A amou unt [% of contro ols] B 140 rellative IIGF1R R-RNA A amouunt [% % of controlss] A the relevant IGFs for reproduction are produced locally in the uterus, creating a micromilieu sufficient for IGF action and to secure pregnancy. These IGFs act paracrine and compensate for the systemic loss. In diabetic women, this local safeguard regulation cannot be detected by measurement of serum IGFs. In the rabbit the IGF expression profiles of the embryoblast and trophoblast (Fig. 2B) show a distinct pattern with a 4 to 5-fold higher expression of both growth factors in the embryoblast. IGFs are known as ‘‘GF of the embryoblast/ICM’’ (Harvey and Kaye, 1992; Kaye, 1997; Navarrete Santos et al., 2008; Pantaleon et al., 1997). This view is supported by current findings, indicating a higher local requirement of IGF1 and IGF2 activation in the embryoblast than in the trophoblast. These important growth factors are not only produced by the blastocyst itself but cross the trophectoderm via transcytosis from the uterine lumen, as shown for IGF1 by electron microscopy (Smith et al., 1993). In this study we show that IGF2 is a key player in ICM/embryoblast development, too, by activating the mitogenic Erk pathway to a greater extend in embryoblast than in trophoblast cells (Fig. 4B). The specific importance of IGF1 and IGF2 has been demonstrated in knockout models. Whereas an IGF1 knockout results in a reduced viability at birth and growth, in developmental defects of the lung, brain, skeleton, muscle and in infertility of the offspring (Butler and LeRoith, 2001; Powell-Braxton et al., 1993; Rother and Accili, 2000), an IGF2 knockout leads to a reduced birth weight and infertility (DeChiara et al., 1990). IGF2 knockout offspring are able to catch up weight postnatally. This suggests a stronger impact of IGF1 than IGF2 on early embryonic developmental failures (Baker et al., 1993; Rother and Accili, 2000). As seen in our study expression of IGFs in the preimplantation period can be altered in specific metabolic conditions with a potential impact of both studied IGFs on long-term development. As shown in current study the ‘‘insulin gap’’ in exp IDD can be bridged during pregnancy. Maternal exp IDD affects both parts of IGF signalling, receptor and ligand expression, in the embryo and endometrium. While IR and IGF1R (Ramin et al., 2010); Fig 6) are down-regulated in exp IDD, expression of both ligands is increased (Fig. 2). The sensitivity for intracellular downstream activation is diminished by 55% and 80% of total available Akt and Erk in rrelativee IGF22-RNA A amouunt [% of contro ols] in vitro culture, insulin had decreased IGF1 and IGF2 mRNA levels 101 R. Thieme et al. / Molecular and Cellular Endocrinology 358 (2012) 96–103 IGF1 a 100 80 60 b 40 b 20 0 no treatment insulin IGF1 80 b 60 b 40 20 0 no treatment insulin IGF1 Fig. 6. Ligand (IGF1 and IGF2) and receptor (IR and IGF1) expression in cultured rabbit blastocysts. IGF1, IGF2, IR and IGF1R RNA were measured by real time RT-PCR after h (A and B) and short time 1 h (C and D) in vitro exposure to insulin or IGF1. The transcript numbers of non-treated controls were set to 100%. The expression of IGF1 (A) 12 and IGF2 (B) are decreased by 55% by insulin and by 70% and 50% by IGF1, respectively (mean ± SEM; N = 2; n = 8; one-way ANOVA with a p < 0.001). Insulin and IGF1 decreased (C) IGF1R RNA by 70% and (D) IR RNA by 50% (insulin) and 65% (IGF1), respectively (mean ± SEM; N = 3; n = 10; one-way ANOVA with a p < 0.001). 102 R. Thieme et al. / Molecular and Cellular Endocrinology 358 (2012) 96–103 blastocysts from diabetic mothers (Fig. 5A). Although the proportion of active phosphorylated to non-phosphorylated protein is the same in blastocysts from control and exp IDD mothers (Fig. 5B). Exp IDD blastocysts have an impaired metabolic and developmental competence due to the lower content of Akt and Erk. Experimental evidence for this view has recently been given by a delay in development and mesoderm initiation, an increase in apoptotic cells in the embryonic disc and a decrease in the expression of enzymes related to glucose homeostasis (HK2 and PEPCK) reported for exp IDD blastocysts by Ramin et al. (2010) and Thieme et al. (2012). To further elucidate the responsiveness of blastocysts from exp IDD mothers we have treated exp IDD blastocysts with physiological concentrations of IGF1 (1.3 nM). Exp IDD blastocysts show a lower capacity of IGF1 to activate Akt and Erk (Fig. 5C). The increase in IGF1 and IGF2 ligands can therefore be seen as an adaptation to gap growth factor activity in blastocysts during diabetic pregnancy. In this context it is important to note that the ability to compensate for kinase activity is different between Erk1 and Erk2. Erk2 contributes to trophoblast formation in the mouse and activation proliferation of polar trophectoderm cells (Saba-El-Leil et al., 2008). However, Erk1 is unable to compensate for a lack in Erk2 activation for trophoblast formation (Saba-El-Leil et al., 2008), while disturbances in Erk1 do not result in any developmental phenotype (Pagès et al., 1999). A disturbed Erk/MAPK activation has been shown to result in defective placenta development (Rossant and Cross, 2001). Erk activation can be seen as one of the most important proliferative signals to promote cell cycle progression during whole embryonic development (Li et al., 2011). 5. Conclusion A direct link may exist between the disarranged IGF/insulin axis with a lack in kinase activation, disturbed activation of Wnt signalling responsible for mesoderm and heart development in early embryogenesis, and the reduced insulin and IGF1 receptor expression (Ramin et al., 2010). A disarranged Wnt signalling repertoire (ligand, receptors and intracellular signalling molecules) in foetal hearts by maternal diabetes has been shown in mice (Pavlinkova et al., 2008,2009). In the rabbit insulin has the capacity to initiate mesoderm formation via Wnt3a and Wnt4, two of the most potent factors for mesoderm induction, and the Erk signalling pathway in vitro. Wnt3a expression is down regulated in gastrulating blastocysts from exp IDD (Thieme et al., 2012). Acknowledgement We thank Michaela Kirstein, Franziska Knöfel and Sabine Schrötter for excellent technical assistant. This work was supported by the German Research Council (DFG; grant number NA 418/4-2) and the Wilhelm Roux Programme of the MLU Faculty of Medicine. References D., Liu, J., Robertson, E., Efstratiadis, A., 1993. Role of insulin-like growth Baker, factors in embryonic and postnatal growth. Cell 75, 73–82. Butler, A.A., LeRoith, D., 2001. Minireview: tissue-specific versus generalized gene targeting of the igf1 and igf1r genes and their roles in insulin-like growth factor physiology. Endocrinology 142, 1685–1688. Casson, I., Clarke, C., Howard, C., McKendrick, O., Pennycook, S., Pharoah, P., Platt, M., Stanisstreet, M., van Velszen, D., Walkinshaw, S., 1997. Outcomes of pregnancy in insulin dependent diabetic women: results of a five year population cohort study. BMJ 315, 275–278. Chi, M.M.-Y., Schlein, A.L., Moley, K.H., 2000. High insulin-like growth factor 1 (IGF1) and Insulin concentrations trigger apoptosis in the mouse blastocyst via down-regulation of the IGF-1 receptor. Endocrinology 141, 4784–4792. Colao, A., Di Somma, C., Cascella, T., Pivonello, R., Vitale, G., Grasso, L.F.S., Lombardi, G., Savastano, S., 2008. Relationships between serum IGF1 levels, blood pressure, and glucose tolerance: an observational, exploratory study in 404 subjects. Eur. J. Endocrinol. 159, 389–397. DeChiara, T.M., Efstratiadis, A., Robertsen, E.J., 1990. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345, 78–80. Gargosky, S.E., Moyse, K.J., Walton, P.E., Owens, J.A., Wallace, J.C., Robinson, J.S., Owens, P.C., 1990. Circulating levels of insulin-like growth factors increase and molecular forms of their serum binding proteins change with human pregnancy. Biochem. Biophs. Res. Commun. 170, 1157–1163. Harvey, M.B., Kaye, P.L., 1992. Mediation of the actions of insulin and insulin-like growth factor-1 on preimplantation mouse embryos in vitro. Mol. Reprod. Dev. 33, 270–275. Heyner, S., Rao, L.V., Jarett, L., Smith, R.M., 1989. Preimplantation mouse embryos internalize maternal insulin via receptor-mediated endocytosis: pattern of uptake and functional correlations. Dev. Biol. 134, 48–58. Kaye, P.L., 1997. Preimplantation growth factor physiology. Rev. Reprod. 2, 121–127. Li, P., Cavallero, S., Gu, Y., Chen, T.H.P., Hughes, J., Hassan, A.B., Bruning, J.C., Pashmforoush, M., Sucov, H.M., 2011. IGF signaling directs ventricular cardiomyocyte proliferation during embryonic heart development. Development 138, 1795–1805. Lighten, A., Hardy, K., Winston, R., Moore, G., 1997. Expression of mRNA for the insulin-like growth factors and their receptors in human preimplantation embryos. Mol. Reprod. Dev. 47, 134–139. Lighten, A., Moore, G., Winston, R., Hardy, K., 1998. Routine addition of human insulin-like growth factor-I ligand could benefit clinical in-vitro fertilization culture. Hum. Reprod. 13, 3144–3150. Liu, J., Baker, J., Perkins, A., Robertson, E., Efstratiadis, A., 1993. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75, 59–72. Maurer, R., 1978. Advances in rabbit embryo culture. In: Daniel, J.C., Jr. (Ed.), Methods in Mammalian Reproduction. Academic Press, New York, pp. 259–272. Nason, K.S., Binder, N.D., Labarta, J.I., Rosenfeld, R.G., Gargosky, S.E., 1996. IGF-II and IGF-binding proteins increase dramatically during rabbit pregnancy. J. Endocrinol. 148, 121–130. Navarrete Santos, A., Korber, S., Kullertz, G., Fischer, G., Fischer, B., 2000. Oxygen stress increases prolyl cis/trans isomerase activity and expression of Cyclophilin 18 in rabbit blastocysts. Biol. Reprod. 62, 1–7. Navarrete Santos, A., Ramin, N., Tonack, S., Fischer, B., 2008. Cell lineage-specific signaling of insulin and insulin-like growth factor I in rabbit blastocysts. Endocrinology 149, 515–524. Navarrete Santos, A., Tonack, S., Kirstein, M., Kietz, S., Fischer, B., 2004a. Two insulin-responsive glucose transporter isoforms and the insulin receptor are developmentally expressed in rabbit preimplantation embryos. Reproduction 128, 503–516. Navarrete Santos, A., Tonack, S., Kirstein, M., Pantaleon, M., Kaye, P., Fischer, B., 2004b. Insulin acts via mitogen-activated protein kinase phosphorylation in rabbit blastocysts. Reproduction 128, 517–526. Pagès, G., Guérin, S., Grall, D., Bonino, F., Smith, A., Anjuere, F., Auberger, P., Pouysségur, J., 1999. Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science 286, 1374–1377. Pantaleon, M., Whiteside, E.J., Harvey, M.B., Barnard, R.T., Waters, M.J., Kaye, P.L., 1997. Functional growth hormone (GH) receptors and GH are expressed by preimplantation mouse embryos: a role for GH in early embryogenesis? Proc. Natl. Acad. Sci. U. S. A. 94, 5125–5130. Pavlinkova, G., Salbaum, J.M., Kappen, C., 2008. Wnt signaling in caudal dysgenesis and diabetic embryopathy. Birth Defects Res. A Clin. Mol. Teratol. 82, 710–719. Pavlinkova, G., Salbaum, M., Kappen, C., 2009. Maternal diabetes alters transcriptional programs in the developing embryo. BMC Genomics 10. Penney, G.C., Mair, G., Pearson, D.W.M., Scottish Diabetes in Pregnancy Group, 2003. Outcomes of pregnancies in women with type 1 diabetes in Scotland: a national population-based study. BJOG 110, 315–318. Powell-Braxton, L., Hollingshead, P., Warburton, C., Dowd, M., Pitts-Meek, S., Dalton, D., Gillett, N., Stewart, T.A., 1993. IGF-I is required for normal embryonic growth in mice. Genes Dev. 7, 2609–2617. Prast, J., Saleh, L., Husslein, H., Sonderegger, S., Helmer, H., Knöfler, M., 2008. Human chorionic gonadotropin stimulates trophoblast invasion through extracellularly regulated kinase and AKT signaling. Endocrinology 149, 979–987. Ramin, N., Thieme, R., Fischer, S., Schindler, M., Schmidt, T., Fischer, B., Navarrete Santos, A., 2010. Maternal diabetes impairs gastrulation and insulin and IGF-I receptor expression in rabbit blastocysts. Endocrinology 151, 4158–4167. Rappolee, D., Sturm, K., Behrendtsen, O., Schultz, G., Pedersen, R., Werb, Z., 1992. Insulin-like growth factor II acts through an endogenous growth pathway regulated by imprinting in early mouse embryos. Genes Dev. 6, 939–952. Rossant, J., Cross, J.C., 2001. Placental development: lessons from mouse mutants. Nat. Rev. Genet. 2, 538–548. Rother, K.I., Accili, D., 2000. Role of insulin receptors and IGF receptors in growth and development. Pediatr. Nephrol. 14, 558–561. Saba-El-Leil, M., Vella, F., Vernay, B., Voisin, L., Chen, L., Labrecque, N., Ang, S., Meloche, S., 2008. An essential function of the mitogen-activated protein kinase Erk2 in mouse trophoblast development. EMBO Rep. 4, 964–968. Schultz, G., Hogan, A., Watson, A., Smith, R., Heyner, S., 1992. Insulin, insulin-like growth factors and glucose transporters: temporal patterns of gene expression in early murine and bovine embryos. Reprod. Fertil. Dev. 4, 361–371. Schwander, J.C., Hauri, C., Zapf, J., Froesch, E.R., 1983. Synthesis and secretion of insulin-like growth factor and its binding protein by the perfused rat liver: dependence on growth hormone status. Endocrinology 113, 297–305. 103 R. Thieme et al. / Molecular and Cellular Endocrinology 358 (2012) 96–103 Shishko, P.I., Dreval, A.V., Abugova, I.A., Zajarny, I.U., Goncharov, V.C., 1994. Insulin- like growth factors and binding proteins in patients with recent-onset type 1 (insulin-dependent) diabetes mellitus: Influence of diabetes control and intraportal insulin infusion. Diabetes Res. Clin. Pract. 25, 1–12. Smith, R.M., Garside, W.T., Aghayan, M., Shi, C.Z., Shah, N., Jarett, L., Heyner, S., 1993. Mouse preimplantation embryos exhibit receptor-mediated binding and transcytosis of maternal insulin-like growth factor I. Biol. Reprod. 49, 1–12. Thieme, R., Ramin, N., Fischer, S., Püschel, B., Fischer, B., Navarrete Santos, A., 2012. Gastrulation in rabbit blastocysts depends on insulin and insulin-like-growthfactor 1. Mol. Cell. Endocrinol. 348, 112–119. Toyofuku, A., Hara, T., Taguchi, T., Katsura, Y., Ohama, K., Kudo, Y., 2006. Cyclic and characteristic expression of phosphorylated Akt in human endometrium and decidual cells in vivo and in vitro. Hum. Reprod. 21, 1122–1128. Verheijen, E.C.J., Critchley, J.A., Whitelaw, D.C., Tuffnell, D.J., 2005. Outcomes of pregnancies in women with pre-existing type 1 or type 2 diabetes, in an ethnically mixed population. BJOG 112, 1500–1503. Yakar, S., Liu, J., Stannard, B., Butler, A., Accili, D., Sauer, B.D.L., 1999. Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc. Natl. Acad. Sci. 96, 7324–7329. Yakar, S., Rosen, C., Beamer, W., Ackert-Bicknell, C., Wu, Y., Liu, J., Ooi, G., Setser, J., Frystyk, J., Boisclair, Y., LeRoith, D., 2002. Circulating levels of IGF-1 directly regulate bone growth and density. J. Clin. Invest. 110, 771–781. Yang, J., Cummings, E.A., O’Connell, C., Jangaard, K., 2006. Fetal and neonatal outcomes of diabetic pregnancies. Obstet. Gynecol. 108, 644–650. REPRODUCTION-DEVELOPMENT cAMP-Responsive Element Binding Protein: A Vital Link in Embryonic Hormonal Adaptation Maria Schindler,* Sünje Fischer,* René Thieme, Bernd Fischer, and Anne Navarrete Santos Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, D-06097 Halle (Saale), Germany The transcription factor cAMP responsive element-binding protein (CREB) and activating transcription factors (ATFs) are downstream components of the insulin/IGF cascade, playing crucial roles in maintaining cell viability and embryo survival. One of the CREB target genes is adiponectin, which acts synergistically with insulin. We have studied the CREB-ATF-adiponectin network in rabbit preimplantation development in vivo and in vitro. From the blastocyst stage onwards, CREB and ATF1, ATF3, and ATF4 are present with increasing expression for CREB, ATF1, and ATF3 during gastrulation and with a dominant expression in the embryoblast (EB). In vitro stimulation with insulin and IGF-I reduced CREB and ATF1 transcripts by approximately 50%, whereas CREB phosphorylation was increased. Activation of CREB was accompanied by subsequent reduction in adiponectin and adiponectin receptor (adipoR)1 expression. Under in vivo conditions of diabetes type 1, maternal adiponectin levels were up-regulated in serum and endometrium. Embryonic CREB expression was altered in a cell lineage-specific pattern. Although in EB cells CREB localization did not change, it was translocated from the nucleus into the cytosol in trophoblast (TB) cells. In TB, adiponectin expression was increased (diabetic 427.8 ⫾ 59.3 pg/mL vs normoinsulinaemic 143.9 ⫾ 26.5 pg/mL), whereas it was no longer measureable in the EB. Analysis of embryonic adipoRs showed an increased expression of adipoR1 and no changes in adipoR2 transcription. We conclude that the transcription factors CREB and ATFs vitally participate in embryo-maternal cross talk before implantation in a cell lineage-specific manner. Embryonic CREB/ATFs act as insulin/IGF sensors. Lack of insulin is compensated by a CREB-mediated adiponectin expression, which may maintain glucose uptake in blastocysts grown in diabetic mothers. (Endocrinology 154: 2208 –2221, 2013) distinct activation pattern of transcription factors is required for normal development and survival of mammalian embryos. Growth hormones and metabolic factors like glucose control transcription factor activity. The family of insulin and IGFs plays a fundamental role in early embryo development, mediating mitogenic, antiapoptotic, and anabolic effects (1, 2). IGF-I and IGF-II are produced by the embryo and by reproductive tissues in the human (3), rabbit (4, 5), and mouse (6, 7). The production of IGF-I in bovine preimplantation embryos is controver- sially discussed with publications reporting IGF-I by the embryo (7) or not (8, 9). Insulin has to be provided by the mother, because the embryo cannot produce insulin itself in mammals (3, 4, 6, 7). Insulin and IGFs can partly compensate for each other. So far, few attempts have been made to investigate mechanisms of insulin compensation and replacement during early pregnancy (5). Adiponectin is the most abundantly secreted adipokine with a 1000 times greater serum concentration than that of others. Adiponectin exerts its biological function by ISSN Print 0013-7227 * M.S. and S.F. contributed equally to this work. A ISSN Online 1945-7170 Printed in U.S.A. Copyright © 2013 by The Endocrine Society Received November 1, 2012. Accepted April 1, 2013. First Published Online April 8, 2013 2208 endo.endojournals.org Abbreviations: adipoR, adiponectin receptor; ATF, activating transcription factor; BSM, basal synthetic medium; CRE, cAMP responsive element; CREB, CRE-binding protein; CREM, CREB modulator protein; EB, embryoblast; exp IDD, experimentally induced insulindependent diabetes; GAPDH, glyceraldehyde-3-phosphate; IGF-IR, IGF-I receptor; IR-A, insulin receptor isoform A; 3-OMG, 3-O-methyl-d-[1-3H]glucose; p.c., postcoitum; qPCR, quantitative PCR; TB, trophoblast. Endocrinology, June 2013, 154(6):2208 –2221 doi: 10.1210/en.2012-2096 The Endocrine Society. Downloaded from press.endocrine.org by [Amanda Price] on 24 February 2015. at 10:44 For personal use only. No other uses without permission. . All rights reserved. doi: 10.1210/en.2012-2096 endo.endojournals.org 2209 binding to the adiponectin receptor (adipoR)1 or adipoR2. Both receptors are transmembrane proteins and located in embryoblast (EB) inner cell mass and trophoblast (TB) cells (10). Adiponectin is an important insulin sensitizing adipokine (11–14). Adiponectin production and functional signaling has previously been shown in rabbit and murine preimplantation embryos (10, 15, 16, for review see Ref. 17). Adiponectin has profound effects on glucose metabolism by enhancing embryonic glucose uptake and translocation of the solute carrier family 2 (facilitated glucose transporter), member 4 (also known as glucose transporter 4) from the cytosol to the cell membrane. Overexpression of adiponectin improves insulin sensitivity, and down-regulation of adiponectin goes along with insulin resistance and obesity (11, 18 –20). The expression of adiponectin and its receptors are regulated by several extracellular signals and hormones, including IGF-I, insulin, and TNF␣ (21, 22). A potential mediator for the transcriptional regulation of adiponectin is the cAMP responsive element (CRE)-binding protein (CREB) transcription factor (23–25). CREB acts as a downstream effector in many signaling pathways. These pathways are mainly regulated in response to growth factors, stress signals, intracellular Ca2⫹, and specific peptides. So far, more than 300 different signals are known to activate CREB. The rate-limiting step of CREB activity is the phosphorylation of CREB at the residue Ser133 (26). A phosphorylation of CREB is essential for dimerization and binding to CREB-binding protein. After binding to the CRE element, the transcription of target genes is activated. Activating transcription factor (ATF)1 and CREB modulator protein (CREM) are members of the CREB/ ATF family. Both factors, ATF1 and CREM, can form heterodimers with CREB and induce transcription (27, 28). Furthermore, CREB and ATF1, sharing an overall 70% sequence homology, are expressed ubiquitously, whereas CREM is predominantly expressed in neuroendocrine tissue (27, 28). Previous studies failed to detect CREM in the preimplantation embryo but showed a strong coexpression of CREB and ATF1 during mouse preimplantation development (29, 30). A deletion of CREB and ATF1 results in embryonic death before implantation (29). During embryo development, CREB and ATF1 can compensate for each other. However, ATF1 possesses a lower transcriptional activity than CREB due to a lack of the glutaminerich domain (31). The phosphorylation of CREB and its nuclear localization has first been observed in the 2-cell embryo stage of the mouse at the onset of embryonic genome activation (30). In Xenopus laevis, CREB regulates cell specification in early development (32). An inhibition of CREB at blastula and early gastrula stages as well as at the beginning of neurulation has deleterious effects on embryogenesis with malformations, such as microcephaly and spina bifida (33) The functional properties of other family members, ATF3 and ATF4 (also called CREB-2), are poorly understood, particularly in early embryo development. Both transcription factors can function as transcriptional activators or repressors. The ATF3 knockout mouse does not exhibit any distinguishable phenotype (34). However, mice deficient in ATF4 are 50% smaller than their wildtype counterparts and suffer from a variety of developmental defects (35–37). ATF4 acts as a negative regulator of insulin secretion and insulin sensitivity in liver, muscle, and fat (38, 39). The ATF4⫺/⫺ mutant mouse is resistant to diet-induced and age-dependent obesity and diabetes (37). We investigated the CREB-ATF network during preimplantation embryo development in the rabbit (40). We have characterized the expression and localization of CREB and the ATFs in rabbit blastocyst gastrulation in normal development and under experimentally induced insulin-dependent diabetes (exp IDD). Furthermore, we have stimulated blastocysts with insulin and IGFs in vitro. Our results show that insulin and IGF-I down-regulate adiponectin and adipoR1 expression in vitro. A maternal diabetes mellitus type 1 increases embryonic adiponectin and adipoR1 expression mediated by CREB and ATF transcription factors. Materials and Methods Embryo recovery Embryos were collected from sexually mature rabbits stimulated with 110 IU pregnant mare serum gonadotropin sc (Intervet, Unterschleißheim, Germany) 3 days before mating. After mating, 75 IU human choriongonadotropin was injected iv (Intervent). Mating and embryo recovery were performed as described (41). On days 3, 4, and 6 postcoitum (p.c.), embryos were flushed from oviducts or uteri, respectively, washed 3 times with PBS, and randomly divided among the experimental groups. On day 6 p.c., gastrulation stages can be reliably discriminated in the rabbit, because implantation starts on day 6 18 hours, ie, half a day later (30). In vitro culture To study the effects of insulin and IGF-I on CREB, adiponectin, and ATF expression, day 6 blastocysts were cultured in groups of 5-10 at 37°C in a water-saturated atmosphere of 5% O2, 5% CO2, 90% N2 in a water-jacketed incubator (HERAcell 150i, Heraeus; Thermo Fisher Scientific, Bonn, Germany). Blastocysts were precultured for 2 hours in serum- and insulin-free basal synthetic medium (BSM) (42). Afterwards, either 17nM The Endocrine Society. Downloaded from press.endocrine.org by [Amanda Price] on 24 February 2015. at 10:44 For personal use only. No other uses without permission. . All rights reserved. 2210 Schindler et al Role of CREB in Embryonic Hormonal Adaptation Endocrinology, June 2013, 154(6):2208 –2221 insulin (Invitrogen, Karlsruhe, Germany), 1.3nM IGF-I, or 13nM IGF-II (Sigma, Taufkirchen, Germany) was added to the culture medium, and the culture was continued for different time intervals (10 min to 12 h). The concentrations comply with physiological ranges measured within the Fallopian tube and uterine cavity in the human (3, 43) and rhesus (43) and have been employed in various other studies before (4, 44 – 46). They are known to specifically activate IGF-I receptor (IGF-IR) (IGF-I), insulin receptor isoform A (IR-A) and IGF-IR (IGF-II), and IR-A and IR-B (insulin) (47). Controls were cultured without insulin, IGF-I, or IGF-II but otherwise treated identically. Phosphorylation of CREB was analyzed after culture in the presence or absence of insulin, IGF-I, or IGF-II for 10 minutes. To analyze transcriptional regulation, blastocysts were cultured with or without insulin or IGF-I for 6 and 12 hours, respectively. The influence of glucose on adiponectin transcription was analyzed in blastocysts cultured with 0mM, 10mM, or 25mM glucose. Day 6 p.c. blastocysts were cultured in groups of 5-6 for 6 hours. Alloxan treatment exp IDD was induced in 18- to 20-week-old female nonpregnant rabbits by alloxan (Sigma) treatment as described before (4). Rabbits were hold in diabetic conditions with permanent blood glucose concentrations of more than 14 mmol/L by regular insulin supplementation 4 times per day (Insuman Rapid and Lantus; Sanofi-Aventis, München, Germany), started at the second day after alloxan treatment. The blood glucose level was monitored with MediSense Precision Xceed Diabetes Management System (Abbott, Wiesbaden, Germany) 2 times per day. Therefore, fresh blood was collected at 10 AM and 6 PM by puncturing the vena auricularis lateralis and tested for glucose concentration by a commercial test strip. All animal experiments were conducted in accordance with the principles of laboratory animal care, and the experimental protocol had been approved by the local ethical commission of the Landesverwaltungsamt Dessau (reference number 42502-2-812). RNA isolation and cDNA synthesis mRNA of single blastocysts was extracted with Dynabeads Oligo(dT) (Invitrogen) and subsequently used for cDNA syn25 thesis. All protocol procedures were carried out according to the manufacturer’s instructions, with modification described previously by Tonack et al (48). Reverse transcription-polymerase chain reaction RT-PCR amplification was carried out with 0.5 L cDNA from single blastocysts in a 25 L volume containing 200M each deoxyribonucleotide, 2.5 U Taq polymerases, and specific oligonucleotides for CREB, ATF1, ATF2, ATF4, adiponectin, and glyceraldehyde-3-phosphate (GAPDH) (primers listed in Table 1). Nucleotide sequence for rabbit CREB and ATF1 were determined using human primers for amplification of rabbit liver cDNA. The amplification was done for 40 cycles (94°C for 45 sec, 60°C for 45 sec, and 72°C for 60 sec). Resulting PCR products were separated by electrophoresis on 2% agarose gel and stained with ethidium bromide. RT-qPCR Real-time analyses (RT-quantitative PCR [qPCR]) were performed as duplicates by using the Applied Biosystems StepOnePlus System (Applied Biosystems, Darmstadt, Germany) with a no template control for each primer set as described in Thieme et al (5). The nucleotide sequences of the primers used in this study are listed in Table 1. GAPDH was simultaneously quantified as endogenous control, and target gene expression was normalized to that of GAPDH in each sample. GAPDH was shown to be unaffected by the treatment, because no variation in the absolute GAPDH levels compared with GAPDH RNA levels in blastocysts from healthy rabbits were observed (5). Analysis of the individual data therefore yielded values relative to these standards. Data are expressed as percentage relative to control blastocysts. Protein preparation and immunoblotting Protein preparation, quantification, and Western blotting were performed with 8-10 blastocysts as described in Fischer et al (10). For Western blot analysis, 25 g total protein lysates were subjected to sodium dodecyl sulfate-polyacrylamide electrophoresis and electrotransferred to nitrocellulose membranes. For detection of phospho-CREB, CREB and -actin membranes were blocked in Tris-buffered saline containing 0.1% (vol/vol) Triton X-100 with 3% (wt/vol) nonfat dry milk at room temperature for at least 1 hour. For ATF1 and ATF3 detection, Table 1. Primers used for RT-PCR and RT-qPCR Gene name GenBank number Temperature (°C) Fragment (bp) Sequence 5ⴕ33ⴕ Adiponectin DQ334867 60 158 ATF1 NM_005171 60 197 ATF3 XM_002717521 60 163 ATF4 LOC100339383 60 193 CREB NM_004379.3 60 169 GAPDH L23961 60 144 fw: cctggtgagaagggtgaaaa rev: gctgagcggtagacataggc fw: caacctggttcagcagttc rev: tttctgccccgtgtatcttc fw: cgctggtgtttgaggatttt rev: ctgactccagtgcagacgac fw: gcgagaagctggagaagaag rev: tccagcaggtccttgaggta fw: gtatgcacagaccacggatg rev: tgcaggctgtgtaggaagtg fw: gccgcttcttctcgtgcag rev: atggatcattgatggcgacaacat The Endocrine Society. Downloaded from press.endocrine.org by [Amanda Price] on 24 February 2015. at 10:44 For personal use only. No other uses without permission. . All rights reserved. doi: 10.1210/en.2012-2096 endo.endojournals.org 2211 membranes were blocked in Tris-buffered saline containing (vol/vol) Triton X-100 with 3% (wt/vol) BSA for 1 hour. 0.1% The primary antibody was incubated at 4°C overnight. Antibodies were as following: phospho-CREB (no.9196, 1:1000; Cell Signaling Technology, Beverly, Massachusetts), CREB (no. 9104, 1:1000; Cell Signaling Technology), ATF1 (sc-243, 1:1000; Santa Cruz Biotechnology, Inc, Santa Cruz, California), ATF3 (sc-81189, 1:500; Santa Cruz Biotechnology, Inc), -actin (A-5441, 1:40 000; Sigma), and antimouse IgG conjugated to horseradish peroxidase (115-036-003, 1:45 000; Dianova, Hamburg Germany). The amounts of phosphorylated proteins were evaluated by stripping the membranes and reblotting with the nonphosphorylated protein antibody. The amount of phosphorylated CREB relative to CREB was measured in each sample by image analysis. Protein phosphorylation was calculated as the ratio of band intensities (phosphorylated protein vs nonphosphorylated protein) in the same blot to correct for differences in protein loading. Immunohistochemical localization of CREB, ATFs, and adiponectin Blastocysts were washed twice in ice-cold PBS and fixed in 4% (wt/vol) paraformaldehyde at 4°C overnight. Preparation and immunohistochemical protocol were performed as described in Fischer et al (10). Antibodies for CREB (Cell Signaling Technology) and ATF1 and ATF3 (both Santa Cruz Biotechnology, Inc) were diluted 1:400 in 3% (wt/vol) BSA/PBS. For adiponectin detection, the antibody (ab 22554; Abcam, Cambridge, Massachusetts) was diluted 1:100 in (wt/vol) BSA/PBS. The secondary antibody Dako EnVision ⫹ System-HRP labeled Polymere antimouse (1:1 in PBS, K4001; Dako, Glostrup, Denmark) and diaminobenzidine (WAK-Chemie Medikal, Steinbac, Germany) were used for detection. For immunofluorescence detection, a secondary antibody conjugated with fluoresceinthiocyanate (1:250 dilution) was used. The nuclei were counterstained with Hoechst for 5 minutes. All steps were performed within the same experiment, examined microscopically during the same session, using identical microscope and camera settings. Adiponectin ELISA Adiponectin concentrations in embryonic tissue and blastocysts fluid were measured by ELISA (AdipoGen, San Diego, Cal- ifornia). All protocol procedures were carried out according to the manufacturer’s instructions. To measure serum adiponectin concentration, blood samples were collected with S-Monovetten (Sarstedt, Nümbrecht, Germany), left to coagulate for at least 30 minutes, and centrifuged for 10 minutes by 4°C and 1000g. The supernatant was stored at ⫺80°C until use. Endometrium samples were collected by opening the uterus on the antimesometrial side. Endometrium was removed mechanically from the myometrium with a scalpel and stored at ⫺80°C for subsequent protein preparation and analysis by ELISA. Flushed blastocysts were washed 3 times with ice-cold PBS. Blastocyst stage and size were determined. Blastocysts were then placed on a dry watch glass. Extracellular coverings were removed mechanically, blastocysts were punctured, and the effluent cavity fluid was collected. Blastocyst fluids were stored at ⫺80°C until use. Blastocysts were then separated into TB and EB for further analyses (45). EBs and TBs of single blastocyst samples were stored in PBS at ⫺80°C for subsequent protein preparation and analysis by ELISA. In vitrocultured blastocysts were washed twice in ice-cold PBS and stored in radioimmunoprecipitation buffer at ⫺80°C until use. Adiponectin concentrations were quantified in duplicate and compared with an internal adiponectin standard (0.1-32 ng/mL). Glucose transport studies Glucose uptake was measured as previously described (10). After preculture for 2 hours, embryos were washed 3 times in glucose-free BSM II media and transferred into 600-L pulse droplets, kept strictly at 37°C for 3 minutes. The glucose-free pulse medium contained 0.3mM 3-O-methyl-d-[1-3H]glucose (3-OMG) (37 GBq/L; Amersham, Piscataway, New Jersey) and 25mM 3-OMG (Sigma-Aldrich, Munich, Germany). Uptake was stopped after 3 minutes by transferring the embryos through 4 washes of ice-cold, glucose-free BSM II media. The diameters of the embryos were recorded using a calibrated ocular micrometer. Radioactivity of individual embryos was determined in a Packard 1600TR liquid scintillation analyzer. Uptake of 3-OMG is expressed as nanomoles per minute per surface area (cm2). Statistics All data are expressed as means ⫾ SEM. Levels of significance between groups were calculated by factorial ANOVA with Bonferroni adjustment. P ⬍ .05 was considered statistically significant. All experiments were conducted at least 3 times. Results Expression of CREB in rabbit embryos In 3-day-old morulae, the transcription of CREB was not detectable, but it was present in early blastocysts on day 4 p.c. (Figure 1A). Blastocysts at day 6 showed an increase in CREB transcript levels during gastrulation from stage 1 to stage 3 compared with stage 0 (Figure 1B). A corresponding increase in CREB protein amount from stage 1 to stage 2 was verified by Western blotting (Figure 1, C and D). Using the same anti-CREB antibody for immunohistochemical detection, CREB was localized in both EB and TB with the most prominent localization in the nuclei of EB cells (Figure 1E). Activation of CREB by insulin, IGF-I, and IGF-II in in vitro-cultured blastocysts Transcriptional activation of CREB is commonly associated with phosphorylation at residue Ser133 and nuclear translocation. To clarify whether CREB can be activated by insulin and IGFs, we stimulated blastocysts with 17nM insulin, 1.3nM IGF-I, or 13nM IGF-II for 10 minutes in vitro. The antibody used in the phosphorylation assay detected specifically CREB phosphorylated at Ser133 (phospho-CREB Ser133). Supplementation led to an increased amount of phosphorylated CREB (Figure 1G). The rela- The Endocrine Society. Downloaded from press.endocrine.org by [Amanda Price] on 24 February 2015. at 10:44 For personal use only. No other uses without permission. . All rights reserved. 2212 Schindler et al Role of CREB in Embryonic Hormonal Adaptation Endocrinology, June 2013, 154(6):2208 –2221 A ntc d3 d4 d6 st 1 st 2 st 3 CREB GAPDH st 1 st 2 C CREB B E 30 D *** 25 ** 20 15 10 5 10 relative CREB protein amount relative CREB mRNA expression [fold change] β-acn * * 8 6 4 2 0 0 st 0 st 1 st 2 st 1 st 3 a) st 2 b) c) EB TB F 350 ** H G * 300 ctrl 250 ins IGF1 IGF2 p-CREB * 200 CREB β-acn 150 100 50 0 120 relative CREB mRNA amount [%] relative p-CREB amount [% of control] EB 100 80 * 60 * 40 20 0 control insulin IGF1 IGF2 control insulin IGF1 Figure 1. Expression of CREB in rabbit preimplantation embryos. (A) Transcripts of CREB were detected in day 3, 4, and 6 p.c. embryos and blastocysts in gastrulation stage 1 (st 1), stage 2 (st 2), and stage 3 (st 3). A probe without cDNA was used as negative control (ntc). Internal control was the expression of GAPDH in all probes. (B) Transcript amount of CREB was increased during gastrulation. The amount of CREB mRNA was measured by RT-qPCR in 9 blastocysts per group in 3 independent experiments (N ⫽ 3, n ⫽ 9). For normalization, RT-qPCR was performed for the housekeeping gene GAPDH. The results are shown as mean ⫾ SEM (*P ⬍ .05; **P ⬍ .01; ***P ⬍ .001). (D) Relative CREB protein amount in day 6 p.c. blastocysts was analyzed by Western blotting with an anti-CREB antibody and related to -actin (mean ⫾ SEM; N ⫽ 3, n ⫽ 10; *P ⬍ .05). A representative Western blotting for CREB is shown in C. (E) Immunohistochemical analysis of CREB revealed a prominent localization of CREB in the nucleus of EB cells (a) (with a higher magnification; b). The CREB protein was visualized by peroxidase-diaminobenzidine reaction (brown color). A control reaction is shown in c. In vitro stimulation of blastocysts with 17nM insulin (ins), 1.3nM IGF-I, or 13nM IGF-II led to a significantly higher phospho-CREB amount (*P ⬍ .05; **P ⬍ .01). The phosphorylation of CREB was analyzed by Western blotting with antiphospho-CREB antibody and set in relation to total CREB protein. A representative Western blotting for CREB is shown (G). Results of 3 stimulation experiments (N⫽ 3, n ⫽ 10; mean ⫾ SEM) are shown in F. (H) RT-qPCR analysis of (12 h) in vitro-stimulated blastocysts revealed a reduced amount of CREB RNA. Culture of blastocysts was performed in groups of long-time at least 5 blastocysts with or without 17nM insulin and 1.3nM IGF-I and with N ⫽ 3, n ⱖ 5. The results are shown as mean ⫾ SEM (*P ⬍ .05; **P ⬍ .01). ctrl, control. tive increase in phosphorylation is shown in Figure 1F. The in vitro stimulation with insulin or IGF-I for 12 hours led to a reduction in CREB RNA amounts (Figure 1H), indicating a negative feedback loop in embryos. Expression of ATFs in preimplantation embryo ATF1 is highly related to CREB and can compensate its absence. Starting on day 4 p.c., ATF1 expression increased in all embryonic stages investigated (Figure 2, A and B). The Endocrine Society. Downloaded from press.endocrine.org by [Amanda Price] on 24 February 2015. at 10:44 For personal use only. No other uses without permission. . All rights reserved. doi: 10.1210/en.2012-2096 endo.endojournals.org 2213 A ntc d3 d4 B d6 st 1 st 2 st 3 ATF1 ATF3 ATF4 GAPDH C D relative ATF1 mRNA expression [fold change] 12 *** 10 8 6 ** 4 * 2 0 st 0 st 1 st 2 st 3 ATF1 a) 100 ** 40 20 EB 0 control relative ATF3 mRNA expression [fold change] ** 60 E TB b) 80 insulin IGF1 F a) ATF3 30 ** 25 b) 20 EB 5 0 Figure 2. st 0 st 1 st 2 st 3 TB G relative ATF4 mRNA expression [fold change] relative ATF1 mRNA amount [%] 120 1,4 1,2 1,0 0,8 0,6 ** 0,4 0,2 0,0 st 0 st 1 st 2 st 3 Expression of ATF family in rabbit preimplantation embryos. (A) Analysis by RT-PCR shows an expression from day 4 to 6 p.c. for ATF1 and from day 3 to 6 p.c. for ATF3 and ATF4. Blastocysts were staged in stage 1 (st 1), 2 (st 2), or 3 (st 3). A probe without cDNA was used as control (ntc). GAPDH was used as internal control. mRNA levels of ATF1 (B), ATF3 (E), and ATF4 (G) were quantified on day 6 p.c. by RTnegative qPCR. The experiment was performed from 9 blastocyts per stage in (N ⫽ 3, n ⫽ 9). Expression of ATF1, ATF3, and ATF4 was normalized to GAPDH, and results are shown as mean ⫾ SEM relative to stage 0 (*P ⬍ .05; **P ⬍ .01; ***P ⬍ .001). (C) Long-time in vitro stimulation with or without insulin or IGF-I was performed in groups of at least 5 blastocysts in each treatment and repeated in 3 independent replicates (N ⫽ 3, n ⱖ 5). Expression of ATF1 in the nontreated group (control) was set 100%. Culture with insulin or IGF-I led to a decreased ATF1 expression compared with the corresponding nonstimulated control (*P ⬍ .05; **P ⬍ .01). Immunohistochemical analysis of ATF1 revealed an expression in nuclei of EB (a) (with a higher magnification, b). ATF3 is shown in F (a) (with a higher magnification, b). Contrary to CREB and ATF3 (EB staining), ATF1 cells was also localized in the nuclei of TB cells (D). The Endocrine Society. Downloaded from press.endocrine.org by [Amanda Price] on 24 February 2015. at 10:44 For personal use only. No other uses without permission. . All rights reserved. 2214 Schindler et al Role of CREB in Embryonic Hormonal Adaptation Endocrinology, June 2013, 154(6):2208 –2221 C B p-CREB 120 normo- exp insulin IDD 100 80 p-CREB ** 60 CREB 40 20 0 normoinsulinaemic a1) E D relative protein amount in exp IDD [% compared to normoinsulinaemic] A relative p-CREB amount [%] 500 normoinsulin ** 400 exp IDD p-CREB 300 CREB 200 β−acn * 100 0 exp IDD CREB/b-actin p-CREB/b-actin normoinsulinaemic b1) exp IDD c1) normoinsulinaemic d1) exp IDD normoinsulinaemic b2) exp IDD c2) normoinsulinaemic d2) exp IDD a2) ATF1 G 120 relative ATF1 amount [%] 140 100 b) exp IDD ATF1 60 40 ** β−acn ATF1 0 normoinsulinaemic I ATF1 exp IDD 180 relative ATF3 mRNA expression [%] normoinsulinaemic a) 80 20 H normo- exp insulin IDD K ATF3 160 140 120 100 80 60 40 20 0 400 relative ATF4 mRNA expression [%] F ATF4 * 300 200 100 0 normoinsulinaemic exp IDD normoinsulinaemic exp IDD Figure 3. Expression pattern of the CREB family in blastocysts from diabetic rabbits. (A) The amount of phosphorylated CREB was quantified by Western blotting with an antiphospho-CREB-specific antibody in relation to nonphosphorylated protein. Results are shown as mean ⫾ SEM (N ⫽ 3, n ⫽ 10). The amount of phosphorylated CREB was significantly lower in blastocysts from diabetic rabbits (exp IDD) (*P ⬍ .05). (B) Representative Western blotting. (C) Amounts of CREB protein in blastocysts from normoinsulinaemic and diabetic rabbits (exp IDD) were quantified by Western blotting and calculated in relation to -actin (mean ⫾ SEM; N ⫽ 3, n ⫽ 10). In blastocysts from diabetic rabbits (exp IDD), CREB amount was significantly increased (*P ⬍ .05). A representative Western blotting is shown (D). (E) Immunofluorescent detection of CREB (green color) in blastocysts from normoinsulinaemic (a) and exp IDD (b) rabbits show weaker nuclear localization in TB of diabetic blastocysts. In the EB, CREB was localized in the nuclei of blastocysts from normoinsulinaemic (c) and diabetic (d) (exp IDD) rabbits. Nuclei were counterstained with Hoechst (blue) (a2, b2, c2, and d2). Arrows indicate cells with a cytoplasmatic localization (b1 and b2) or a nuclear localization (a1, a2, c1, c2, d1, and d2) of CREB. (F) Quantification of ATF1 protein revealed a significant decrease in blastocysts from diabetic rabbits (exp IDD) (**P ⬍ .01). Western blotting was performed by using a specific anti-ATF1 antibody and set in relation to -actin amount in the same probes (mean ⫾ SEM; N ⫽ 3, n ⫽ 10). (G) Representative Western blotting. (H) Immunohistochemical detection of ATF1 (brown color) showed a weaker nuclear localization in the EB of blastocysts from diabetic rabbits (exp IDD) (H). The relative amounts of ATF3 (I) and ATF4 (K) mRNA were measured by RTqPCR in at least 8 blastocysts per group. The results are shown as mean ⫾ SEM (*P ⬍ .05). The Endocrine Society. Downloaded from press.endocrine.org by [Amanda Price] on 24 February 2015. at 10:44 For personal use only. No other uses without permission. . All rights reserved. doi: 10.1210/en.2012-2096 ** 6 5 4 3 2 1 *** 250 adiponecn β−acn 100 50 200 exp IDD normoinsulinaemic blastocysts E 150 100 50 600 EB TB ** 400 300 200 100 n.d. 0 normoinsulinmaemic exp IDD F adiponectin concentration [ng/ml] exp IDD TB TB EB normoinsulinaemic 0,25 0,20 0,15 0,10 0,05 normoinsulinaemic AdipoR1 I 300 *** 250 200 5 4 3 2 150 exp IDD AdipoR2 adipoR2 copies / 10 GAPDH molecules relative adiponectin amount [% of control] H 100 50 0 ** 0,30 0,00 blastocysts fluid 0,35 EB exp IDD G b) a) exp IDD * 500 0 normoinsulinaemic exp IDD 150 adiponectin concentration [pg/ml] relative adiponectin mRNA expression [%] 2215 0 normoinsulinaemic normoinsulin 200 0 D C endometrium 300 relative adiponectin amount [% of control] B serum 7 adiponectin concentration [μg/ml] A endo.endojournals.org normoinsulinaemic exp IDD 2 1 0 normoinsulinaemic exp IDD Figure 4. Adiponectin expression in normoinsulinaemic and diabetic rabbits. (A) In the serum of normoinsulinaemic and diabetic rabbits (exp IDD), adiponectin concentration was determined by ELISA (mean ⫾ SEM; N ⫽ 3, n ⫽ 11; **P ⬍ .01). (B) Western blot analysis revealed increased amounts of adiponectin in endometrium of diabetic rabbits (exp IDD) (mean ⫾ SEM; N ⫽ 3, n ⫽ 10; ***P ⬍ .001). (C) Representative Western blotting. Expression of adiponectin in the endometrium of normoinsulinaemic rabbits was set to 100%. (D) mRNA amount of adiponectin was quantified by RT-qPCR in blastocysts from normoinsulinaemic and diabetic (exp IDD) rabbits (N ⫽ 3, n ⫽ 9). (E) Adiponectin protein amount was quantified by ELISA in EB and TB of single blastocysts from normoinsulinaemic and exp IDD rabbits (n.d., not detectable; mean ⫾ SEM; N ⫽ 3, n ⱖ 8; *P ⬍ .05, **P ⬍ .01). (F) Immunohistochemical detection of adiponectin (brown color) showed a diminished nuclear localization in the EB and a more intensive staining in the TB of blastocysts from diabetic rabbits (exp IDD). (F) Representative examples (a, in blastocyst from a normoinsulinaemic rabbit; b, from an exp IDD rabbit). (G) Adiponectin concentration was analyzed by ELISA in blastocyst fluid of single blastocysts from normoinsulinaemic and exp IDD rabbits (mean ⫾ SEM; N ⫽ 3, n ⱖ 8; **P ⬍ .01). adipoR1 and adipoR2 were quantified by RT-qPCR with an increased adipoR1 RNA (H) and no changes in adipoR2 RNA in blastocysts from diabetic rabbits (exp IDD) (I). The experiments were performed from 9 blastocysts per stage (mean ⫾ SEM, N ⫽ 3, n ⫽ 9; *** P ⬍ .001). The Endocrine Society. Downloaded from press.endocrine.org by [Amanda Price] on 24 February 2015. at 10:44 For personal use only. No other uses without permission. . All rights reserved. 2216 Schindler et al Role of CREB in Embryonic Hormonal Adaptation Endocrinology, June 2013, 154(6):2208 –2221 C adiponecn - protein B 120 100 80 * 60 *** 40 20 relative adiponectin amount [% of control] adiponecn - mRNA 120 100 * * 80 60 40 20 0 0 control insulin D AdipoR1 120 100 80 ** 60 control IGF1 ** 40 20 0 relative ATF3 mRNA expression [%] A relative adipoR1 mRNA expression [%] relative adiponectin mRNA expression [%] insulin IGF1 ATF3 120 100 80 * 60 40 20 0 control insulin IGF1 control insulin IGF1 Figure 5. Regulation of adiponectin, ATF3, and ATF4 by insulin and IGF-I. (A) Adiponectin RNA was quantified by RT-qPCR in single blastocysts after a 12-hour culture with 17nM insulin or 1.3nM IGF-I. Stimulation with insulin or IGF-I led to a decreased adiponectin amount compared with the corresponding nonstimulation control (set 100%) (N ⫽ 3, n ⱖ 5; *P ⬍ .05, ***P ⬍ .001). (B) Adiponectin protein concentration was determined in blastocysts after a 12-hour culture with insulin or IGF-I and compared with the nontreated control (set 100%). Adiponectin concentration were determined by ELISA (mean ⫾ SEM; N ⫽ 3, n ⱖ 9; *P ⬍ .05). (C) Expression of adipoR1 was quantified after a 12-hour culture with or without 17nM insulin or 1.3nM IGF-I. Compared with the corresponding nonstimulated controls (set 100%) the expression of adipoR1 was significantly decreased (N ⫽ 3, n ⱖ 5; **P ⬍ .01). Expression of ATF3 (D) and ATF4 (E) was analyzed by RT-qPCR after in vitro stimulation with or without insulin or IGF-I in groups of at least 5 blastocysts in each treatment and repeated in 3 independent replicates (N ⫽ 3, n ⱖ 5). Transcriptions of ATF3 and ATF4 were quantified in blastocysts after culture for 6 and 12 hours, respectively. Amounts in the nontreated group (control) were set 100%. mRNA level of ATF4 in EB and TB of normoinsulinaemic and diabetic (exp IDD) rabbits was quantified by RT-qPCR (F). The experiment was performed from 5 blastocysts per stage (mean ⫾ SEM; N ⫽ 3, n ⫽ 5; *P ⬍ .05). Adiponectin transcription level was analyzed after a 6-hour culture in media containing 0mM, 10mM, or 25mM glucose. The amounts of adiponectin mRNA levels in 0mM group were set 100%. No effect on adiponectin transcription level was observed (mean ⫾ SEM; N ⫽ 3, n ⱖ 5). The quantification of ATF1 mRNA in in vitro-stimulated embryos (17nM insulin or 1.3nM IGF-I) showed a decrease in transcript levels (Figure 2C), as seen for CREB too. The ATF1 protein was also localized in the nucleus of embryonic cells, but unlike CREB, the staining had the same intensity in both cell lineages (Figure 2D). ATF3 acts as important negative regulator of adiponectin expression in obesity and type 2 diabetes mellitus. As shown in Figure 2A, ATF3 was detectable in all investigated embryo stages (d 3; d 4, early blastocyst) with an increased expression in stage 3 blastocysts compared with stage 0 (Figure 2E). The ATF3 protein was mainly localized in nuclei of EB cells, with TB cells being hardly stained (Figure 2F). Unlike CREB, which activates transcription of CRE promoters, the transcription factor ATF4 specifically represses CRE-dependent transcription. Transcription of ATF4 was detected in all stages during preimplantation embryo development (Figure 2A). However, in contrast to CREB and ATF1/3, the transcript level of ATF4 was decreasing during blastocyst development (Figure 2B). An antibody to determine the ATF4 localization is not commercially available. Expression of CREB and ATFs in blastocysts from diabetic rabbits In blastocysts grown in diabetic mothers (exp IDD), CREB activation was reduced by 50% (Figure 3, A and B). The CREB protein amount was increased (Figure 3C, left column, and D), confirming the regulatory role of insulin on CREB expression in vivo. However, the total amount of phosphorylated CREB was significantly decreased (Figure 3C, right column, and D). In the TB of diabetic blastocysts, CREB was mainly localized in the cytosol, indicating its inactivity (Figure 3E, normoinsulinaemic a1⫹a2 and exp IDD b1⫹b2). In the EB, CREB was still located in the nucleus (Figure 3E, normoinsulinaemic c1⫹c2 and exp IDD d1⫹d2). Contrary to CREB, ATF1 expression was dramatically decreased in blastocysts grown under diabetic conditions (Figure 3, F and G). Furthermore, in The Endocrine Society. Downloaded from press.endocrine.org by [Amanda Price] on 24 February 2015. at 10:44 For personal use only. No other uses without permission. . All rights reserved. doi: 10.1210/en.2012-2096 endo.endojournals.org 2217 ATF4 F 250 EB TB 500 ** 200 * 150 100 50 relative ATF4 mRNA expression [%] ATF4 E relative ATF4 mRNA expression [%] * 400 300 200 100 0 0 control insulin normoinsulinaemic IGF1 exp IDD G Figure 5. Continued. the EB of diabetic blastocysts, ATF1 lost its nucleus-specific staining (Figure 3H). No changes on mRNA transcription were observed for ATF3 (Figure 3I), whereas ATF4 expression was significantly increased in blastocysts from diabetic rabbits (Figure 3K). Adiponectin and receptor (adipoRs) expression in blastocysts from diabetic rabbits Serum (Figure 4A) and endometrial adiponectin (Fig- ure 4, B and C) were increased in diabetic rabbits. In blastocysts grown in diabetic females, transcriptional changes of adiponectin did not reach statistical significance (Figure 4D). Analysis of adiponectin protein, however, revealed a cell lineage-specific adiponectin distribution pattern. In EBs from diabetic blastocysts, adiponectin was not detectable (Figure 4E), whereas the adiponectin level in the TB was profoundly increased (Figure 4E). Immunohistochemical staining was clearly increased in the TB, whereas the EB almost completely lost its specific staining (Figure 4F). In blastocyst fluid, the adiponectin level was significantly increased (Figure 4G). Compared with corresponding controls, adipoR1 was increased (Figure 4H), whereas no changes in adipoR2 RNA transcript levels were ob served (Figure 4I). Insulin and IGF-I regulate adiponectin, adipoR1, ATF3, and ATF4 in vitro To further investigate the compensatory role of adiponectin for insulin in blastocysts (Figure 4), we analyzed the influence of insulin and IGF-I supplementation on adiponectin and adipoR1 expression in vitro. After culture of blastocysts for 12 hours with 17nM insulin or 1.3nM IGF-I, a significant decrease in adiponectin transcript levels and protein amounts (Figure 5, A and B) and adipoR1 mRNA levels (Figure 5C) were observed. It is known that CREB down-regulates adiponectin transcription by the intermediate activation of ATF3, which in turn represses expression of adiponectin (21). An in vitro stimulation with insulin or IGF-I for 1 hour had no effect (data not shown), whereas stimulation for 12 hours led to a decreased expression of ATF3 (Figure 5D). However, the transcript levels of ATF4, acting as a specific repressor of CRE-dependent transcription, were increased after a 6-hour in vitro stimulation (Figure 5E). To confirm the view that ATF4 acts as a potential negative regulator of adiponectin expression, we analyzed the expression of ATF4 in a cell compartment-specific manner. As shown in Figure 5F, the expression of ATF4 was significantly increased in the EB of blastocysts from diabetic mothers, whereas no difference in ATF4 transcript levels were detectable in the TB, confirming the inhibitory role of ATF4 on adiponectin expression. Finally, blastocysts were cultured in vitro for 6 hours in culture medium containing 0mM, 10mM, or 25mM glucose. As shown in Figure 5G, adiponectin transcript levels were not altered by the different glucose concentrations studied, supporting our hypothesis that adiponectin re- The Endocrine Society. Downloaded from press.endocrine.org by [Amanda Price] on 24 February 2015. at 10:44 For personal use only. No other uses without permission. . All rights reserved. 2218 Schindler et al Role of CREB in Embryonic Hormonal Adaptation Endocrinology, June 2013, 154(6):2208 –2221 in this phase of development is still unknown. Our data show that CREB and the ATF family members mediate the 0,15 embryo’s adaptation to insulin by regulating adiponectin synthesis. Blastocysts react within 10 minutes with an in sulin- and IGF-dependent CREB phosphorylation after 0,10 stimulation in vitro. Insulin and IGFs were applied in physiological concentrations, ie, in an optimal range for 0,05 ligand binding and induction of biological effects (43, 47, 49). Other groups have found an IGF-I-dependent CREB 0,00 normoinsulinaemic exp IDD phosphorylation after 10 minutes via the MAPK and p38 Figure 6. Uptake of 3-OMG in normoinsulinaemic and diabetic rabbit MAPK pathways (50 –53). We have previously demonblastocysts. Glucose transport was measured by 3-OMG uptake during strated that insulin activates MAPK also in rabbit blastoa 3-minute pulse period. Data are presented as the mean ⫾ SEM and cysts (44, 45). A functional signaling cascade in blastoare expressed as nanomoles of 3-OMG per minute per surface area 2 cysts is indicated by a negative feedback loop (mechanism) (cm ) (see Materials and Methods). Blastocysts grown in a diabetic environment showed the same uptake of 3-OMG as the corresponding for CREB, as shown by the reduced expression of CREB controls (N ⫽ 3, n ⫽ 28). after a 12-hour in vitro stimulation with insulin and IGF-I. Patients with type 1 diabetes and patients with a gepression is related to the lack of insulin rather than to netically defective IR show increased serum adiponectin hypo- or hyperglycaemia. levels (54). Blüher et al (55) found an elevated plasma adiponectin level in mice lacking IRs in adipocytes. HyGlucose uptake in blastocysts from perinsulinaemia selectively down-regulates the high monormoinsulinaemic and diabetic rabbits To test whether the lack of maternal insulin affects glu- lecular weight form of adiponectin (56). In blastocysts, the cose uptake, we analyzed the rate of 3-OMG uptake in insulin/IGF-dependent CREB activation of adiponectin has been demonstrated in vitro and in vivo. In our in vivo normoinsulinaemic and diabetic blastocysts. No difference in 3-OMG uptake was measured (Figure 6), implying model of an experimentally induced diabetes mellitus type a compensatory role of increased adiponectin levels for 1, an elevated adiponectin level was measured in maternal serum, endometrium, and in blastocyst cavity fluid. In glucose uptake under hypoinsulinaemic conditions. 3T3-L1 preadipocytes, insulin led to a reduced adiponec tin expression in vitro (22). It is noteworthy that EB and TB cells of diabetic blastocysts showed a distinct different Discussion adiponectin regulation. The difference can be explained Although CREB has been described as an important reg- by different insulin and IGFs signaling in both cell lineages (Figure 7). Insulin and IGFs act ulator of early embryo development, its specific function through their receptors IGF-IR and IR (IR-A and IR-B). The two IR iso forms, resulting from alternative splicing of the primary transcript (57), are expressed in a distinctly diverse pattern in both cell lineages in rabbit blastocysts (45). IR-A, the binding domain for insulin and IGFII, is mainly expressed in the EB, whereas IR-B is the only detectable Figure 7. Cell lineage-specific molecular mechanisms of embryonic hormonal adaptation to a isoform in the TB (44, 45). IGF-IR is uterine environment Expression of IGF-I and IGF-II is highly increased in blastocysts and diabetic predominantly present in the EB and endometrium from diabetic rabbits. We interpret this as a compensatory mechanism to cover the lack of insulin normally provided by the mother. However, EB and TB differ in their to a lower extent in TB cells (45). responsiveness to IGFs due to distinct differences in IR and IGF-IR expression patterns (45). (A) Phosphorylation of Erk induced by Rabbit blastocysts barely express IGF-IR in the TB. Therefore, IGFs cannot compensate for the lack insulin occurs in the EB and to a of insulin in these cells in diabetic blastocysts, leading to CREB inactivity as shown by its lower extent in the TB, and IGF-I excytoplasmic localization. In this case, CREB is not able to inhibit adiponectin production resulting in higher adiponectin levels in TB cells in diabetic blastocysts. (B) The increased production of IGFclusively activates Erk/MAPKs in the I and IGF-II and sensitivity of EB cells towards IGFs (expression of IGF-IR and IR-A) sustain CREB EB (45). Further analysis revealed activation and nuclear localization, leading to a down-regulated adiponectin synthesis. Adiponectin was not detectable in EB cells in diabetic blastocysts. that IGF-I and IGF-II are highly innMol 3-OMG / cm2 * min 0,20 The Endocrine Society. Downloaded from press.endocrine.org by [Amanda Price] on 24 February 2015. at 10:44 For personal use only. No other uses without permission. . All rights reserved. doi: 10.1210/en.2012-2096 endo.endojournals.org 2219 creased in blastocysts and endometrium of rabbits with an experimentally induced diabetes mellitus type 1, most likely as part of a compensatory mechanism to cover the lack of insulin normally provided by the mother (5). Because IGF-I and IGF-II are considered as growth factors of the EB in rabbits (45, 46) and mice (58, 59) and insulin is depleted in diabetic mothers (4), a cell lineage-specific regulation of the CREB-mediated adiponectin expression is likely. In the EB of blastocysts grown under diabetic conditions, the increased production of IGFs sustains activation and nuclear localization of CREB, correlating closely with the drop in adiponectin level observed in current study (Figure 7B). In TB cells, however, both factors, IGF-I and IGF-II, were not able to compensate for the lack of insulin due to absence of the IGF-IR and CREB signaling in these cells (Figure 7A). Although IGFs may maintain glucose uptake in EB cells, adiponectin may replace insulin in TB cells, securing embryo development in diabetic mothers. CREB regulates the transcription of target genes directly and indirectly. In rabbit blastocysts, adiponectin transcript levels are decreased by CREB activation, posing the question regarding potential CREB inhibitors. A potential candidate is ATF3 (23, 60). Noteworthy, in our in vitro experiments, ATF3 was also down-regulated by insulin and IGF-I. No differences in ATF3 transcript level and localization were detectable in blastocysts from diabetic rabbits, arguing against ATF3. In contrast, ATF4 represses specifically the CRE-dependent transcription of target genes. Insulin and IGF-I led to increased amounts of ATF4 transcripts. Transcript levels of ATF4 were increased in blastocysts from diabetic rabbits, particularly in the EB. Therefore, it is tempting to propose a role for ATF4 in adiponectin gene expression in rabbit blastocysts. It is noteworthy, however, that the levels of adiponectin are not affected in ATF4⫺/⫺ or in mice overexpressing ATF4 (38). The specific role(s) of ATF(s) in hormonal adaptation of blastocysts still needs to be clarified. Adiponectin exerts its biological function by binding to adipoR1 or adipoR2. Both receptors are mainly expressed in the TB but also in the EB of rabbit blastocysts (10, 61). These results were confirmed by Kim et al (15) in mouse blastocysts, demonstrating adipoR1 and adipoR2 in EB and TB cells. A transcriptional regulation of adipoR1 by insulin has already been shown in rat and mouse tissues (62– 64). However, the insulin effect on adipoRs depends on the cell type. In muscle cells, insulin down-regulates adipoR1 and adipoR2 expression, whereas in fat cells, adipoR2, but not adipoR1, is up-regulated (64). We could show insulin- and IGF-I-dependent decreased adipoR1 transcription levels in blastocysts grown in vitro. These results are supported by increased adipoR1 levels in blastocysts developed in vivo in a hypoinsulinaemic uterine milieu. No differences in adipoR2 transcription levels were observed. This suggests that insulin may have different functions in the regulation of adipoR1 and adipoR2. Therefore the interplay of both receptors has to be kept in mind when downstream signaling of adipoRs in preimplantation embryo is assessed. In conclusion, maternal diabetes alters the hormonal sensitivity of the embryo during preimplantation development. Our results demonstrate that hypoinsulinaemia elevates adiponectin levels and the expression of adipoR1 in blastocysts. This effect is caused by insulin/IGF, because no difference in adiponectin transcript levels were observed after high and low glucose administration. Furthermore, we found an insulin- and IGF-I-dependent adipoR1 transcription. The regulation of adiponectin and adipoR expression may be part of an embryonic adaptation process, compensating for the lack of maternal insulin to maintain embryonic glucose metabolism (10). This view is supported by fact that no difference in glucose uptake was measured in blastocysts from normoinsulinaemic and diabetic rabbits. Thus, CREB-regulated embryonic adiponectin expression may be a functional connecting link between maternal insulin supply and embryonic metabolic adaptation. Not only adiponectin, but also adipoR1, is negatively regulated by insulin. In diabetes, this failsafe system may compensate for the loss of insulin and helps to maintain embryo development. Acknowledgments We thank Michaela Kirstein, Franziska Knöfel, and Sabine Schrötter for excellent technical assistant. Address all correspondence and requests for reprints to: Maria Schindler, Diplom-Trophologe, Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, D-06097 Halle (Saale), Germany. E-mail: [email protected]. Present address for R.T.: Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany. This work was supported by the German Research Council Grant NA 418/4-2, EU (FP-7 Epihealth 278418), and by the Wilhelm Roux Programme of the Martin Luther University Faculty of Medicine. Disclosure Summary: The authors have nothing to disclose. References 1. Hardy K, Spanos S. Growth factor expression and function in the human and mouse preimplantation embryo. J Endocrinol. 2002; 172:221–236. The Endocrine Society. Downloaded from press.endocrine.org by [Amanda Price] on 24 February 2015. at 10:44 For personal use only. No other uses without permission. . All rights reserved. 2220 Schindler et al Role of CREB in Embryonic Hormonal Adaptation Endocrinology, June 2013, 154(6):2208 –2221 2. Kaye PL. Preimplantation growth factor physiology. Rev Reprod. 1997;2:121–127. 3. Lighten AD, Hardy K, Winston RM, Moore GE. Expression of mRNA for the insulin-like growth factors and their receptors in preimplantation embryos. Mol Reprod Dev. 1997;47(2): human 134 –139. 4. Ramin N, Thieme R, Fischer S, et al. Maternal diabetes impairs gastrulation and insulin and IGF-I receptor expression in rabbit blastocysts. Endocrinology. 2010;151(9):4158 – 4167. 5. Thieme R, Schindler M, Ramin N, et al. Insulin growth factor ad justment in preimplantation rabbit blastocysts and uterine tissues in response to maternal type 1 diabetes. Mol Cell Endocrinol. 2012; 358(1):96 –103. 6. Heyner S, Rao LV, Jarett L, Smith RM. Preimplantation mouse embryos internalize maternal insulin via receptor-mediated endocytosis: pattern of uptake and functional correlations. Dev Biol. 1989;134(1):48 –58. 7. Schultz GA, Hogan A, Watson AJ, Smith RM, Heyner S. Insulin, insulin-like growth factors and glucose transporters: temporal pat terns of gene expression in early murine and bovine embryos. Reprod Fertil Dev. 1992;4(4):361–371. 8. Bertolini M, Beam SW, Shim H, et al. Growth, development, and gene expression by in vivo- and in vitro-produced day 7 and 16 bovine embryos. Mol Reprod Dev. 2002;63:318 –328. 9. Yaseen MA, Wrenzycki C, Herrmann D, Carnwath JW, Niemann H. Changes in the relative abundance of mRNA transcripts for insulin-like growth factor (IGF-I and IGF-II) ligands and their recep tors (IGF-IR/IGF-IIR) in preimplantation bovine embryos derived from different in vitro systems. Reproduction. 2001;122(4):601– 610. 10. Fischer S, Santos AN, Thieme R, Ramin N, Fischer B. Adiponectin stimulates glucose uptake in rabbit blastocysts. Biol Reprod. 2010; 83(5):859 – 865. 11. Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001;7(8):941–946. 12. Yamauchi T, Kamon J, Waki H, et al. Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem. 2003;278(4):2461–2468. 13. Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat 2001;7(8):947–953. 14. Med. Nawrocki AR, Rajala MW, Tomas E, et al. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced respon siveness to peroxisome proliferator-activated receptor ␥ agonists. J Biol Chem. 2006;281(5):2654 –2660. 15. Kim ST, Marquard K, Stephens S, Louden E, Allsworth J, Moley KH. Adiponectin and adiponectin receptors in the mouse preimplantation embryo and uterus. Hum Reprod. 2011;26(1):82–95. 16. Chappaz E, Albornoz MS, Campos D, et al. Adiponectin enhances in vitro development of swine embryos. Domest Anim Endocrinol. 2008;35(2):198 –207. 17. Palin M-F, Vilceu Bordignon V, Murphy BD. Adiponectin and the control of female reproductive functions. Vitam Horm. 90(2012): 239 –287. 18. Combs TP, Pajvani UB, Berg AH, et al. A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocri2004;145(1):367–383. 19. nology. Kubota N, Terauchi Y, Yamauchi T, et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem. 2002;277(29):25863–25866. 20. Maeda N, Shimomura I, Kishida K, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med. 2002;8(7): 731–737. 21. Tsuchida A, Yamauchi T, Ito Y, et al. Insulin/Foxo1 pathway reg- 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. ulates expression levels of adiponectin receptors and adiponectin sensitivity. J Biol Chem. 2004;279(29):30817–30822. Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2002;290(3):1084 –1089. Qi L, Saberi M, Zmuda E, et al. Adipocyte CREB promotes insulin resistance in obesity. Cell Metab. 2009;9(3):277–286. Ling F, Li J, Chen Y, et al. Cloning and characterization of the 5⬘-flanking region of the pig adiponectin gene. Biochem Biophys Res Commun. 2009;381(2):236 –240. Kim HB, Kim WH, Han KL, et al. cAMP-response element binding protein (CREB) positively regulates mouse adiponectin gene expression in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2010; 391(1):634 – 639. Gonzalez GA, Montminy MR. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell. 1989;59(4):675– 680. Delmas V, van der Hoorn F, Mellström B, Jégou B, Sassone-Corsi P. Induction of CREM activator proteins in spermatids: downstream targets and implications for haploid germ cell differentiation. Mol Endocrinol. 1993;7:1502–1514. Hai TW, Liu F, Coukos WJ, Green MR. Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev. 1989;3: 2083–2090. Bleckmann SC, Blendy JA, Rudolph D, Monaghan AP, Schmid W, Schütz G. Activating transcription factor 1 and CREB are important for cell survival during early mouse development. Mol Cell Biol. 2002;22(6):1919 –1925. Jin XL, O’Neill C. cAMP-responsive element-binding protein expression and regulation in the mouse preimplantation embryo. Reproduction. 2007;134(5):667– 675. Rehfuss RP, Walton KM, Loriaux MM, Goodman RH. The cAMPregulated enhancer-binding protein ATF-1 activates transcription in response to cAMP-dependent protein kinase A. J Biol Chem. 1991; 266(28):18431–18434. Sundaram N, Tao Q, Wylie C, Heasman J. The role of maternal CREB in early embryogenesis of Xenopus laevis. Dev Biol. 2003; 261(2):337–352. Lutz B, Schmid W, Niehrs C, Schütz G. Essential role of CREB family proteins during Xenopus embryogenesis. Mech Dev. 1999; 88(1):55– 66. Hartman MG, Lu D, Kim ML, et al. Role for activating transcription factor 3 in stress-induced -cell apoptosis. Mol Cell Biol. 2004; 24(13):5721–5732. Tanaka T, Tsujimura T, Takeda K, et al. Targeted disruption of ATF4 discloses its essential role in the formation of eye lens fibres. Genes Cells. 1998;3(12):801– 810. Masuoka HC, Townes TM. Targeted disruption of the activating transcription factor 4 gene results in severe fetal anemia in mice. Blood. 2002;99(3):736 –745. Seo J, Fortuno ES 3rd, Suh JM, et al. Atf4 regulates obesity, glucose homeostasis, and energy expenditure. Diabetes. 2009;58(11):2565– 2573. Yoshizawa T, Hinoi E, Jung DY, et al. The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts. J Clin Invest. 2009;119(9):2807–2817. Hinoi E, Gao N, Jung DY, et al. An Osteoblast-dependent mechanism contributes to the leptin regulation of insulin secretion. Ann NY Acad Sci. 2009;1173(suppl 1):E20 –E30. Fischer B, Chavatte-Palmer P, Viebahn C, Navarrete Santos A, Duranthon V. Rabbit as a reproductive model for human health. Reproduction. 2012;144(1):1–10. Santos AN, Körber S, Küllertz G, Fischer G, Fischer B. Oxygen stress increases prolyl cis/trans isomerase activity and expression of cyclophilin 18 in rabbit blastocysts. Biol Reprod. 2000;62(1):1–7. Maurer RR. Advances in rabbit embryo culture. In: Daniels JC, ed. The Endocrine Society. Downloaded from press.endocrine.org by [Amanda Price] on 24 February 2015. at 10:44 For personal use only. No other uses without permission. . All rights reserved. doi: 10.1210/en.2012-2096 endo.endojournals.org 2221 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. Methods in Mammalian Reproduction. New York: Academic Press, 1978; 259 –272. Chi MM, Schlein AL, Moley KH. High insulin-like growth factor 1 (IGF-1) and insulin concentrations trigger apoptosis in the mouse blastocyst via down-regulation of the IGF-1 receptor. Endocrinology. 2000;141(12):4784 – 4792. Navarrete Santos A, Tonack S, Kirstein M, Pantaleon M, Kaye P, Fischer B. Insulin acts via mitogen-activated protein kinase phosphorylation in rabbit blastocysts. Reproduction. 2004;128(5):517– 526. Navarrete Santos A, Ramin N, Tonack S, Fischer B. Cell lineagespecific signaling of insulin and insulin-like growth factor I in rabbit blastocysts. Endocrinology. 2008;149(2):515–524. Thieme R, Ramin N, Fischer S, Püschel B, Fischer B, Santos AN. Gastrulation in rabbit blastocysts depends on insulin and insulinlike-growth-factor 1. Mol Cell Endocrinol. 2012;348(1):112–119. Frasca F, Pandini G, Scalia P, et al. Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol. 1999;19(5):3278 –3288. Tonack S, Fischer B, Navarrete Santos A. Expression of the insulinresponsive glucose transporter isoform 4 in blastocysts of C57/BL6 mice. Anat Embryol. 2004;208(3):225–230. Gicquel C, Le Bouc Y. Hormonal regulation of fetal growth. Horm Res. 2006;65(suppl 3):28 –33. Reusch JE, Hsieh P, Klemm D, Hoeffler J, Draznin B. Insulin inhibits dephosphorylation of adenosine 3⬘,5⬘-monophosphate response element-binding protein/activating transcription factor-1: effect on nuclear phosphoserine phosphatase-2a. Endocrinology. 1994; 135(6):2418 –2422. Reusch JE, Hsieh P, Bhuripanyo P, et al. Insulin inhibits nuclear phosphatase activity: requirement for the C-terminal domain of the insulin receptor. Endocrinology. 1995;136(6):2464 –2469. Klemm DJ, Roesler WJ, Boras T, Colton LA, Felder K, Reusch JE. Insulin stimulates cAMP-response element binding protein activity in HepG2 and 3T3-L1 cell lines. J Biol Chem. 1998;273(2):917– 923. Zheng W-H, Quirion R. Insulin-like growth factor-1 (IGF-1) in- 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. duces the activation/phosphorylation of Akt kinase and cAMP response element-binding protein (CREB) by activating different signaling pathways in PC12 cells. BMC Neurosci. 2006;7:51. Imagawa A, Funahashi T, Nakamura T, et al. Elevated serum concentration of adipose-derived factor, adiponectin, in patients with type 1 diabetes. Diabetes Care. 2002;25(9):1665–1666. Blüher M, Patti ME, Gesta S, Kahn BB, Kahn CR. Intrinsic heterogeneity in adipose tissue of fat-specific insulin receptor knock-out mice is associated with differences in patterns of gene expression. J Biol Chem. 2004;279(30):31891–31901. Basu R, Pajvani UB, Rizza RA, Scherer PE. Selective downregulation of the high molecular weight form of adiponectin in hyperinsulinemia and in type 2 diabetes: differential regulation from nondiabetic subjects. Diabetes. 2007;56(8):2174 –2177. Moller DE, Yokota A, Caro JF, Flier JS. Tissue-specific expression of two alternatively spliced insulin receptor mRNAs in man. Mol Endocrinol. 1989;3(8):1263–1269. Kaye PL, Bell KL, Beebe LF, Dunglison GF, Gardner HG, Harvey MB. Insulin and the insulin-like growth factors (IGFs) in preimplantation development. Reprod Fertil Dev. 1992;4(4):373–386. Pantaleon M, Jericho H, Rabnott G, Kaye PL. The role of insulin-like growth factor II and its receptor in mouse preimplantation development. Reprod Fertil Dev. 2003;15(1–2):37– 45. Kim HB, Kong M, Kim TM, et al. NFATc4 and ATF3 negatively regulate adiponectin gene expression in 3T3-L1 adipocytes. Diabetes. 2006;55(5):1342–1352. Schmidt T, Fischer S, Tsikolia N, et al. Expression of adipokines in preimplantation rabbit and mice embryos. Histochem Cell Biol. 2008;129(6):817– 825. Cui XB, Wang C, Li L, et al. Insulin decreases myocardial adiponectin receptor 1 expression via PI3K/Akt and FoxO1 pathway. Cardiovasc Res. 2012;93(1):69 –78. Inukai K, Nakashima Y, Watanabe M, et al. Regulation of adiponectin receptor gene expression in diabetic mice. Am J Physiol Endocrinol Metab. 2005;288(5):E876 –E882. Sattar AA, Sattar R. Insulin-regulated expression of adiponectin receptors in muscle and fat cells. Cell Biol Int. 2012;36(12):1293– 1297. The Endocrine Society. Downloaded from press.endocrine.org by [Amanda Price] on 24 February 2015. at 10:44 For personal use only. No other uses without permission. . All rights reserved. REPRODUCTION-DEVELOPMENT Maternal Diabetes Leads to Unphysiological High Lipid Accumulation in Rabbit Preimplantation Embryos Maria Schindler, Mareike Pendzialek, Alexander Navarrete Santos, Torsten Plösch, Stefanie Seyring, Jacqueline Gürke, Elisa Haucke, Julia Miriam Knelangen, Bernd Fischer, and Anne Navarrete Santos Department of Anatomy and Cell Biology (M.S., M.P., S.S., J.G., E.H., J.M.K., B.F., An.N.S.) and Department of Cardiothoracic Surgery (Al.N.S.), Faculty of Medicine, Martin Luther University, 06097 Halle (Saale), Germany; and Department of Obstetrics and Gynaecology (T.P.), University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands According to the “developmental origin of health and disease” hypothesis, the metabolic set points of glucose and lipid metabolism are determined prenatally. In the case of a diabetic pregnancy, the embryo is exposed to higher glucose and lipid concentrations as early as during preimplantation development. We used the rabbit to study the effect of maternal diabetes type 1 on lipid accumulation and expression of lipogenic markers in preimplantation blastocysts. Accompanied by elevated triglyceride and glucose levels in the maternal blood, embryos from diabetic rabbits showed a massive intracellular lipid accumulation and increased expression of fatty acid transporter 4, fatty acid– binding protein 4, perilipin/adipophilin, and maturation of sterol-regulated element binding protein. However, expression of fatty acid synthase, a key enzyme for de novo synthesis of fatty acids, was not altered in vivo. During a short time in vitro culture of rabbit blastocysts, the accumulation of lipid droplets and expression of lipogenic markers were directly correlated with increasing glucose concentration, indicating that hyperglycemia leads to increased lipogenesis in the preimplantation embryo. Our study shows the decisive effect of glucose as the determining factor for fatty acid metabolism and intracellular lipid accumulation in preimplantation embryos. (Endocrinology 155: 1498 –1509, 2014) he global rise in the prevalence of diabetes mellitus is paralleled by an alarming increase in diabetic pregnant women. Currently, in the western world 3% to 10% of pregnancies are affected (1). Diabetes mellitus is associated with abnormalities in lipid metabolism such as hypertriglyceridemia and low levels of high-density lipoprotein (2). Maternal metabolic disorders are well known risk factors affecting fertility and embryonic and fetal development. Early embryos are able to store intracellular lipids in the form of lipid droplets (3). Lipids play an important role in energy metabolism during early embryo development by serving as an energy source and influencing properties and functions of biological membranes, cell-cell interactions, cell proliferation, and intercellular and intracellular trans- port (for a review, see Ref. 4). The size and number of lipid droplets are considered as markers of embryo vitality (5, 6). Embryos cultured with serum abnormally accumulate cytoplasmic lipids, probably as a result of incorporation of lipoproteins from the serum (6 – 8). An increased amount of intracellular lipids reflects poor embryo quality and developmental potential. Pig and bovine embryos contain the highest amounts of lipids. This observation correlates with the lowest survival rate after cryopreservation (9 – 12). Mouse embryos with low amounts of lipid droplets are not as sensitive toward adverse effects of vitrification as embryos from other species (13). Lipid droplets are coated by lipid droplet–associated proteins (PLIN1– 4). They regulate the assembly, maintenance, ISSN Print 0013-7227 ISSN Online 1945-7170 Printed in U.S.A. Copyright © 2014 by the Endocrine Society Received August 14, 2013. Accepted December 18, 2013. First Published Online January 15, 2014 Abbreviations: cSREBP, cytoplasmic sterol-regulated element binding protein; expIDD, experimental insulin-dependent diabetes; FABP, fatty acid– binding protein; FASN, fatty acid synthase; FATP, fatty acid transporter; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; HRP, horseradish peroxidase; nSREBP, nuclear sterol-regulated element binding protein; PLIN, lipid droplet–associated protein; pc, post coitum; PVA, polyvinyl alcohol; qPCR, quantitative PCR; SREBP, sterol-regulated element binding protein. T 1498 endo.endojournals.org Endocrinology, April 2014, 155(4):1498 –1509 doi: 10.1210/en.2013-1760 The Endocrine Society. Downloaded from press.endocrine.org by [Amanda Price] on 24 February 2015. at 10:44 For personal use only. No other uses without permission. . All rights reserved. doi: 10.1210/en.2013-1760 endo.endojournals.org 1499 and composition of lipid droplets, as well as lipolysis and lipid efflux (14 –16). The best known are perilipin and adipophilin, also referred as PLIN1 and PLIN2. Adipophilin expression has been documented previously from day 2 post coitum (pc) onward in rabbit preimplantation embryos (17). The first step in long-chain fatty acid utilization is their uptake across plasma membranes. This process involves 2 components, passive diffusion through the lipid bilayer and protein-facilitated transfer. In early embryos, the fatty acid uptake is poorly understood. However, a facilitated transport is possible, as indicated by the expression of fatty acid transport protein (FATP) 4 and fatty acid– binding protein (FABP) 4 in mouse blastocysts (18) and in human trophoblast cells (19, 20). The expression levels of FATP4 correlate with measures of obesity and insulin resistance (21). FABP4, also known as adipocyte fatty acid– binding protein (AFABP) or aP2, affects intracellular lipid metabolism by transporting fatty acids to the nucleus for transcriptional regulation, to mitochondria for -oxidation, and to lipid droplets for storage (22, 23). New evidence from population studies and experimental animal models indicates that serum FABP4 is a powerful new risk marker for predicting obesity, insulin resistance, and dyslipidemia (24, 25). However, the exact secretion mecha nism of FABP4 is still not clear. A source of intracellular fatty acids is de novo synthesis. Fatty acid synthase (FASN), the key enzyme in de novo lipogenesis, coordinates together with acetyl-CoA carboxylase energy homeostasis by converting excess food intake into lipids for storage (26, 27). FASN⫺/⫺ null mutant mice die during preimplantation development, demonstrating the important role during early embryonic development (28). The promoter region of FASN contains binding sites for the transcription factor sterol-regulated element binding protein (SREBP) 1 (29). SREBPs are synthesized as precursor proteins that remain bound to the endoplasmic reticulum. After activation, SREBP is processed and translocated to the nucleus (30, 31). The mature nuclear SREBP activates the transcription of genes regulating synthesis and uptake of fatty acids, triglyceride, and cholesterol (31, 32). Currently, 3 different isoforms have been described: SREBP1a and SREBP1c, derived from a single gene by alternative transcription start sites, and SREBP2 (33). SREBP-overexpressing transgenic animals showed an accumulation of cholesterol and/or fatty acids in liver cells (32, 34, 35), indicating that the SREBP1 isoforms are more directed forward activation of fatty acid biosynthesis, whereas SREBP-2 is more specific for controlling cholesterol biosynthesis. Despite the increasing incidence of metabolic disorders in women of reproductive age, few attempts have to be made to analyze the maternal influence on embryonic lipid metabolism (36 –38). Therefore, we have investigated intracellular lipid accumulation and expression of key lipogenic markers (such as perilipin, adipophilin, FATP4, FABP4, FASN, and SREBP1) in response to hyperglycemia in vivo caused by an induced maternal diabetes mellitus type 1 and hyperglycemia created in vitro in rabbit preimplantation embryos. Materials and Methods Alloxan treatment Experimental insulin-dependent diabetes (expIDD) was induced in mature 18- to 20-week-old female nonpregnant rabbits by alloxan treatment (Sigma-Aldrich) as described before (39). Rabbits were held in the diabetic condition with permanent blood glucose concentrations of ⬎14 mmol/L by regular insulin supplementation 4 times/d (Insuman Rapid and Lantus; sanofi aventis), started on the second day after alloxan treatment. The blood glucose level was monitored with a MediSense Precision Xceed Diabetes Management System (Abbott) 2 times/d. For that, fresh blood was collected at 10:00 AM and 6:00 PM by puncturing the vena auricularis lateralis and tested for glucose concentration by a commercial test strip. All animal experiments were conducted in accordance with the principles of laboratory animal care, and the experimental protocol had been approved by the local ethics commission of the Landesverwaltungsamt Dessau (reference no. 42502-2-812). Embryo recovery Embryos were collected from sexually mature rabbits stimulated with 110 IU of pregnant mare serum gonadotropin sc (Intervet) 3 days before mating. After mating, 75 IU of human chorionic gonadotropin was injected iv (Intervet). Mating and embryo recovery were performed as described previously (40). On days 3, 4, and 6 pc embryos were flushed from oviducts or uteri, respectively, washed 3 times with PBS and randomly divided among the experimental groups. On day 6 pc, gastrulation stages can be reliably discriminated in the rabbit because implantation starts on day 6 18 hours, ie, half a day later (41). Only blastocysts from gastrulation stage 1 and 2 were used for further analyses. Embryo in vitro culture To study the effects of different glucose concentrations on perilipin/adipophilin, FABP4, FATP4, and FASN expression and intracellular lipid accumulation, day 6 blastocysts were cultured in groups of 6 to 10 at 37°C in a water-saturated atmosphere of 5% O2, 5% CO2, and 90% N2. Blastocysts were cultured for 6 hours in serum- and insulin-free BSM II medium (42) with 0, 10 (standard culture medium), and 25 mM glucose (hyperglycemic conditions), respectively. Quantification of triglycerides in blood samples Triglyceride concentrations in blood samples were measured by a commercial kit (DiaSys Triglycerides FS; Diagnostic Systems). All procedures were performed according to the manufacturer’s instructions. To measure the serum triglyceride concentration, blood samples were collected with the S-Monovette system(Sarstedt), left to coagulate for at least 30 minutes, and centrifuged for 10 minutes at 4°C and 1000 ⫻ g. The supernatant was stored at ⫺80°C until use. The Endocrine Society. Downloaded from press.endocrine.org by [Amanda Price] on 24 February 2015. at 10:44 For personal use only. No other uses without permission. . All rights reserved. 1500 Schindler et al Lipid Storage in Rabbit Preimplantation Embryos Endocrinology, April 2014, 155(4):1498 –1509 Oil Red O staining of rabbit blastocysts Blastocysts were washed twice in ice-cold PBS and fixed in 4% (wt/vol) paraformaldehyde for 10 min. The fixed blastocysts were washed again in ice-cold PBS and transferred to 0.05% (wt/vol) polyvinyl alcohol (PVA)/PBS. Blastocyst coverings were removed mechanically. The embryonic disk was mechanically diswith surgical forceps and scissors (Fine Science Tools GmbH) sected (39) and used immediately for Oil Red O staining. Oil Red O stock solution (0.5 mg of Red Oil O [Sigma-Aldrich] dissolved in 100 mL of isopropanol) was diluted 3:2 with distilled water. To remove the precipitate, the working solution was filtered using a filter with a pore diameter of 20 m (BD Biosciences). For Oil Red O staining, the embryonic disc was incubated in filtered Oil Red O solution for 2 hours. After staining the lipid droplets, the Oil Red O staining solution was removed by washing the embryonic disc for 3 hours in 0.05% (wt/vol) PVA/PBS. Subsequently, the embryonic disk was embedded on Superfrost slides (Menzel Gläser) using 4.8 g of Mowiol reagent (Calbiochem, Germany) dissolved in 12.0 g of glycerol (Merck). Embryonic disks were examined by light microscopy (BZ 8000; Keyence). Preparation of a single-cell suspension For the separation of blastocysts to single-cell suspensions, the gentleMACS-m-neural-tissue kit (Neural Tissue Dissociation Kit; Miltenyi Biotec) was used. Blastocyst coverings were removed mechanically, and blastocysts were transferred in a 1.5-mL tube. The preheated papain enzyme mix 1 provided with the kit was given directly to the blastocysts and incubated according to the manufacturer’s protocol, except that the incubation step was performed at room temperature. Enzyme mix 2, prepared according to the manufacturer’s protocol, was added directly to the sample. The specimen was incubated for 15 minutes at room temperature on a rotator. To remove cell aggregates from the cell suspension, a preseparation filter with a pore diameter of 40 m (BD Biosciences) was used. After a washing step, the cells were resuspended in ice-cold 0.05% (wt/vol) PVA/PBS. Nile Red stock solution (100 g/mL; Sigma-Aldrich) was prepared in dimethyl sulfoxide and stored in the dark. For Nile Red staining, the dye was added at a final concentration of 0.1 g/mL. The cells were then incubated on ice for 5 minutes, centrifuged, and washed with 0.05% (wt/ vol) PVA/PBS. Afterward they were resuspended in a volume of 0.05% (wt/vol) PVA/PBS and kept on ice in the dark until flow cytometry analysis. Flow cytometry All measurements were performed on a BD FACS Vantage (BD Biosciences) equipped with 3 lasers (excitation wavelengths: 488, 633, and 351nm) as described previously (43). Cell debris, doublets, and aggregates were excluded from analysis. Blastocyst cells without Nile red staining served as a negative control for flow cytometry analysis. Measurements and data analysis were performed with FACSDiva (version 5.0.3; BD Biosciences). Nile Red specifically stains intracellular lipid droplets, excites at 485 nm, and emits at 525 nm. For sorting, a 90-m nozzle was used, and the sorting rate was no more than 1000 events per second. The visualization by dot plot and histogram shows 2 different cell populations R1 (P1) and R2 (P2). To prove that region R1 contains embryoblast and R2 contains trophoblast cells, we sorted both cell populations and used them subsequently for RT-quantitative PCR (qPCR) analyses for cytokeratin 18 and cdx2, 2 trophoblast markers (44). Cytokeratin 18 and cdx2 were highly expressed in the R2 cell population, demonstrating that these cells were almost exclusively trophoblast cells (Figure 1I). The analysis of the percentage of cells located in R3 (cell debris or putative dead cells) revealed no significant differences between the normohyperglycemic and hyperglycemic groups. This result suggests that in our experiments increased cell death in the hyperglycemic group compared with that in the control group can be excluded. RNA isolation and cDNA synthesis mRNA of single blastocysts was extracted with Dynabeads oligo(dT)25 (Invitrogen) and subsequently used for cDNA synthesis. All protocol procedures were performed according to the manufacturer’s instructions, with modifications described previously (45). RT-PCR RT-PCR amplification was performed with 0.5 L of cDNA from single blastocysts in a 25-L volume containing 200 M concentrations of each dNTP, 2.5 U of Taq polymerases, and specific oligonucleotides for adipophilin, FABP4, FATP4, FASN, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (primers are listed in Supplemental Table 1 published on The Endocrine Society’s Journals Online web site at http://end. endojournals.org). The nucleotide sequence for rabbit FASN was determined using human primers for amplification of rabbit liver cDNA. The amplification was done for 40 cycles (94°C for 45 seconds, 60°C for 45 seconds, and 72°C for 60 seconds). The resulting PCR products were separated by electrophoresis on 2% agarose gels and stained with ethidium bromide. The PCR products were sequenced and analyzed as described previously (46). Sequence homology was proven by using the alignment BLASTN tool. RT-qPCR Amounts of FAS, FATP4, FABP4, adipophilin, and GAPDH cDNA were determined by real-time qPCR with SYBR Green detection by using the StepOnePlus System (Applied Biosystems) with a no template control for each primer set (described in Ref. 47). The nucleotide sequences of the primers used in this study are listed in Supplemental Table 1. The amount of cDNA per sample was normalized by referring to the GAPDH gene. GAPDH was shown to be unaffected by the treatment because no variation was observed between the absolute GAPDH levels and GAPDH RNA levels in blastocysts from healthy rabbits (47). qPCRs for target and reference genes were always run in duplicate from the same cDNA dilution taken from the same RT reaction. The absolute amount of the transcripts was calculated along with a standard (calibrator) sample. As standards we used defined concentrations of plasmid standards constructed for the gene of interest and GAPDH. For all genes investigated a partial sequence was amplified from rabbit tissues. Purified PCR products were ligated into pGEM-T with subsequent transformation in XL1Blue competent bacteria (described in Ref. 47). Results are given in molecules of the target gene per GAPDH molecule. Statistical analysis was performed on the amounts of molecules. Fold changes were calculated when the results are expressed as percentages. The Endocrine Society. Downloaded from press.endocrine.org by [Amanda Price] on 24 February 2015. at 10:44 For personal use only. No other uses without permission. . All rights reserved. doi: 10.1210/en.2013-1760 endo.endojournals.org 1501 A exp IDD normoglycemic D E F G EB C H 3000 * 2500 2000 1500 1000 500 I relative transcription [fold change] B TB Nile Red [Mean of the fluorescence] 25 20 15 10 5 R1 0 0 R2 (P2) normoglycemic R2 (P2) expIDD cdx2 cytokeratin 18 Figure 1. Oil Red O staining and Nile Red flow cytometry analyses of blastocyst cells from diabetic rabbits. A, Blastocysts derived from healthy and diabetic (expIDD) rabbits were stained with Oil Red O, marking intracellular lipid droplets red in trophoblast (TB) and embryoblast (EB) cells (scale bar corresponds to 50 m). Nuclei were counterstained with hematoxylin in blue. B–G, For flow cytometry analysis blastocyst cells were stained with Nile Red. A representative analysis is shown. Blastocyst cells were visualized on a dot plot of forward scatter (FSC) vs side scatter (SSC) (B, D, and F) or in a Nile Red histogram (C, E, and G). The visualization by dot plot, using the parameters granularity and cell size, indicated 2 different cell populations, region R1 with embryoblast cells and R2 with trophoblast cells, respectively. For further analyses, blastocyst cells were gated in region R1 and R2. Cell debris and death cells were excluded (region R3). Blastocyst cells were gated in region R1 and R2 from normoglycemic (D) and diabetic (F) rabbits. Nile Red absorbance of blastocyst cells from regions R1 and R2 is shown for normoglycemic (E) and for diabetic (G) rabbits in P1 and P2, respectively. H, Nile Red mean fluorescence in R2 (P2) of normoglycemic and diabetic cells determined in 3 independent experiments is shown. Blastocyst cells were sorted in region R1 and R2 and subsequently used for RT-qPCR analysis of trophoblast markers cdx2 and cytokeratin18. I, Results are shown as relative amounts and fold change of R1 (means ⫾ SEM; N ⫽ 4, n ⱖ 18). R2 sorted cells were identified as trophoblast cells with 10- and 5-fold higher cdx2 and cytokeratin 18 RNA amounts, respectively, than those in the R1 cells. Protein preparation and immunoblotting Protein preparation, quantification, and Western blotting performed with 8 to 10 blastocysts as described previously were (48). For Western blot analysis, 25 g of total protein lysates was subjected to SDS-polyacrylamide electrophoresis and electrotransferred to nitrocellulose membranes. For detection of FASN, SREBP1, and -actin, membranes were blocked in Tris-buffered saline containing 0.1% (vol/vol) Triton X-100 (0.1% TBST) with 3% (wt/vol) nonfat dry milk at room temperature for at least 1 hour. For perilipin detection, membranes were blocked in 0.1% TBST with 3% (wt/vol) BSA for 2 hours. The primary antibody was incubated at 4°C overnight. The following antibodies were used as follows perilipin (1:1000; Sigma-Aldrich), FASN (1:1000; Santa Cruz Biotechnology), SREBP1 (1:1000; Active Motif), -actin (1:40 000; Sigma-Aldrich), anti-rabbit IgG conjugated to horseradish peroxidase (HRP) (1:15 000; DAKO Cytomation), and anti-mouse IgG conjugated to HRP (1:45 000; Dianova). The protein amount was calculated as the ratio of band intensities (perilipin protein or FASN protein vs -actin protein, respectively) in the same blot to correct for differences in protein loading. Immunohistochemical localization of FABP4 and FASN Blastocysts were washed twice in ice-cold PBS and fixed in 4% (wt/vol) paraformaldehyde at 4°C overnight. The sample was prepared, and the immunohistochemical protocol was per- formed as described previously (48). Antibodies for FABP4 and FASN (both Santa Cruz Technology) were diluted 1:100 and 1:500 in 3% (wt/vol) BSA/PBS, respectively. The secondary antibody Dako EnVision⫹ System HRP-labeled polymer antimouse (1:1 in PBS) and diaminobenzidine (WAK-Chemie Medikal) were used for detection. All steps were performed within the same experiment, and samples were examined microscopically during the same session, using identical microscope and camera settings (BZ 8000; Keyence). FABP4 ELISA FABP4 concentrations in blastocyst fluids were measured by ELISA (MyBioSource). All protocol procedures were performed Table 1. Mean Nile Red Fluorescence Intensity From Normoglycemic and Diabetic (expIDD) Blastocyst Cells in Region R1 (P1) and Region R2 (P2) Nile Red (Mean ⴞ SEM) R1 (P1) normoglycemic R1 (P1) expIDD R2 (P2) normoglycemic R2 (P2) expIDD 951 ⫾ 280 1093 ⫾ 202 1566 ⫾ 267 2503 ⫾ 233 P Value .6 .03 The Endocrine Society. Downloaded from press.endocrine.org by [Amanda Price] on 24 February 2015. at 10:44 For personal use only. No other uses without permission. . All rights reserved. 1502 Schindler et al Lipid Storage in Rabbit Preimplantation Embryos Endocrinology, April 2014, 155(4):1498 –1509 A Results d6 d3 d4 d5 d6 d8 st.0 st.1 st.2 st.3 + ntc Adipophilin FATP4 FABP4 FASN GAPDH B EB normoglycemic exp IDD C normoglycemic exp IDD EB TB D TB 4 FABP4 concentration [ng/ml] * 3 2 1 0 normoglycemic expIDD 2. Expression patterns of the lipogenic markers adipophilin, FATP4, FABP4, and FASN in Figure rabbit preimplantation embryos. A, RT-PCR was performed with specific primers for adipophilin, FATP4, FABP4, and FASN on rabbit morulae at day (d) 3, on blastocysts at days 4, 5, 6, and 8 pc, and on 6-day-old blastocysts of different gastrulation stages with stage (st) 0, 1, 2, and 3. Transcripts of adipophilin, FATP4, and FASN were detected in all analyzed developmental stages. FABP4 transcription was measurable from gastrulation stage 1 (st 1) onward. A probe without cDNA was used as negative control (ntc). As a positive control, a liver cDNA probe was used (⫹). The internal control was the expression of GAPDH in all probes. The FABP4 and FASN proteins were detected by immunohistochemical analysis and visualized by a peroxidase-diaminobenzidine reaction (brown color) (scale bar corresponds to 50 m). B, In blastocysts from healthy controls (normoglycemic), FABP4 was localized in the cytosol and nucleus of embryoblast cells (EB). The trophoblast cells (TB) were not or less stained for FABP4. In blastocysts from diabetic rabbits (expIDD), the embryoblast and trophoblast cells showed more intense staining for FABP4, especially in the nuclei of both cell lineages. Nuclei were counterstained in blue with hematoxylin. C, Immunohistochemical localization revealed FASN in the cytosol of embryoblast and trophoblast cells. No difference in staining and localization was found between blastocysts from diabetic and normoglycemic rabbits. D, FABP4 concentrations were analyzed by ELISA in blastocyst fluids of single blastocysts from normoglycemic and expIDD rabbits (means ⫾ SEM; N ⫽ 3; n ⱖ 9; *, P ⬍ .05). according to the manufacturer’s instructions. Flushed blastocysts were washed 2 times with ice-cold PBS. Blastocyst stage and size were determined. Blastocysts were then placed on a dry watch glass. Extracellular coverings were removed mechanically, blastocysts were punctured, and the effluent cavity fluid was collected. Blastocyst fluids were stored at ⫺80°C until use. FABP4 concentrations were quantified in duplicate and compared with an internal FABP4 standard (0.625–50 ng/mL). Statistics All data are expressed as means ⫾ SEM. Levels of significance between groups were calculated by factorial ANOVA with Bonferroni adjustment. A value of P ⬍ .05 was considered statistically significant. All experiments were conducted at least 3 times. In previous studies, we demonstrated that the increases in maternal blood glucose concentrations correlate with increased glucose levels in the uterine secretions (39). Here, we focused on the lipid content and lipogenic markers to test whether a diabetic disorder during early pregnancy would affect the embryonic fatty acid metabolism. Elevated triglyceride levels in female rabbits with expIDD at day 6 pc In blood samples of diabetic (expIDD) pregnant rabbits, triglyceride levels were increased approximately 6-fold (3.55 ⫾ 0.43 mM; mean ⫾ SEM) compared with that in the healthy controls (0.57 ⫾ 0.05 mM) [number of independent experiments used for blastocysts (N) ⫽ 3; total number of blastocysts used for analysis (n) ⫽ 9; P ⬍ .001], respectively. Accumulation of intracellular lipid droplets in normoglycemic and diabetic (expIDD) blastocysts The effect of alloxan-induced maternal diabetes mellitus type 1 on intracellular lipid accumulation was examined by Oil Red O staining. Blastocysts from diabetic rabbits showed a higher accumulation of intracellular lipids in the embryoblast and trophoblast, indicated by the higher amount of red-stained lipid droplets (Figure 1A). To further support these data, we used a quantitative method to determine the cellular lipid content based on Nile Red staining and flow cytometry analyses. In Figure 1, B to G, the results of a representative flow cytometry analysis are illustrated. Blastocyst cells were visualized by dot plot and histogram. A higher Nile Red fluorescence intensity was found in blastocyst cells from diabetic rabbits in both cell populations R1 (P1) and R2 (P2). However, in contrast to the R2 (Figure 1I and Table 1), the difference in the Nile Red fluorescence mean in the R1 between normoglycemic and diabetic blastocysts was not significant (data not shown). The mean Nile Red absorbance is given in Table 1. The Endocrine Society. Downloaded from press.endocrine.org by [Amanda Price] on 24 February 2015. at 10:44 For personal use only. No other uses without permission. . All rights reserved. doi: 10.1210/en.2013-1760 endo.endojournals.org 1503 Table 2. Relative Protein Amount of Lipogenic Markers in Blastocysts from Normoglycemic and Diabetic (expIDD) Rabbits Protein Perilipin FASN nSREBP1 cSREBP1 Ratio: nSREB1/ cSREBP1 Normoglycemic expIDD P Value 100.0 ⫾ 3.5 100.0 ⫾ 6.8 100.0 ⫾ 7.2 100.0 ⫾ 12.7 0.51 ⫾ 0.03 136.8 ⫾ 10.5 105.3 ⫾ 1.2 107.2 ⫾ 5.2 76.9 ⫾ 5.8 0.70 ⫾ 0.03 .048 .473 .437 .138 .005 are given relative to protein amounts in blastocysts from Results healthy rabbits (normoglycemic) (means ⫾ SEM; N ⫽ 3; n ⫽ ⱖ10). Adipophilin and perilipin expression in preimplantation embryos from diabetic rabbits Intracellular lipid droplets are coated by the lipid droplet– associated proteins perilipin and adipophilin. The transcription of adipophilin was detectable in the rabbit preimplantation embryos from day 3 old morulae onward in all analyzed days and stages (Figure 2A). Transcription levels in blastocysts (day 6 pc stage 1) from diabetic rabbits (expIDD) were significantly increased compared with those from normoglycemic rabbits (Table 2). Quantification of adipophilin in the embryoblast and trophoblast revealed that the increase in the adipophilin amount resulted from transcriptional upregulation, mainly in embryoblast cells (Table 4). In addition, the perilipin protein amount was significantly increased in blastocysts from diabetic rabbits (Table 3). FATP4 and FABP4 expression in preimplantation embryos from diabetic rabbits FATP4 and FABP4 are expressed in rabbit blastocysts. Whereas FATP4 transcription was detectable in all investigated embryonic stages, starting on day 3 pc (Figure 2A), FABP4 expression was only measurable in expanded and gastrulating blastocysts on day 6 pc, from stage 1 onward and on day 8 pc (Figure 2A). Analysis of FABP4 transcription, however, revealed a cell lineage–specific FABP4 distribution pattern with the main expression in the embryoblast (Figure 2B). Only a few cells stained positive for FABP4 in the trophoblast. In diabetic conditions, the transcription levels for both FATP4 and FABP4 were increased in blastocysts (Table 2). FATP4 mRNA was increased in the embryoblast and trophoblast (Table 4). For FABP4, the RNA amount was increased only in the embryoblast (Table 4). Compared with embryos from healthy rabbits, blastocysts from diabetic mothers showed more intense FABP4 staining in both cell lineages, with the most prominent localization in the nuclei (Figure 2B). Because FABP4 can be secreted from cells and is present in the circulation, we analyzed the FABP4 concentration in blastocyst fluid. Analysis by ELISA showed that FABP4 is present in blastocyst fluid and that the amount is increased in the cavity fluid from diabetic blastocysts (Figure 2D). FASN expression in preimplantation embryos from diabetic rabbits The key enzyme of de novo lipogenesis, FASN, was detectable form day 3 old morulae (d3) onward in all analyzed stages (Figure 2A). Neither FASN transcription (Table 2) nor protein (Table 3) amounts were significantly different in blastocysts from diabetic rabbits. In addition, no alterations of FASN transcription levels in embryoblasts and trophoblasts from normoglycemic and diabetic rabbits were detectable. However, a cell lineage–specific transcription was observed (Table 4), with higher transcripts in the embryoblast. FASN protein was localized in both embryoblast and trophoblast cells with a cytoplasmic localization (Figure 2C). In blastocysts from diabetic rabbits, no differences in staining intensity or in cellular localization were observed. SREBP1 expression in preimplantation embryos from diabetic rabbits Under hyperglycemic conditions, no changes in total SREBP1 protein amounts were observed (Table 2). However, the ratio of cytoplasmic (cSREBP1) and mature, nuclear SREBP1 (nSREBP1) was influenced. Blastocysts from diabetic rabbits had relatively more SREBP1 located in the nucleus (based on the total SREBP1 protein amount and the ratio of nSREBP1 to cSREBP1) compared with that of blastocysts from normoglycemic rabbits (Table 2), indicating a higher transcriptional regulation by SREBP1 in blastocysts from diabetic rabbits. Table 3. Relative mRNA Amount of Lipogenic Target Genes in Blastocysts from Normoglycemic and Diabetic (expIDD) Rabbits mRNA Normoglycemic expIDD % P Value Adipophilin FABP4 FATP4 FASN 51.76 ⫾ 15.28 4.45 ⫾ 2.03 855.4 ⫾ 124.1 0.66 ⫾ 0.18 167.78 ⫾ 3.99 9.91 ⫾ 2.27 1382.4 ⫾ 179.6 0.38 ⫾ 0.06 287.4 ⫾ 29.9 222.6 ⫾ 51.1 188.9 ⫾ 23.2 58.7 ⫾ 10.1 .020 .041 .038 .195 Results are given as molecules and as a percentage of transcription levels in normoglycemic blastocysts (means ⫾ SEM; N ⫽ 3; n ⫽ ⱖ10). The Endocrine Society. Downloaded from press.endocrine.org by [Amanda Price] on 24 February 2015. at 10:44 For personal use only. No other uses without permission. . All rights reserved. 1504 Schindler et al Lipid Storage in Rabbit Preimplantation Embryos Endocrinology, April 2014, 155(4):1498 –1509 Table 4. Relative mRNA Amount of Lipogenic Target Genes in Embryoblast and Trophoblast From Normoglycemic and Diabetic (expIDD) Rabbits Embryoblast Trophoblast mRNA Normoglycemic expIDD Normoglycemic expIDD Adipophilin FABP4 FATP4 FASN 100.0 ⫾ 8.3 100.0 ⫾ 17.1 100.0 ⫾ 6.4 100.0 ⫾ 23.5 131.3 ⫾ 11.8a 293.3 ⫾ 71.2a 147.2 ⫾ 15.3a 91.4 ⫾ 23.4 118.1 ⫾ 6.6 14.0 ⫾ 3.5b 92.8 ⫾ 10.4 25.9 ⫾ 6.7b 125.1 ⫾ 17.7 9.9 ⫾ 1.8b 148.6 ⫾ 15.1a 15.8 ⫾ 2.3b Results are given as a percentage of the amount in the embryoblast from healthy rabbits (normoglycemic) (means ⫾ SEM; N ⫽ 3; n ⫽ ⱖ10). a b Amount significantly different between control and expIDD (P ⬍ .05). Amount significantly different between embryoblast and trophoblast (P ⬍ .05). Glucose-dependent expression of lipogenic genes To clarify whether glucose can regulate the expression of lipogenic genes, we cultured blastocysts without glucose (0 mM) and with 10 mM (standard culture media) or 25 mM (hyperglycemia in vitro) for 6 hours in vitro. The quantification of adipophilin and FABP4 transcript levels and perilipin protein showed increased expression of all markers in blastocysts cultured under hyperglycemic conditions (Figure 3, A, B, C, and E). No significant differences were measured for the FATP4 transcript levels in response to the various glucose concentrations (Figure 3D). In contrast to diabetic conditions in vivo, the FASN protein amount was increased in blastocysts cultured with 10 and 25 mM compared with that in blastocysts cultured with 0 mM, respectively (Figure 3, F and G). Total protein amounts of SREBP1 were increased in a glucose-dependent manner with a higher accumulation of mature nSREBP1 in the nucleus (Figure 3, H–K). Glucose-dependent accumulation of lipid droplets Excess energy intake leads to an accumulation of intra cellular lipids. To analyze whether a high concentration or the lack of glucose influences the amount of lipid droplets in embryos, we cultured blastocysts (day 6 pc) from normoglycemic and diabetic rabbits for 6 hours with either 0, 10, or 25 mM glucose and afterward stained intracellular lipid droplets with Oil Red O. Blastocyst cells from both normoglycemic and diabetic (Figure 4) rabbits showed a glucose-dependent accumulation of intracellular lipids. High glucose concentrations led to a higher amount of lipid droplets compared with 0 and 10 mM in blastocysts from normoglycemic rabbits. The lowest amount of lipid droplets was found in blastocysts cultured with 0 mM. A comparable glucose-dependent increase in lipid droplets was observed in blastocysts from diabetic rabbits. However, the amount of lipid droplets in each group (0 –25 mM) was higher in diabetic blastocysts than in the corresponding controls. Discussion Since the initial observation by Mills in 1982 (49), a great number of studies have shown the determining effect of maternal hyperglycemia on pregnancy outcome, offspring malformation, and the risk of later life diseases (39, 50 – 55). Adverse effects of high glucose concentrations have been shown by in vitro and in vivo culture experiments, such as retarded embryo development and increased apoptosis (39, 55– 63). The current study shows for the first time the direct influence of maternal diabetes in vivo and hyperglycemia in vitro on embryonic lipid storage. One central finding of this study is the highly increased amount of intracellular lipid droplets in blastocysts from diabetic rabbits. Embryos with higher amounts of cytoplasmic lipids are more sensitive to chilling and cryopreservation (64) and have a lower developmental efficiency (10, 11). Therefore, the increased amount of lipid droplets in blastocysts may contribute to the adverse effects of maternal diabetes on preimplantation embryo development. The massive lipid accumulation in blastocysts from diabetic rabbits raises the question of whether the embryo produces lipids from excess maternal glucose supply or by an increased transport of fatty acids into the cell. Type 1 diabetes mellitus is not only characterized by high serum glucose concentrations but also by increased serum triglyceride concentrations. These phenomena are closely reflected by hyperglycemia and hypertriglyceridemia in the diabetic rabbit model. Diabetes mellitus is associated with maternal and fetal dyslipidemia, which manifests as high plasma triglyceride concentrations, elevated concentrations of nonesterified fatty acids, increased concentrations of low-density lipoprotein cholesterol, and decreased levels of high-density lipoprotein cholesterol (20, 65– 68). An increase in fatty acids enhances the formation of lipid droplets and expression of adipophilin and FABP4 (20, 69 –71). Therefore, it is likely that the diabetes-associated hyperlipidemia is a potent regulator of embryonic lipid metabolism. This view is supported by the observation The Endocrine Society. Downloaded from press.endocrine.org by [Amanda Price] on 24 February 2015. at 10:44 For personal use only. No other uses without permission. . All rights reserved. doi: 10.1210/en.2013-1760 endo.endojournals.org 1505 G relative perilipin amount [%] 1,6 1,4 1,2 1,0 0,8 0,6 0,4 C * 180 160 0 mM 10 mM 25 mM 140 Perilipin 120 100 80 β-acn 60 40 20 0,2 0 0,0 0 mM 10 mM 0 mM 25 mM E 1,2 1,0 0,8 0,6 0,4 0,2 0,0 10 mM F 5 200 * 4 3 2 1 10 mM 25 mM 0 mM 10 mM β-acn J 0 mM 10 mM 25 mM cSREBP1 (125kDa) 0 mM 10 mM 25 mM * 1,6 250 200 150 100 50 1,4 1,2 1,0 0,8 0,6 0,4 0,2 0,0 0 nSREBP1 50 25 mM * 300 0 mM 10 mM 25 mM FASN 100 I H * 150 0 0 0 mM 25 mM relative FASN amount [%] D 200 ratio nSREBP1 / cSREBP1 1,8 FABP4 transcription [fold change] B * 2,0 relative SREBP1 amount [%] FATP4 transcription [fold change] A adipophilin transcription [fold change] 0 mM 10 mM 25 mM 0 mM 10 mM 25 mM (68kDa) β-acn Figure 3. Relative expression of lipogenic genes in rabbit blastocysts cultured in vitro with 0, 10, or 25 mM glucose. A, In vitro culture of blastocysts for 6 hours with 0, 10, or 25 mM glucose led to a significantly higher adipophilin transcription level in blastocysts of the 25 mM group (*, P ⬍ .05). Blastocysts were cultured in groups of at least 5 blastocysts (N ⫽ 3; n ⱖ 5). mRNA levels were analyzed by RT-qPCR, and results are shown as means ⫾ SEM (*, P ⬍ .05). B and C, Relative perilipin amounts after 6 hours of cultivation without or with 10 or 25 mM glucose were analyzed by Western blotting with anti-perilipin antibody and set in relation to total -actin. A representative Western blot for perilipin is shown in panel C. Results of 3 independent stimulation experiments (N ⫽ 3, n ⱖ 9; means ⫾ SEM) are shown in panel B. The group without glucose (0 mM) was set at 100%. D and E, RT-qPCR analysis of FATP4 (D) or FABP4 (E) after in vitro culture (for 6 hours) of blastocysts with 0, 10, or 25 mM shows a distinctly different expression pattern. In vitro culture with 10 or 25 mM or without glucose was performed in groups of at least 5 blastocysts in each treatment and repeated in 3 independent replicates (N ⫽ 3; n ⱖ 5). Results are shown as means ⫾ SEM (*, P ⬍ .05). F and G, FASN protein amount was analyzed by Western blot and the 0 mM group (control) was set at 100% (*, P ⬍ .05). Results (F) and a representative Western blot (G) are shown. H–K, Relative SREBP1 amounts after 6 hours of cultivation without or with 10 or 25 mM glucose were analyzed by Western blotting with anti-SREBP1 antibody, which specifically detects cSREBP1 (125 kDa) and nSREBP1 (68 kDa). Culture was performed in groups of at least 5 blastocysts in each treatment and repeated in 3 independent replicates (N ⫽ 3; n ⱖ 5). H, Relative SREBP1 protein amounts (nSREBP1 and cSREBP1) in relation to those in the 0 mM group, which was set at 100%. I, Ratio of nSREBP1 vs cSREBP1. J, Representative Western blot for SREBP1. that both normoglycemic and diabetic blastocysts cultured for 6 hours in vitro showed a lower amount of lipid droplets than that of their in vivo counterparts, implying that meta- bolic factors other than glucose might play a role, too. Furthermore, FASN expression was not altered in blastocysts from diabetic rabbits. Because lipogenesis encompasses fatty acid and subsequent triglyceride synthesis, it is tempting to speculate that the unchanged FASN expression in vivo is the result of an increased lipid supply by the diabetic mother and the increased expression of FABP4 and FATP4 in their blastocysts (Figure 5). On the other hand, it is also possible that the 3-fold increase in glucose in uterine secretions (20) is not high enough to regulate FASN expression. Finally, the increased FABP4 amount in the cavity fluid from diabetic blastocysts may play a pivotal role by trafficking free fatty acids to blastocyst cells. In our in vitro model, we can create a hyperglycemic situation independent of any triglyceride influence. In the case The Endocrine Society. Downloaded from press.endocrine.org by [Amanda Price] on 24 February 2015. at 10:44 For personal use only. No other uses without permission. . All rights reserved. 1506 Schindler et al Lipid Storage in Rabbit Preimplantation Embryos Endocrinology, April 2014, 155(4):1498 –1509 nSREBP1/cSREBP1 ratio in vivo. Therefore, SREBP1 could belong to the connecting link between glucose normoand lipid storage in preimplantation glycemic embryos. Several studies clearly show that glucose is a main source and key signal for SREBP1 induction and cleav age of SREBP1 precursor protein in a dose-dependent manner (77–79), as exp IDD shown by our in vitro experiments, too. This effect is not due to osmotic properties, because glucose could not be replaced by the glucose anaFigure 4. Intracellular lipid accumulation in blastocysts cultured in vitro with 0, 10, and 25 mM glucose. Six-day-old blastocysts were removed from healthy (normoglycemic) and diabetic logs 2-deoxyglucose or 3-O-methyl (expIDD) rabbits and cultured in vitro with 0, 10, or 25 mM glucose for 6 hours. Then lipid glucopyranose (77, 79). SREBP1 acdroplets were stained red with Oil Red O (red dots). Nuclei were counterstained blue with tivity is necessary not only for full hematoxylin. Representative pictures from trophoblasts are shown (scale bar corresponds to 50 m). Culture was performed in groups of at least 4 blastocysts in each treatment and repeated in induction of de novo fatty acid syn3 independent replicates (N ⫽ 3; n ⱖ 4). thesis but also for intracellular lipid droplet accumulation by increasing of an oversupply of glucose in vitro, the embryo shows a cholesterol biogenesis and activation of the low-density glucose-dependent regulation of lipogenic marker genes, including FASN (Figure 5). We interpret these findings as in- lipoprotein receptor (80 – 82), leading to increased lipogenesis. creased de novo lipogenesis, the first step of lipogenesis. The present results are particularly important with reHowever, FATP4 expression was not affected in vitro bespect to possible short- and long-term consequences of in cause the blastocysts were not supplied with lipids from the vitro biotechnologies such as assisted reproductive techoutside. Glucose can stimulate de novo lipogenesis via sevnologies, in which embryos are cultured for various times eral mechanisms. First, glucose can be converted into lipids with high glucose concentrations before transfer. Experfor storage (72). Furthermore, embryos cultured with high imental evidence suggests that culture conditions influglucose concentrations show a slightly increased uptake of ence normal development and may contribute to prenatal palmitic acid and an enhanced uptake of arachidonic acid (36). That high glucose and enhanced fatty acid uptake in- and/or postnatal disorders (83– 86). We show for the first crease the accumulation of lipid droplets has also been shown time that high glucose concentrations in vitro lead to a in renal tubal epithelium and pancreatic -cells (73–76). The higher lipid accumulation and an elevated expression of up-regulation of FASN was SREBP1 dependent (74 –76). We key lipogenic target genes, indicating that the glucose confound a glucose-dependent accumulation of lipid droplets, a centration is critical for metabolic set points of embryonic higher nuclear SREBP1 amount in vitro and an increased cells. Embryonic cells adapt to changes in glucose concentration in the surrounding milieu and may retain the in formation during later differentiation, as has been shown in embryonic stem cells (87). However, we cannot rule out the possibility that factors other than hyperglycemia or hyperlipidemia may also influ ence intracellular lipid accumulation and lipogenic gene expression. Insulin and IGFs, which are known to be regulated by diabetic developmental conditions (39, 47), are potent regulators of FASN expression and enzyme activity (88 –90), Figure 5. Schematic mechanism of intracellular lipid accumulation in FABP4 expression (91, 92), and SREBP1 transcription and rabbit blastocysts in diabetic conditions in vivo and hyperglycemia in maturation (78, 93, 94). Therefore, the altered insulin/IGF vitro. In the preimplantation embryo, hyperglycemia leads to a system and/or a potential interplay between insulin/IGFs, hynonphysiological lipid accumulation with increased expression of the adipogenic markers adipophilin, perilipin, FABP4, and SREBP1. In in perlipidemia, and hyperglycemia has to be kept in mind, vivo and in vitro conditions, the embryonic gene regulation differed when the underlying mechanism of aberrant embryonic lipid only in FATP4 or FASN with increases in FATP4 in vivo and FASN in vitro. storage in diabetic blastocysts is discussed. 0 mM 10 mM 25 mM The Endocrine Society. Downloaded from press.endocrine.org by [Amanda Price] on 24 February 2015. at 10:44 For personal use only. No other uses without permission. . All rights reserved. doi: 10.1210/en.2013-1760 endo.endojournals.org 1507 In conclusion, maternal diabetes alters the concentration of a variety of maternal nutrients, which in turn modifies the metabolic uterine environment for the developing embryo. Exposure to such an altered nutrient profile can disrupt normal development or, less dramatically, change embryonic metabolism. We demonstrated that embryonic lipid storage is altered under induced maternal diabetes mellitus in the rabbit. Intracellular lipid accumulation and expression of key genes for lipid storage (perilipin and adipophilin), fatty acid transport, and metabolism (FATP4 and FABP4) and lipogenesis (SREBP1) are increased. This effect can be explained in part by the fact that hyperglycemia in vitro increases the expression of lipogenic target genes and the amount of intracellular lipid droplets. Because preimplantation embryo development is one of the most critical periods in an individual’s life, future health trajectories may be (mis)programmed with severe consequences later in life. 7. 8. 9. 10. 11. 12. 13. 14. Acknowledgments 15. We thank Sabine Schrötter and Michaela Kirstein for excellent technical assistance. Address all correspondence and requests for reprints to: Maria Schindler, Dipl. troph., Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, D-06097 Halle (Saale), Germany. E-mail: [email protected]. This work was supported by the German Research Council (DFG) (Grant NA 418/4-2), the European Union (FP-7 Epihealth 278418), and the Wilhelm Roux Programme of the Martin Luther University Faculty of Medicine. Disclosure Summary: The authors have nothing to disclose. 16. 17. 18. 19. 20. References 21. 1. Anna V, van der Ploeg HP, Cheung NW, Huxley RR, Bauman AE. Sociodemographic correlates of the increasing trend in prevalence of gestational diabetes mellitus in a large population of women between 1995 and 2005. Diabetes Care. 2008;31:2288 –2293. 2. O’Brien T, Nguyen TT, Zimmerman BR. Hyperlipidemia and diabetes mellitus. Mayo Clin Proc. 1998;73:969 –976. 3. Tsujii H, Yahia Khandoker MAM, Hamano K. Lipid in mammalian embryo development. J Mamm Ova Res. 2001;18:73– 80. 4. Stubbs CD, Smith AD. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta. 1984;779:89 –137. 5. Kikuchi K, Ekwall H, Tienthai P, et al. Morphological features of lipid droplet transition during porcine oocyte fertilisation and early embryonic development to blastocyst in vivo and in vitro. Zygote. 2002;10:355–366. 6. Abe H, Yamashita S, Itoh T, Satoh T, Hoshi H. Ultrastructure of bovine embryos developed from in vitro-matured and -fertilized oocytes: comparative morphological evaluation of embryos cul- 22. 23. 24. 25. 26. 27. 28. tured either in serum-free medium or in serum-supplemented medium. Mol Reprod Dev. 1999;53:325–335. Hoshi H. In vitro production of bovine embryos and their application for embryo transfer. Theriogenology. 2003;59:675– 685. Reis A, McCallum GJ, McEvoy TG. Accumulation and distribution of neutral lipid droplets is non-uniform in ovine blastocysts produced in vitro in either the presence or absence of serum. Reprod Fertil Dev. 2005;17:815– 823. Dobrinsky J, Nagashima H, Pursel V, Long C, Johnson L. Cryopreservation of swine embryos with reduced lipid content. Theriogenology. 1999;51:164. Nagano M, Katagiri S, Takahashi Y. Relationship between bovine oocyte morphology and in vitro developmental potential. Zygote. 2006;14:53– 61. Jeong WJ, Cho SJ, Lee HS, et al. Effect of cytoplasmic lipid content on in vitro developmental efficiency of bovine IVP embryos. Theriogenology. 2009;72:584 –589. McEvoy TG, Coull GD, Broadbent PJ, Hutchinson JS, Speake BK. Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. J Reprod Fertil. 2000;118:163– 170. Ma W, Yang X, Liang X. Obesity does not aggravate vitrification injury in mouse embryos: a prospective study. Reprod Biol Endocrinol. 2012;10:68. Heid HW, Moll R, Schwetlick I, Rackwitz HR, Keenan TW. Adipophilin is a specific marker of lipid accumulation in diverse cell types and diseases. Cell Tissue Res. 1998;294:309 –321. Miura S, Gan JW, Brzostowski J, et al. Functional conservation for lipid storage droplet association among Perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J Biol Chem. 2002;277:32253–32257. Brasaemle DL. Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res. 2007;48:2547–2559. Picone O, Laigre P, Fortun-Lamothe L, et al. Hyperlipidic hypercholesterolemic diet in prepubertal rabbits affects gene expression in the embryo, restricts fetal growth and increases offspring susceptibility to obesity. Theriogenology. 2011;75:287–299. Königsdorf CA, Navarrete Santos A, Schmidt JS, Fischer S, Fischer B. Expression profile of fatty acid metabolism genes in preimplantation blastocysts of obese and non-obese mice. Obes Facts. 2012; 5:575–586. Mishima T, Miner JH, Morizane M, Stahl A, Sadovsky Y. The expression and function of fatty acid transport protein-2 and -4 in the murine placenta. PLoS ONE. 2011;6:e25865. Scifres CM, Chen B, Nelson DM, Sadovsky Y. Fatty acid binding protein 4 regulates intracellular lipid accumulation in human trophoblasts. J Clin Endocrinol Metab. 2011;96:E1083–E1091. Gertow K, Pietiläinen KH, Yki-Järvinen H, et al. Expression of fattyacid-handling proteins in human adipose tissue in relation to obesity and insulin resistance. Diabetologia. 2004;47:1118 –1125. Storch J, Thumser AE. The fatty acid transport function of fatty acid-binding proteins. Biochim Biophys Acta. 2000;1486:28 – 44. Storch J, McDermott L. Structural and functional analysis of fatty acid-binding proteins. J. Lipid Res. 2009;50(suppl):S126 –S131. Xu A, Wang Y, Xu JY, et al. Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin Chem. 2006;52:405– 413. Karakas SE, Almario RU, Kim K. Serum fatty acid binding protein 4, free fatty acids, and metabolic risk markers. Metabolism. 2009; 58:1002–1007. Hillgartner FB, Salati LM, Goodridge AG. Physiological and molecular mechanisms involved in nutritional regulation of fatty acid synthesis. Physiol Rev. 1995;75:47–76. Semenkovich CF. Regulation of fatty acid synthase (FAS). Prog Lipid Res. 1997;36:43–53. Chirala SS, Chang H, Matzuk M, et al. Fatty acid synthesis is es- The Endocrine Society. Downloaded from press.endocrine.org by [Amanda Price] on 24 February 2015. at 10:44 For personal use only. No other uses without permission. . All rights reserved. 1508 Schindler et al Lipid Storage in Rabbit Preimplantation Embryos Endocrinology, April 2014, 155(4):1498 –1509 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. sential in embryonic development: fatty acid synthase null mutants and most of the heterozygotes die in utero. Proc Natl Acad Sci USA. 2003;100:6358 – 6363. Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002;109:1125–1131. Kim JB, Spotts GD, Halvorsen YD, et al. Dual DNA binding specificity of ADD1/SREBP1 controlled by a single amino acid in the basic helix-loop-helix domain. Mol Cell Biol. 1995;15:2582–2588. Edwards PA, Tabor D, Kast HR, Venkateswaran A. Regulation of gene expression by SREBP and SCAP. Biochim Biophys Acta. 2000; 1529:103–113. Horton JD, Shimomura I, Brown MS, Hammer RE, Goldstein JL, Shimano H. Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. J Clin Invest. 1998;101:2331–2339. Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997;89:331–340. Shimano H, Horton JD, Hammer RE, Shimomura I, Brown MS, Goldstein JL. Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a. J Clin Invest. 1996;98:1575–1584. Shimano H, Horton JD, Shimomura I, Hammer RE, Brown MS, Goldstein JL. Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J Clin Invest. 1997;99:846 – 854. Engström E, Haglund A, Eriksson UJ. Effects of maternal diabetes or in vitro hyperglycemia on uptake of palmitic and arachidonic acid by rat embryos. Pediatr Res. 1991;30:150 –153. Pinter E, Reece EA, Leranth CZ, et al. Arachidonic acid prevents hyperglycemia-associated yolk sac damage and embryopathy. Am J Obstet Gynecol. 1986;155:691–702. Pinter E, Reece EA, Ogburn PL Jr, et al. Fatty acid content of yolk sac and embryo in hyperglycemia-induced embryopathy and effect of arachidonic acid supplementation. Am J Obstet Gynecol. 1988; 159:1484 –1490. Ramin N, Thieme R, Fischer S, et al. Maternal diabetes impairs gastrulation and insulin and IGF-I receptor expression in rabbit blastocysts. Endocrinology. 2010;151:4158 – 4167. Santos AN, Körber S, Küllertz G, Fischer G, Fischer B. Oxygen stress increases prolyl cis/trans isomerase activity and expression of cyclophilin 18 in rabbit blastocysts. Biol Reprod. 2000;62:1–7. Fischer B, Chavatte-Palmer P, Viebahn C, Navarrete Santos A, Duranthon V. Rabbit as a reproductive model for human health. Reproduction. 2012;144:1–10. Maurer RR. Advances in rabbit embryo culture. In: Daniels JC, ed. Methods in Mammalian Reproduction. New York, NY: Academic Press; 1978:259 –272. Schaedlich K, Knelangen JM, Navarrete Santos A, Fischer B, Navarrete Santos A. A simple method to sort ESC-derived adipocytes. Cytometry A 2010;77,990 –995. Navarrete Santos A, Tonack S, Kirstein M, Kietz S, Fischer B. Two insulin-responsive glucose transporter isoforms and the insulin receptor are developmentally expressed in rabbit preimplantation embryos. Reproduction. 2004;128:503–516. Tonack S, Fischer B, Navarrete Santos A. Expression of the insulinresponsive glucose transporter isoform 4 in blastocysts of C57/BL6 mice. Anat. Embryol. 2004;208:225–230. Navarrete Santos A, Tonack S, Kirstein M, Pantaleon M, Kaye P, Fischer B. Insulin acts via mitogen-activated protein kinase phosphorylation in rabbit blastocysts. Reproduction. 2004;128:517– 526. Thieme R, Schindler M, Ramin N, et al. Insulin growth factor adjustment in preimplantation rabbit blastocysts and uterine tissues in 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. response to maternal type 1 diabetes. Mol Cell Endocrinol. 2012; 358:96 –103. Fischer S, Santos AN, Thieme R, Ramin N, Fischer B. Adiponectin stimulates glucose uptake in rabbit blastocysts. Biol Reprod. 2010; 83:859 – 865. Mills JL. Malformations in infants of diabetic mothers. Teratology. 1982;25:385–394. Mills JL, Knopp RH, Simpson JL, et al. Lack of relation of increased malformation rates in infants of diabetic mothers to glycemic control during organogenesis. N Engl J Med. 1988;318:671– 676. Moley KH, Vaughn WK, DeCherney AH, Diamond MP. Effect of diabetes mellitus on mouse pre-implantation embryo development. J Reprod Fertil. 1991;93:325–332. Silverman BL, Rizzo T, Green OC, et al. Long-term prospective evaluation of offspring of diabetic mothers. Diabetes 1991;40(suppl 2): 121–125. Silverman BL, Metzger BE, Cho NH, Loeb CA. Impaired glucose tolerance in adolescent offspring of diabetic mothers. Relationship to fetal hyperinsulinism. Diabetes Care 1995;18:611– 617. Moley KH. Diabetes and preimplantation events of embryogenesis. Semin Reprod Endocrinol. 1999;17:137–151. Fraser RB, Waite SL, Wood KA, Martin KL. Impact of hyperglycemia on early embryo development and embryopathy: in vitro experiments using a mouse model. Hum Reprod. 2007;22:3059 – 3068. Zusman I, Ornoy A, Yaffe P, Shafrir E. Effects of glucose and serum from streptozotocin-diabetic and nondiabetic rats on the in vitro development of preimplantation mouse embryos. Isr J Med Sci. 1985;21:359 –365. Diamond MP, Moley KH, Pellicer A, Vaughn WK, DeCherney AH. Effects of streptozotocin- and alloxan-induced diabetes mellitus on mouse follicular and early embryo development. J Reprod Fertil. 1989;86:1–10. Pampfer S, de Hertogh R, Vanderheyden I, Michiels B, Vercheval M. Decreased inner cell mass proportion in blastocysts from diabetic rats. Diabetes. 1990;39:471– 476. De Hertogh R, Vanderheyden I, Pampfer S, Robin D, Dufrasne E, Delcourt J. Stimulatory and inhibitory effects of glucose and insulin on rat blastocyst development in vitro. Diabetes. 1991;40:641– 647. Moley KH, Chi MM, Manchester JK, McDougal DB, Lowry OH. Alterations of intraembryonic metabolites in preimplantation mouse embryos exposed to elevated concentrations of glucose: a metabolic explanation for the developmental retardation seen in preimplantation embryos from diabetic animals. Biol Reprod. 1996; 54:1209 –1216. Moley KH. Hyperglycemia and apoptosis: mechanisms for congenital malformations and pregnancy loss in diabetic women. Trends Endocrinol Metab. 2001;12:78 – 82. Cagnone GL, Dufort I, Vigneault C, Sirard MA. Differential gene expression profile in bovine blastocysts resulting from hyperglycemia exposure during early cleavage stages. Biol Reprod. 2012; 86:50. Scott-Drechsel DE, Rugonyi S, Marks DL, Thornburg KL, Hinds MT. Hyperglycemia slows embryonic growth and suppresses cell cycle via cyclin D1 and p21. Diabetes. 2013;62:234 –242. Abe H, Yamashita S, Satoh T, Hoshi H. Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free or serumcontaining media. Mol Reprod Dev. 2002;61:57– 66. Kissebah AH, Alfarsi S, Adams PW, Wynn V. The metabolic fate of plasma lipoproteins in normal subjects and in patients with insulin resistance and endogenous hypertriglyceridaemia. Diabetologia. 1976;12:501–509. Kilby MD, Neary RH, Mackness MI, Durrington PN. Fetal and maternal lipoprotein metabolism in human pregnancy complicated by type I diabetes mellitus. J Clin Endocrinol Metab. 1998;83:1736 – 1741. The Endocrine Society. Downloaded from press.endocrine.org by [Amanda Price] on 24 February 2015. at 10:44 For personal use only. No other uses without permission. . All rights reserved. doi: 10.1210/en.2013-1760 endo.endojournals.org 1509 67. Merzouk H, Madani S, Korso N, Bouchenak M, Prost J, Belleville J. Maternal and fetal serum lipid and lipoprotein concentrations and compositions in type 1 diabetic pregnancy: relationship with maternal glycemic control. J Lab Clin Med. 2000;136:441– 448. Mooradian AD. Dyslipidemia in type 2 diabetes mellitus. Nat Clin 68. Pract Endocrinol Metab. 2009;5:150 –159. 69. Amri EZ, Bertrand B, Ailhaud G, Grimaldi P. Regulation of adipose differentiation. I. Fatty acids are inducers of the aP2 gene ex cell pression. J Lipid Res. 1991;32:1449 –1456. 70. Elchalal U, Schaiff WT, Smith SD, et al. Insulin and fatty acids regulate the expression of the fat droplet-associated protein adipophilin in primary human trophoblasts. Am J Obstet Gynecol. 2005;193:1716 –1723. 71. Pathmaperuma AN, Maña P, Cheung SN, et al. Fatty acids alter glycerolipid metabolism and induce lipid droplet formation, syncytialisation and cytokine production in human trophoblasts with minimal glucose effect or interaction. Placenta. 2010;31:230 –239. 72. Flynn TJ, Hillman N. Lipid synthesis from [U14C]glucose in preimplantation mouse embryos in culture. Biol Reprod. 1978;19:922– 926. 73. Sandberg MB, Fridriksson J, Madsen L, et al. Glucose-induced lipogenesis in pancreatic -cells is dependent on SREBP-1. Mol Cell Endocrinol. 2005;240:94 –106. 74. Jun H, Song Z, Chen W, et al. In vivo and in vitro effects of SREBP-1 diabetic renal tubular lipid accumulation and RNAi-mediated on gene silencing study. Histochem Cell Biol. 2009;131:327–345. 75. Hao J, Zhu L, Zhao S, Liu S, Liu Q, Duan H. PTEN ameliorates high glucose-induced lipid deposits through regulating SREBP-1/FASN/ ACC pathway in renal proximal tubular cells. Exp Cell Res. 2011; 317:1629 –1639. 76. Hao J, Liu S, Zhao S, et al. PI3K/Akt pathway mediates high glucoseinduced lipogenesis and extracellular matrix accumulation in HKC cells through regulation of SREBP-1 and TGF-1. Histochem Cell Biol. 2011;135:173–181. 77. Hasty AH, Shimano H, Yahagi N, et al. Sterol regulatory elementbinding protein-1 is regulated by glucose at the transcriptional level. J Biol Chem. 2000;275:31069 –31077. 78. Han C, Wang J, Li L, Zhang Z, Wang L, Pan Z. The role of insulin and glucose in goose primary hepatocyte triglyceride accumulation. J Exp Biol. 2009;212:1553–1558. 79. Uttarwar L, Gao B, Ingram AJ, Krepinsky JC. SREBP-1 activation glucose mediates TGF- upregulation in mesangial cells. Am J by Physiol Renal Physiol. 2012;302:F329 –F341. 80. Streicher R, Kotzka J, Müller-Wieland D, et al. SREBP-1 mediates activation of the low density lipoprotein receptor promoter by in- 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. sulin and insulin-like growth factor-I. J Biol Chem. 1996;271:7128 – 7133. Kaplan M, Kerry R, Aviram M, Hayek T. High glucose concentration increases macrophage cholesterol biosynthesis in diabetes through activation of the sterol regulatory element binding protein 1 (SREBP1): inhibitory effect of insulin. J Cardiovasc Pharmacol. 2008;52:324 –332. Xue JH, Yuan Z, Wu Y, et al. High glucose promotes intracellular lipid accumulation in vascular smooth muscle cells by impairing cholesterol influx and efflux balance. Cardiovasc Res. 2010;86: 141–150. Bavister BD. Culture of preimplantation embryos: facts and artifacts. Hum Reprod Update. 1995;1:91–148. Young LE, Sinclair KD, Wilmut I. Large offspring syndrome in cattle and sheep. Rev Reprod. 1998;3:155–163. McEvoy TG. Manipulation of domestic animal embryos and implications for development. Reprod Domest Anim. 2003;38:268 – 275. Dumoulin JC, Land JA, Van Montfoort AP, et al. Effect of in vitro culture of human embryos on birthweight of newborns. Hum Reprod. 2010;25:605– 612. Knelangen JM, Kurz R, Schagdarsurengin U, Fischer B, Navarrete Santos A. Short-time glucose exposure of embryonic carcinoma cells impairs their function as terminally differentiated cardiomyocytes. Biochem Biophys Res Commun. 2012;420:230 –235. Wang Y, Jones Voy B, et al. The human fatty acid synthase gene and de novo lipogenesis are coordinately regulated in human adipose tissue. J Nutr. 2004;134:1032–1038. Moustaïd N, Jones BH, Taylor JW. Insulin increases lipogenic enzyme activity in human adipocytes in primary culture. J Nutr. 1996; 126:865– 870. Claycombe KJ, Jones BH, Standridge MK, et al. Insulin increases fatty acid synthase gene transcription in human adipocytes. Am J Physiol. 1998;274:R1253–R1259. Smith PJ, Wise LS, Berkowitz R, Wan C, Rubin CS. Insulin-like growth factor-I is an essential regulator of the differentiation of 3T3–L1 adipocytes. J Biol Chem. 1988;263:9402–9408. Blake WL, Clarke SD. Induction of adipose fatty acid binding protein (a-FABP) by insulin-like growth factor-1 (IGF-1) in 3T3–L1 preadipocytes. Biochem Biophys Res Commun. 1990;173:87–91. Foretz M, Guichard C, Ferré P, Foufelle F. Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc Natl Acad Sci USA. 1999;96:12737–12742. Fleischmann M, Iynedjian PB. Regulation of sterol regulatory-element binding protein 1 gene expression in liver: role of insulin and protein kinase B/cAkt. Biochem J. 2000;349:13–17. The Endocrine Society. Downloaded from press.endocrine.org by [Amanda Price] on 24 February 2015. at 10:44 For personal use only. No other uses without permission. . All rights reserved. REPRODUCTION RESEARCH Accumulation of advanced glycation end products in the rabbit blastocyst under maternal diabetes Elisa Haucke, Alexander Navarrete Santos1, Andreas Simm1, Christian Henning2, Marcus A Glomb2, Jacqueline Gürke, Maria Schindler, Bernd Fischer and Anne Navarrete Santos Department of Anatomy and Cell Biology, Faculty of Medicine, Martin-Luther-University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany, 1Department of Cardiothoracic Surgery, Martin-Luther- University Halle-Wittenberg, Ernst Grube Strasse 40, 06120 Halle (Saale), Germany and 2Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes Strasse 2, 06120 Halle (Saale), Germany Correspondence should be addressed to E Haucke; Email: [email protected] Abstract Diabetes mellitus (DM) during pregnancy is one of the leading causes of perinatal morbidity and birth defects. The mechanism by which maternal hyperglycemia, the major teratogenic factor, induces embryonic malformations remains unclear. Advanced glycation end products (AGEs) are known to accumulate during the course of DM and contribute to the development of diabetic complications. Employing a diabetic rabbit model, we investigated the influence of maternal hyperglycemia during the preimplantation period on AGE formation (pentosidine, argpyrimidine, and N3-carboxymethyllysine (CML)) in the reproductive tract and the embryo itself. As a consequence of type 1 DM, the AGE levels in blood plasma increased up to 50%, correlating closely with an AGE accumulation in the endometrium of diabetic females. Embryos from diabetic mothers had increased protein-bound CML levels and showed enhanced fluorescent signals for AGE-specific fluorescence in the blastocyst cavity fluid (BCF). The quantification of CML by HPLC–mass spectrometry (MS/MS) showed a higher amount of soluble CML in the BCF of blastocysts from diabetic rabbits (0.26G0.05 mmol/l) compared with controls (0.18G0.02 mmol/l). The high amount of AGEs in blastocysts from diabetic mothers correlates positively with an increased AGER (receptor for AGE (RAGE)) mRNA expression. Our study gives alarming insights into the consequences of poorly controlled maternal diabetes for AGE formation in the embryo. Maternal hyperglycemia during the preimplantation period is correlated with an increase in AGE formation in the uterine environment and the embryo itself. This may influence the development of the embryo through increased AGE-mediated cellular stress by RAGEs. Reproduction (2014) 148 169–178 Introduction Approximately 7% of pregnancies are complicated due to diabetes mellitus (DM; American Diabetes Association 2013). Increasing obesity rates are a serious risk factor for type 2 DM and gestational DM (American Diabetes Association 2013). DM during pregnancy is of great concern as it is a major cause of perinatal morbidity and mortality (Combs & Kitzmiller 1991, Greene 1999). Although our understanding and management of DM have improved during the last decades, diabetic pregnancies are still reported to have numerous adverse effects (Combs & Kitzmiller 1991, Aberg et al. 2001, Eriksson et al. 2003, Corrigan et al. 2009). Hyperglycemia is considered as a major teratogenic factor for congenital malformation, although other associated factors such as ketone bodies, branched amino acids, and triglycerides have also been shown to exert adverse effects on the developing embryo (Eriksson et al. 2000). However, it is not yet clear in which way maternal hyperglycemia affects prenatal embryo development. q 2014 Society for Reproduction and Fertility ISSN 1470–1626 (paper) 1741–7899 (online) There is upcoming evidence that advanced glycation end products (AGEs) might play a critical role in diabetic pregnancies. AGEs are a complex group of compounds formed via non-enzymatic reactions between reducing sugars and N-terminal amino groups on proteins, lipids, and nucleic acids. End-stage products of the protein glycation can be divided into fluorescent AGEs (such as argpyrimidine), non-fluorescent AGEs (such as N3-carboxymethyllysine (CML)), and cross-linking compounds (such as pentosidine). Owing to the intrinsic fluorescence of some AGEs, plasma and tissue fluorescence can be used as markers for AGE accumulation (Goh & Cooper 2008, Bos et al. 2011). Formation and accumulation of AGEs are related to aging as well as to prolonged hyperglycemia and oxidative stress resulting from DM (Sell et al. 1991, Lee & Cerami 1992, Dyer et al. 1993, Brownlee 1995). AGEs are identified to play a role in the development of diabetic complications such as diabetic nephropathy, cardiomyopathy, atherosclerotic disease, peripheral neuropathy, and ocular disease (Ahmed & Thornalley 2007, DOI: 10.1530/REP-14-0149 Online version via www.reproduction-online.org E Haucke and others Nass et al. 2007). The post-translational modification of proteins by reducing sugars alters their biological structure and function and leads not only to a loss of molecular function but also to a reduced degradation of these damaged proteins. An additional proposed mechanism of AGE-induced damage is the release of reactive oxygen species, particularly superoxide and hydrogen peroxide by AGEs (Carubelli et al. 1995, Ortwerth et al. 1998). AGEs are able to activate intracellular cascades by binding specific receptors, for example, the receptor for AGEs (RAGEs). AGE–RAGE interactions induce a broad spectrum of signaling mechanisms such as p21ras, Erk1/2 MAP kinases (MAPKs), p38 and SAPK/JNK MAPKs, Rho GTPases, PI3K, and the JAK/STAT pathway (Bierhaus et al. 2005, Rouhiainen et al. 2013). Downstream consequence is the activation of nuclear factor kB (NFkB) that results in release of pro-inflammatory mediators such as free the radicals and cytokines (Berbaum et al. 2008). AGER (RAGE) has been shown to be expressed in the rabbit blastocyst, at mRNA and protein levels (Ott et al. 2014). Women with gestational DM have significantly higher serum AGE levels compared with healthy controls, whereas women with types 1 and 2 DM, in good medical supervision, show normal AGE levels (Buongiorno et al. 1997). There is a strong relationship between mothers and neonates regarding AGEs. In women with gestational DM, high levels of AGEs and advanced oxidation protein products (AOPPs) are also detectable in the umbilical blood of their neonates. Both, diabetic mother and neonate, showed higher AGE and AOPP levels compared with healthy controls (Boutzios et al. 2013). Elevated AGE levels in women with gestational DM are associated with pregnancy complications such as birth asphyxia, congenital malformations, or stillbirth (Guosheng et al. 2009). The harmful effects of AGEs after implantation and placentation are likely to threaten the embryo/fetus too, as maternal hyperglycemic blood is connected to the blood system of the embryo. However, this study demonstrates that the preimplantation period is also of great importance on AGE formation, especially in mothers with poorly controlled preexisting DM. The preimplantation period is a critical ontogenetic stage in embryo development and highly vulnerable for teratogenesis. At this period, the embryo is most sensitive to its surrounding milieu, especially to deregulations by external stimuli (Watkins et al. 2008). In this study, we investigated the influence of a poorly controlled maternal type 1 DM on AGE formation in preimplantation embryos and in the reproductive tract employing a rabbit model. As the rabbit blastocyst implants at day 6.8 post coitum (p.c.), we recovered the blastocysts before, i.e. at day 6.0 p.c. At this time, the rabbit blastocyst is covered by an extraembryonic mucin layer (Fischer et al. 1991, Herrler et al. 2002). However, this layer does not interfere with glucose uptake and metabolism in vivo and in vitro (Fischer et al. 2010, Ramin et al. 2010, Reproduction (2014) 148 169–178 Schindler et al. 2013). We show that DM not only is critical for maternal metabolism but also affects the AGE accumulation and AGER mRNA levels in the developing embryo even before implantation. Materials and methods Alloxan treatment and allocation of samples All animal experiments were performed in accordance with the principles of laboratory animal care and the experimental protocol was approved by the Local Ethical Commission of the ‘Landesverwaltungsamt Dessau’ (reference number: 42502-2-812). Experimental type 1 DM was induced by alloxan (Sigma– Aldrich) treatment as described previously (Ramin et al. 2010). Rabbits were allowed to eat ad libitum. The blood glucose level of females with type 1 DM increased 1 day after alloxan administration and was kept in a range between 20 and 30 mmol/l by insulin supplementation (Huminsulin, basal (NPI), Lilly, Gießen, Germany; three times per day). The duration for the poorly controlled type 1 DM was w10 days before mating and during the 6 days of pregnancy. On average, diabetic rabbits had a 4.5-fold higher blood glucose concentration in comparison to the normoglycemic reference group (27.6G0.5 and 6.2G0.1 mmol/l, P!0.001; Fig. 1). Follicle growth was stimulated by s.c. injection of 110 IU pregnant mare’s serum gonadotropin (Intervet, Unterschleißheim, Germany) and ovulation was ensured by i.v. injection of 75 IU human chorionic gonadotropin (Intervet) after mating with fertile males. Samples from diabetic and normoglycemic rabbits were obtained 6 days after mating (p.c.). Rabbits were killed by an overdose of pentobarbital (Sigma– Aldrich) and exsanguination. Later, we obtained maternal blood, maternal tissues, and the blastocysts. The blastocysts were flushed out of the uteri and washed three times with PBS to avoid contamination of blastocyst samples with uterine tissue. Protein preparation of blastocysts and AGE detection by slot blot analyses For protein extraction, a group of eight to ten blastocysts from at least three mothers were randomly pooled, dissolved in RIPA 30 35 30 *** 25 Diabetic 25 20 20 mmol/l 170 mmol/l 15 15 10 10 5 5 0 0 0 2 4 6 8 10 12 14 16 18 Control Diabetic Days Figure 1 (A) Blood glucose levels after alloxan injection (day 0) in rabbits. The blood glucose level was monitored using commercially available blood glucose test strips three times a day. Data are shown as an average of nine animals with three measured data each per day (meanGS.E.M., ***P!0.001). www.reproduction-online.org AGE accumulation in diabetic blastocysts lysis buffer (PBS, 1% vol/vol NP-40, 0.5% wt/vol sodium deoxycholate, and 0.1% wt/vol SDS), and homogenized with syringe (Omnifix 40 Duo, Braun, Melsungen, Germany). aAfter incubation on ice for 30 min, the samples were centrifuged at 13 000 g for 20 min. The supernatant was stored at K80 8C until use for slot blot analysis. Slot blot analyses were performed with 25 mg protein. Denatured protein samples (heated for 10 min at 80 8C) were spotted onto a nylon membrane (GE Healthcare, München, Germany) using a slot blot apparatus (Biostep, Rabenau, Germany). The protein load was determined by Ponceau S staining. After blocking with 5% milk/TBS–T for 1 h, the membrane was incubated with monoclonal mouse antibodies against CML, argpyrimidine, or pentosidine (1:100, Biologo, Kassel, Germany), respectively, overnight at 4 8C. Samples were rinsed three times with TBS–T for 5 min and subsequently incubated with a secondary goat anti-mouse IgG for 1 h (Dianova, Hamburg, Germany). The immunoreactive signal was visualized by ECL detection (Millipore, Schwalbach, Germany) and quantified by Fusion FX7 and the corresponding software Fusion 15.18. Protein modification rate was calculated as the ratio of protein load (Ponceau) and slot intensity by antibody reaction. Protein preparation of maternal tissues and AGE 171 incubating the slides with 3% H2O2 in methanol. After blocking in 10% goat serum for at least 1 h, the sections were incubated with the mouse MABs against CML, argpyrimidine, or pentosidine (1:100, Biologo) at 4 8C overnight. Samples were washed with TBS–T and incubated with the HRPconjugated secondary goat anti-mouse IgG (Dako, Hamburg, Germany). The AGE-modified proteins were visualized by the peroxidase–diaminobenzidine reaction. The nuclei were counterstained with hematoxylin. Analysis was performed as described for blastocysts. Quantification of AGER mRNA in the rabbit blastocyst mRNA of single blastocysts was extracted using Dynabeads Oligo (dT) 25 (Invitrogen) and subsequently used for cDNA synthesis. The nucleotide sequence for rabbit AGER was determined using human primers for amplification of rabbit lung cDNA. The obtained rabbit AGER primers are as follows: sense, GCTACTGCTCCACCTTCTGG and antisense, GCAGTCAGAGCTGATGGTGA (ref. LOC100343142). The amount of AGER transcripts was determined by real-time quantitative PCR (RT-qPCR) using the Applied Biosystems StepOnePlus System (Applied Biosystems). The entire protocol for mRNA quantification and RT-qPCR has been described previously (Schindler et al. 2013). detection by slot blot analyses After flushing out the blastocysts, we dissected the uterine tissue. Protein isolation was carried out either with the entire uteri or with separated endometria. For the latter, the endometrium was scraped mechanically from the myometrium using sharp scalpels. Grinded uteri and scraped endometria were mixed with RIPA and homogenized with precellys (Peqlab, Erlangen, Germany). Slot blot analyses were performed in the same way as for blastocysts. AGE accumulation in blood was determined using EDTA–plasma. Slot blot analysis with uterine proteins was performed in the same way as for blastocysts. Immunohistochemical localization of AGEs in blastocysts The immunohistochemical analysis was performed with single blastocysts as described previously (Schindler et al. 2014). Embryonic discs were incubated with mouse MABs against CML, argpyrimidine, and pentosidine (1:100, Biologo). The nuclei were counterstained with hematoxylin. Embryonic discs were assessed using a light microscope (BZ 8100E, Keyence, Neu-Isenburg, Germany). The specificity of immuno staining of the secondary antibody reaction was proven by the absence of signals in sections processed after omission of the primary antibody. Immunohistochemical localization of AGEs in ovary and uterus Ovarian and uterine tissues were fixed in Bouin’s solution, embedded in paraffin, and sectioned at 5 mm. Sections were mounted on silanized slides and deparaffinized at 60 8C overnight. Later, sections were rehydrated through a series of graded alcohols. Endogenous peroxidases were inhibited by www.reproduction-online.org AGE fluorescence in the blastocyst cavity fluid To obtain the blastocyst cavity fluid (BCF), single blastocysts were washed twice with ice-cold PBS and placed on a Petri dish. The remaining PBS was removed and the blastocyst was punctured using a syringe. The escaping BCF was taken in an Eppendorf tube and stored at K80 8C. The AGE fluorescence was determined in BCF using a Synergy MX 200 microplate reader (BioTek, Bad Friedrichshall, Germany). Then, 3 ml of the undiluted BCF were analyzed in a black Take 3 Micro-Volume Plate (BioTek). PBS was used as a control. Fluorescence emission spectra were recorded at excitation wavelengths of 330 and 360 nm. The maximum emission for the tested excitation wavelengths were found at 405 and 440 nm respectively. CML quantification in the BCF by HPLC/mass spectrometry CML was synthesized according to the literature (Glomb & Monnier 1995). The identity of the reference compound was verified by nuclear magnetic resonance experiments. Furthermore, the elemental composition was confirmed by accurate mass determination. Up to seven BCF of at least two animals were pooled. The pooled BCF was diluted 1:10 with ultrapure water. The HPLC apparatus (Jasco, Gross-Umstadt, Germany) consisted of a pump (PU-2080 Plus) with a degasser (LG-2080-02) and a quaternary gradient mixer (LG-2080-04), a column oven (Jasco Jetstream II), and an Autosampler (AS-2057 Plus). Chromatographic separations were performed on a stainless steel column packed with RP-18 material (VYDAC CRT, no. 218TP54, 250! 4.6 mm, RP 18, 5 mm, Hesperia, CA, USA) using a flow rate of 1.0 ml/min. The mobile phase used was water (solvent A) and methanol/water (7:3 (v/v), solvent B). To both solvents (A and B), 1.2 ml/l heptafluorobutyric acid was added. Analysis was Reproduction (2014) 148 169–178 E Haucke and others performed at 35 8C column temperature using isocratic elution at 98% of A/2% of solvent B. Mass spectrometric detection was on a API 4000 Q Trap LC/mass spectrometry (MS/MS) conducted system (AB Sciex, Darmstadt, Germany) equipped with a turbo ionspray source using electrospray ionization in the positive mode: sprayer capillary voltage, 2.5 kV; nebulizing gas flow, 50 ml/min; heating gas, 60 ml/min at 550 8C; and curtain gas, 40 ml/min. The multiple reaction monitoring mode was used, utilizing collision-induced dissociation of the protonated molecule with compound-specific orifice potential (50 V) and fragment-specific collision energies (CEs). CML (m/z 205.1/ 130.2 (CE 17), 84.1 (CE 46), and 159.1 (CE 15)) was detected at the retention time of tRZ6.0 min. Quantification was performed by the standard addition method. Briefly, increasing concentrations of an authentic reference compound by factors of 0.5, 1, 2, and 3!the concentration of the analyte in the sample were added to separate aliquots of the sample after workup procedure. The aliquots were analyzed, and a regression of response vs concentration was used to determine the concentration of the analyte in the sample. Calibration using this method resolves potential matrix interferences. All samples were analyzed in a single batch to exclude interassay variations. Intra-assay coefficient of variation values (CVZ9%) were determined by repeated analyses of a BCF sample (nZ5). In addition, the limit of detection (LODZ 4.8 pmol/ml) and the limit of quantification (LOQZ 14.5 pmol/ml) with all steps of the analysis included were estimated according to the German standard method DIN 32645: 2008-11 (nZ5, confidence level PZ0.95, and kZ3). Determination of glyoxal and methylglyoxal in plasma and blastocysts The quantification of glyoxal (GO) and methylglyoxal (MGO) was achieved mainly as described by Espinosa-Mansilla et al. Standard curves of GO and MGO (40% aqueous (2007). solution, Sigma–Aldrich) were obtained by preparing serial dilution of GO and MGO (2700, 900, 300, 100, and 0 nM) in HPLC-grade water (Millipore). The rabbit plasma proteins and cell lysate proteins of the embryos were precipitated using trifluoroacetic acid (1/10 of the sample volume). After 10 min of incubation on ice, the samples were centrifuged at 13 000 g for 10 min. To 100 ml of the supernatant, HPLC-grade water was added (final volume, 1 ml) followed by the addition of 0.125 ml ammonium chloride (0.5 M; pH 10.0) and 2.5 ml of 5,6diamino-2,4-hydroxypyrimidine sulfate (0.75 mM). The mixture was incubated for 90 min at 60 8C with constant shaking. Subsequently, citrate buffer (10 mM; pH 6.0) was added to a final volume of 25 ml. For the analysis, 10 ml of the samples were injected (ZORBAX, Eclipse XDB-C18 4.6!150 mm 5-micron column; Agilent, Oberhaching, Germany) and then separated by gradient elution with solvents A (3% acetonitrile) and B (97% citrate buffer) at a flow rate of 0.8 ml/min. Statistical analysis To obtain statistically funded data, we repeated the animal experiment at least three times (nZ3). In each animal Reproduction (2014) 148 169–178 experiment, we had nine diabetic and six healthy rabbits. We pooled tissue samples and blastocysts from each individual experiment from at least three animals. Levels of significance between groups were calculated using Student’s t-test after proving normal distribution (SigmaPlot v. 11.0). The Mann– Whitney U rank sum test was used when a normal distribution was not guaranteed. Data are expressed as meanGS.E.M. The levels of statistical significance were *P!0.05, **P!0.01, and ***P!0.001. Results Determination of a-dicarbonyls and AGEs in the plasma of female rabbits with type 1 DM As the majority of AGEs in vivo appear to be formed from a-dicarbonyls (Brownlee 1995, Rabbani & Thornalley 2012), we measured the plasma level of GO and MGO by HPLC. The AGE precursor MGO was not altered, whereas GO (control 398G31 nM and diabetic 522G59 nM) was tendentially enhanced (Fig. 2A). To determine the AGE status of the diabetic rabbits, we investigated various AGEs by slot blot analysis with specific antibodies against pentosidine, CML, and argpyrimidine respectively. All of the analyzed protein modifications showed a considerable increase in the plasma probes of diabetic rabbits (Fig. 2B and C). Determination of AGE modifications in the reproductive tract of female rabbits with type 1 DM The constitution of the uterus tissue is crucial for the course of pregnancy. The endometrium, a dynamic mucosa adjacent to the myometrium of the uterus, is important for the implantation process. Argpyrimidine, A B 250 1000 800 P =0.055 600 400 200 Intensity relative to control (100%) 172 nM Diabetic ** 200 * 150 * Control 100 50 0 0 Control Diabetic Pentosidine CML Argpyrimidine C Control Diabetic Figure 2 (A) Concentration of glyoxal (GO) in diabetic and non-diabetic rabbits. GO was quantified by HPLC (meanGS.E.M.; NZ3, nZ3; PZas indicated). (B) Relative amount of protein-bound pentosidine, N3-carboxymethyllysine (CML), and argpyrimidine in the plasma of rabbits after being diabetic for w2 weeks compared with the nondiabetic control (set 100%). The quantification was performed by slot blot analysis (meanGS.E.M.; NZ3, nZ9; *P!0.05 and **P!0.01). The AGE amount is related to the protein load (Ponceau S staining). (C) A representative slot blot is shown for pentosidine. www.reproduction-online.org AGE accumulation in diabetic blastocysts A Argpyrimidine Negative control CML 173 Pentosidine Control M M E E 70 μm Diabetic M M E 40 μm E 40 μm 40 μmv E E E E M 70 μm 40 μm M M 20 μmv 20 μmv B 140 Diabetic 120 100 Control 80 60 40 20 Intensity relative to control (100%) Intensity relative to control (100%) 20 μmv Uterus 140 20 μmv Diabetic 20 μmv 40 μmv Control Epithelial endometrium M 40 μm 20 μmv Endometrium Diabetic 120 100 Control 80 60 40 20 0 0 Argpyrimidine CML Pentosidine Argpyrimidine CML Pentosidine Figure 3 (A) Immunohistochemical analysis of argpyrimidine, N3-carboxymethyllysine (CML), and pentosidine in the pregnant uterus of rabbits with type 1 diabetes mellitus and in healthy controls. The AGE-modified proteins were visualized by the peroxidase–diaminobenzidine reaction (brown color). The nucleus was counterstained with hematoxylin (blue colour). The negative control is the control reaction of the HRP-conjugated secondary goat antimouse IgG without a primary antibody. CML and argpyrimidine show an exclusive cytosolic staining, whereas pentosidine is localized to both the cytosol and the nucleus. The epithelial endometrium (E) of diabetic rabbits shows a stronger staining, whereas the staining of the myometrium (M) seems to be unchanged. (B) Relative amounts of protein-bound argpyrimidine, CML, and pentosidine in the entire uterus and the separated endometrium from diabetic and healthy rabbits measured by slot blot analysis (meanGS.E.M.; NZ3, nZ9). The amounts of AGE are related to the protein load (Ponceau S staining). CML, and pentosidine are present in the endometrium and myometrium. AGEs are localized to smooth muscle cells, not only in the myometrium but also in the endothelium of vessels. In the endometrium, CML and pentosidine are exclusively present in the epithelium; argpyrimidine is also slightly present in the stroma. CML and argpyrimidine were mainly localized to the cytoplasm. Pentosidine showed a cytosolic staining and stained nuclei. CML, pentosidine, and argpyrimidine showed a strongly stained endometrial epithelium in diabetic rabbits (Fig. 3A). Slot blot analyses revealed no differences in protein bound CML, pentosidine, and argpyrimidine between diabetic and normoglycemic rabbits for the entire uterus and for the endometrium in particular (Fig. 3B). Immunohistochemical staining of the ovary revealed no differences between normoglycemic and diabetic females. Figure 4 shows the AGE distribution in the ovary from normoglycemic controls. All determined AGEs were detectable in the ovary. CML and argpyrimidine showed an exclusive cytosolic staining, whereas pentosidine was localized to both the cytoplasm and nuclei. The oocyte showed positive staining for CML, pentosidine, and argpyrimidine in the cytoplasm, but not in the nucleus in the investigated follicle stages (primary, secondary, and tertiary follicle). www.reproduction-online.org Determination of AGE modifications in 6-day-old rabbit blastocysts developed under diabetic conditions Immunohistochemical detection of pentosidine, CML, and argpyrimidine showed strong staining in the embryoblast (EB) and well-stained trophoblast (TB) cells (Fig. 5A). All detected AGEs were exclusively present in the cytoplasm. Slot blot analysis revealed a significantly higher level of protein-bound CML in blastocysts from diabetic mothers (Fig. 5B). Similarly, argpyrimidine level was tendentially increased. The detection of the reactive a-dicarbonyls MGO showed no differences between blastocysts from diabetic and normoglycemic rabbits (Fig. 5C). GO was under the detection limit. The BCF is known to be an important reservoir for nutrients during preimplantation. We used the fluorescent properties of AGEs to determine AGE accumulation in the BCF. Specific peaks for the known AGE fluorescence with excitation and emission at wavelengths of 330/405 and 360/440 nm, respectively, were detectable. Both were significantly increased in the BCF of blastocysts developed under diabetic conditions (Fig. 6A). The protein content of the BCF was equal in both groups with 0.43G0.012 mg/ml. Besides fluorescent AGEs, the non-fluorescent CML as a free adduct was identified by HPLC/MS in the BCF. The quantification of Reproduction (2014) 148 169–178 174 E Haucke and others Negative control Primary follicle Secondary follicle Tertiary follicle A 200 μm 20 μm 30 μm 50 μm B * C * 200 μm 20 μm 30 μm 50 μm 200 μm 20 μm 30 μm 70 μm Figure 4 Immunohistochemical analysis of N3-carboxymethyllysine (A), pentosidine (B), and argpyrimidine (C) in the ovary of healthy rabbits. Follicle growth was stimulated by s.c. injection of pregnant mare’s serum gonadotropin. The AGEmodified proteins were visualized by the peroxidase– diaminobenzidine reaction (brown color). The nuclei were counterstained with hematoxylin (blue color). The negative control is the control reaction of the HRP-conjugated secondary goat anti-mouse IgG without a primary antibody. CML and argpyrimidine show an exclusive cytosolic staining, whereas pentosidine was localized to both the cytoplasm and the nuclei, except for nuclei of the oocytes*. CML showed a higher amount of soluble CML in the BCF of blastocysts from diabetic mothers with 0.26G 0.05 mmol/l compared with controls with 0.18G 0.02 mmol/l (Fig. 6B). AGER mRNA amount in rabbit blastocysts AGER mRNA was detectable from the early blastocyst stage (day 4 p.c.) onwards (Ott et al. 2014). At day 6 p.c., the amount of AGER mRNA was significantly increased under diabetic conditions (Fig. 7). Discussion An intrauterine exposure to hyperglycemia has been shown to cause alterations in pre- and postnatal growth patterns. The underlying metabolic disorder may predis- pose offspring to develop metabolic diseases in later life (Silveira et al. 2007). Several animal studies demonstrated a developmental delay for embryos recovered from diabetic mothers (Giavini et al. 1986, Moley et al. 1991, Ramin et al. 2010). Our study provides new insights into the effects of a maternal DM during the preimplantation period by analyzing the AGE formation in both, the mother and the developing embryo. Thus far, AGE formation is mostly associated with aging and diseases. By contrast, Ling et al. (2001) had already reported AGE modifications in fetal rats from day 10 p.c. onwards. A recently published study has revealed a high rate of glycated and oxidized proteins in undifferentiated mouse embryonic stem cells (ESCs) and in mouse blastocysts at day 3.5 p.c. HSPA8 (HSC70) was identified as the major protein modified by CML in undifferentiated mouse ESCs (Hernebring et al. 2006). Similar to the Reproduction (2014) 148 169–178 findings of our study on day 6 rabbit blastocysts, AGE-modified proteins were mainly present in the EB, and strongly stained cells were also found in the TB (Fig. 5A). The protein modifications by pentosidine, CML, and argpyrimidine were almost exclusively observed in the cytoplasm. It is known that AGEs accumulate intracellularly (Goldin et al. 2006). Besides the physiological appearance of AGEs in preimplantation embryos, we observed pathological AGE accumulations in blastocysts from diabetic mothers. Blastocysts are obviously susceptible for AGE formation while growing up in a diabetic uterine milieu. A 6-day-old rabbit blastocyst developed in a diabetic uterine milieu showed tendentially more AGEs intracellularly and in the BCF compared with age- and stage-matched control blastocysts (Figs 5 and 6). Proteinbound CML and argpyrimidine levels were elevated, whereas protein-bound pentosidine was unchanged. CML and argpyrimidine are AGEs resulting from reactions of a-dicarbonyls (GO and MGO) and amino groups that are known to be highly reactive. Although glucose and fructose are present in significant concentrations in uterine secretions, the fact that they react slowly with proteins to form AGEs must be taken into consideration. Pentosidine is sourced mostly from ribose but also from glucose (Dyer et al. 1991, Grandhee & Monnier 1991). Previous investigations had demonstrated an unchanged glucose uptake in rabbit blastocysts developed under normoglycemic and diabetic conditions (Schindler et al. 2013). These findings might explain the unchanged protein-bound pentosidine concentration. The intracellular glucose concentration has not been determined so far. We found measurable, but unaltered, concentrations of MGO in blastocysts www.reproduction-online.org Negative control Pentosidine TB TB EB EB 200 μm 200 μm CML Argpyrimidine TB TB EB EB 200 μm 200 μm * Control Diabetic 1.5 (100%) 2.0 B Intensity relative to control 1.0 0.5 0.0 Argpyrimidine CML Pentosidine C 1200 Methylglyoxal (nM) 1000 800 600 400 200 175 from diabetic and normoglycemic rabbits (Fig. 5C). The quantification of GO in blastocysts failed at the detection limit of 300 nM. Recent estimates of the cellular concentrations are 1–5 mM for MGO and 0.1–1 mM for GO (Dobler et al. 2006). Formation of MGO arises from a decreased activity of the reductive pentose phosphate pathway and formation of GO arises from lipid peroxidation (Fu et al. 1996, Januszewski et al. 2003, Thornalley & Rabbani 2009). We have new evidence that the lipid metabolism is altered in the rabbit blastocyst in case of a maternal DM. Besides noticeable lipid accumulations, the transport protein for fatty acids and other lipophilic substances, fatty acid-binding protein, is upregulated (Schindler et al. 2014). The two pathways – altered fatty acid metabolism and AGE formation – may interact and contribute to specific aspects of maternal subfertility in DM. In the rabbit model, maternal DM is associated with a reduced ovulation rate and lower number of blastocysts. Blastocyst development is retarded (Ramin et al. 2010). A recently published study has demonstrated that in ART patients an increased AGE concentration in human follicular fluid is associated with diminished follicle growth, a lower fertilization rate, and delayed embryo development (Jinno et al. 2011). A major reason for AGE-mediated damage is the activation of RAGEs (Bierhaus et al. 2005, Nass et al. 2007, Berbaum et al. 2008, Rouhiainen et al. 2013). RAGE–ligand interaction leads to an increase in the expression of AGER. This type of positive feedback loop results in prolonged NFkB activation (Bierhaus & Nawroth 2009, Fritz 2011). In our study, we found a similar positive correlation between AGE accumulation and an increased AGER mRNA expression in blastocysts from diabetic mothers, confirming the view that AGE–RAGE interaction leads to an upregulation of RAGEs. This finding could be a proof for an active AGE–RAGE system in the blastocyst, which may negatively affect the embryo quality in diabetic mothers. From which source the observed AGEs in the early embryo originate is uncertain. As AGE formation, especially due to glucose reactions, is an exceedingly 0 Control Diabetic Figure 5 (A) Immunohistochemical analysis of argpyrimidine, N3-carboxymethyllysine (CML), and pentosidine in embryoblast (EB) and trophoblast (TB) cells of 6-day-old rabbit blastocysts. The AGE-modified proteins were visualized by the peroxidase–diaminobenzidine reaction (brown color). The used antibodies show an exclusive cytosolic staining. The EB has tendentially more AGE modifications than the TB. The nucleus was counterstained with hematoxylin (blue colour). The negative is the control reaction of the HRP-conjugated secondary goat control anti-mouse IgG without a primary antibody. (B) Relative amounts of protein-bound argpyrimidine, CML, and pentosidine in 6-day-old rabbit from diabetic and healthy (control) rabbits analyzed by slot blastocysts blot analysis (meanGS.E.M.; NZ6, nZ8–10; *P!0.05). The amount of AGE is related to the protein load (Ponceau S staining). (C) Methylglyoxal quantification in 6-day-old rabbit blastocyst by HPLC (meanGS.E.M.; NZ3, nZ8–10). www.reproduction-online.org A 2.4 2.0 1.6 B Control Diabetic 0.25 * 1.2 0.8 0.20 0.15 0.10 0.4 0.0 0.35 0.30 *** μmol/l A Relative FU AGE accumulation in diabetic blastocysts 0.05 9 19 330/405 9 19 360/440 0.00 Control Diabetic Wavelength (nm) Figure 6 (A) Relative AGE fluorescence in the blastocyst cavity fluid (BCF) of blastocysts from diabetic and control rabbits (meanGS.E.M., NZ3, nZas indicated; *P!0.05 and ***P!0.001). (B) The free AGE adduct N3-carboxymethyllysine (CML) in the BCF was quantified by HPLC/mass spectrometry (NZ4, nZ15–18). Reproduction (2014) 148 169–178 176 E Haucke and others RAGE/1000 GAPDH molecules 1000 ** 800 600 400 200 10 15 Control Diabetic 0 Figure 7 RAGE mRNA amount in 6-day-old blastocysts from diabetic and control rabbits. RAGE mRNA was related to the amount of GAPDH mRNA molecules per blastocyst (meanGS.E.M.; NZ6, nZas indicated, **P!0.01). slow process and the degradation of AGEs in vivo is negligible, it can be assumed that AGEs may descent from germ cells. Matsumine et al. (2008) have demonstrated increased levels of pentosidine in the primordial, primary, and atretic follicles in premenopausal women. The reduced fertility and reduction in the follicle quality during aging are supposed to be, besides other reasons, due to AGE accumulation (Tatone & Amicarelli 2013). Our rabbit model confirms the presence of AGEs in oocytes (Fig. 4). As the experimentally induced type 1 DM had no effect on the AGE concentration in oocytes, it is unlikely that the accumulated AGEs in diabetic blastocysts are of oocyte origin in our model. However, it is likely that AGEs found in the oocyte might be still present in the developing embryo. This view may be relevant to women of older age, as AGE accumulation takes place for a longer term in this case, and to women with a long-term poorly controlled DM. The increased CML concentration in the diabetic blastocyst (Fig. 5B) was additionally reflected by increased CML concentrations in the BCF (Fig. 6B). Furthermore, diabetic mothers showed increased amounts of CML in the plasma (Fig. 2B) and, through immunohistochemical detection, in the endometrium (Fig. 3A). The disparity between the results of immunohistochemistry and slot blot analysis in uterine tissue (Fig. 3) may be caused by the broad spectrum of AGE modification in tissues. The used antibodies are able to detect, besides protein-bound modifications, free AGEs. It is known that the non-enzymatic reaction between reducing sugars and amino groups also affects lipids and nucleic acids. The immunohistochemical method might capture more AGE modifications than slot blot analysis that detects only protein-bound AGEs. As CML level is increases in both, mother and blastocyst, it is possible that the maternally formed CML are transferred to the embryo. Little is known about the transport mechanism of AGEs. Experiments with Caco-2 cells showed a low transepithelial flux of CML. However, there was no measurable Reproduction (2014) 148 169–178 active transport for CML across the epithelial monolayer, neither via PEPT1 (SLC15A1) nor by carriers for neutral amino acids. The observation led to the conclusion that the transport is based on simple diffusion (Grunwald et al. 2006). Further studies are necessary to clarify this hypothesis. For the first time, we demonstrate that one consequence of maternal DM is AGE formation in preimplantation embryos. AGEs do accumulate in blastocysts if the maternal DM is poorly controlled. Although our results do not provide a causative mechanism between embryo toxicity and DM, it is likely that AGEs play a role as stimuli for activating intracellular stress pathways and, additionally, do affect the molecular function of intracellular proteins. It is known that even moderate changes in the preimplantation environment can adversely affect the pre- and postnatal phenotypes (Fleming et al. 2004, Sinclair & Singh 2007). A clear consequence of these findings is the necessity for a strict control of maternal blood glucose levels during pregnancy from the day of conception onwards. Declaration of interest The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported. Funding This work was supported by the EU (FP-7 Epihealth Nr 278418) and the Wilhelm Roux Programme of the MLU Faculty of Medicine. Acknowledgements The authors thank Michaela Kirstein and Sabine Schrötter for their excellent technical assistance. References Aberg A, Westbom L & Källén B 2001 Congenital malformations among infants whose mothers had gestational diabetes or preexisting diabetes. Early Human Development 61 85–95. (doi:10.1016/S0378-3782(00)00125-0) Ahmed N & Thornalley PJ 2007 Advanced glycation endproducts: what is their relevance to diabetic complications? Diabetes, Obesity & Metabolism 9 233–245. (doi:10.1111/j.1463-1326.2006.00595.x) American Diabetes Association 2013 Diagnosis and classification of diabetes mellitus. Diabetes Care 36 (Suppl 1) S67–S74. (doi:10.2337/ dc13-s067) Berbaum K, Shanmugam K, Stuchbury G, Wiede F, Körner H & Münch G 2008 Induction of novel cytokines and chemokines by advanced glycation endproducts determined with a cytometric bead array. Cytokine 41 198–203. (doi:10.1016/j.cyto.2007.11.012) Bierhaus A & Nawroth PP 2009 Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia 52 2251–2263. (doi:10.1007/s00125-009-1458-9) www.reproduction-online.org AGE accumulation in diabetic blastocysts Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, Stern DM & Nawroth PP 2005 Understanding RAGE, the receptor for advanced glycation end products. Journal of Molecular Medicine 83 876–886. (doi:10.1007/s00109-005-0688-7) Bos DC, de Ranitz-Greven WL & de Valk HW 2011 Advanced glycation end products, measured as skin autofluorescence and diabetes complications: a systematic review. Diabetes Technology & Therapeutics 13 773–779. (doi:10.1089/dia.2011.0034) Boutzios G, Livadas S, Piperi C, Vitoratos N, Adamopoulos C, Hassiakos D, Iavazzo C & Diamanti-Kandarakis E 2013 Polycystic ovary syndrome offspring display increased oxidative stress markers comparable to gestational diabetes offspring. Fertility and Sterility 99 943–950. (doi:10.1016/j.fertnstert.2012.10.050) Brownlee M 1995 Advanced protein glycosylation in diabetes and aging. Annual Review of Medicine 46 223–234. (doi:10.1146/annurev.med.46.1.223) Buongiorno AM, Morelli S, Sagratella E, Castaldo P, Di Virgilio A, Maroccia E, Ricciardi G, Sciullo E, Cardellini G, Fallucca F et al. 1997 Levels of advanced glycosylation end-products (AGE) in sera of pregnant diabetic women: comparison between type 1, type 2 and gestational diabetes mellitus. Annali dell’Istituto Superiore di Sanità 33 375–378. Carubelli R, Schneider JE Jr, Pye QN & Floyd RA 1995 Cytotoxic effects of autoxidative glycation. Free Radical Biology & Medicine 18 265–269. (doi:10.1016/0891-5849(94)E0134-5) Combs CA & Kitzmiller JL 1991 Spontaneous abortion and congenital malformations in diabetes. Baillière’s Clinical Obstetrics and Gynaecology 5 315–331. (doi:10.1016/S0950-3552(05)80100-2) Corrigan N, Brazil DP & McAuliffe F 2009 Fetal cardiac effects of maternal hyperglycemia during pregnancy. Birth Defects Research. Part A, Clinical and Molecular Teratology 85 523–530. (doi:10.1002/bdra.20567) Dobler D, Ahmed N, Song L, Eboigbodin KE & Thornalley PJ 2006 Increased dicarbonyl metabolism in endothelial cells in hyperglycemia induces anoikis and impairs angiogenesis by RGD and GFOGER motif modification. Diabetes 55 1961–1969. (doi:10.2337/db05-1634) Dyer DG, Blackledge JA, Thorpe SR & Baynes JW 1991 Formation of pentosidine during nonenzymatic browning of proteins by glucose. Identification of glucose and other carbohydrates as possible precursors of pentosidine in vivo. Journal of Biological Chemistry 266 11654–11660. Dyer DG, Dunn JA, Thorpe SR, Bailie KE, Lyons TJ, McCance DR & Baynes JW 1993 Accumulation of Maillard reaction products in skin collagen in diabetes and aging. Journal of Clinical Investigation 91 2463–2469. (doi:10.1172/JCI116481) Eriksson UJ, Borg LA, Cederberg J, Nordstrand H, Simán CM, Wentzel C & Wentzel P 2000 Pathogenesis of diabetes-induced congenital malformations. Upsala Journal of Medical Sciences 105 53–84. Eriksson UJ, Cederberg J & Wentzel P 2003 Congenital malformations in offspring of diabetic mothers – animal and human studies. Reviews in Endocrine & Metabolic Disorders 4 79–93. (doi:10.1023/ A:1021879504372) Espinosa-Mansilla A, Durán-Merás I, Cañada FC & Márquez MP 2007 High-performance liquid chromatographic determination of glyoxal and methylglyoxal in urine by prederivatization to lumazinic rings using in serial fast scan fluorimetric and diode array detectors. Analytical Biochemistry 371 82–91. (doi:10.1016/j.ab.2007.07.028) Fischer B, Mootz U, Denker HW, Lambertz M & Beier HM 1991 The dynamic structure of rabbit blastocyst coverings. III. Transformation of coverings under non-physiological developmental conditions. Anatomy and Embryology 183 17–27. (doi:10.1007/BF00315639) Fischer S, Santos AN, Thieme R, Ramin N & Fischer B 2010 Adiponectin stimulates glucose uptake in rabbit blastocysts. Biology of Reproduction 83 859–865. (doi:10.1095/biolreprod.110.084665) Fleming TP, Kwong WY, Porter R, Ursell E, Fesenko I, Wilkins A, Miller DJ, Watkins AJ & Eckert JJ 2004 The embryo and its future. Biology of Reproduction 71 1046–1054. (doi:10.1095/biolreprod.104.030957) Fritz G 2011 RAGE: a single receptor fits multiple ligands. Trends in Biochemical Sciences 36 625–632. (doi:10.1016/j.tibs.2011.08.008) Fu MX, Requena JR, Jenkins AJ, Lyons TJ, Baynes JW & Thorpe SR 1996 The advanced glycation end product, N3-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions. Journal of Biological Chemistry 271 9982–9986. (doi:10.1074/jbc.271.33.19641) Giavini E, Broccia ML, Prati M, Roversi GD & Vismara C 1986 Effects of streptozotocin-induced diabetes on fetal development of the rat. Teratology 34 81–88. (doi:10.1002/tera.1420340111) www.reproduction-online.org 177 Glomb MA & Monnier VM 1995 Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. Journal of Biological Chemistry 270 10017–10026. (doi:10. 1074/jbc.270.17.10017) Goh S-Y & Cooper ME 2008 Clinical review: The role of advanced glycation end products in progression and complications of diabetes. Journal of Clinical Endocrinology and Metabolism 93 1143–1152. (doi:10.1210/ jc.2007-1817) Goldin A, Beckman JA, Schmidt AM & Creager MA 2006 Advanced glycation end products sparking the development of diabetic vascular injury. Circulation 114 597–605. (doi:10.1161/CIRCULATIONAHA.106. 621854) Grandhee SK & Monnier VM 1991 Mechanism of formation of the Maillard protein cross-link pentosidine. Glucose, fructose, and ascorbate as pentosidine precursors. Journal of Biological Chemistry 266 11649–11653. Greene MF 1999 Spontaneous abortions and major malformations in women with diabetes mellitus. Seminars in Reproductive Endocrinology 17 127–136. (doi:10.1055/s-2007-1016220) Grunwald S, Krause R, Bruch M, Henle T & Brandsch M 2006 Transepithelial flux of early and advanced glycation compounds across Caco-2 cell monolayers and their interaction with intestinal amino acid and peptide transport systems. British Journal of Nutrition 95 1221–1228. (doi:10.1079/BJN20061793) Guosheng L, Hongmei S, Chuan N, Haiying L, Xiaopeng Z & Xianqiong L 2009 The relationship of serum AGE levels in diabetic mothers with adverse fetal outcome. Journal of Perinatology 29 483–488. (doi:10. 1038/jp.2009.12) Hernebring M, Brolén G, Aguilaniu H, Semb H & Nyström T 2006 Elimination of damaged proteins during differentiation of embryonic stem cells. PNAS 103 7700–7705. (doi:10.1073/pnas.0510944103) Herrler A, von Wolff M & Beier HM 2002 Proteins in the extraembryonic matrix of preimplantation rabbit embryos. Anatomy and Embryology 206 49–55. (doi:10.1007/s00429-002-0270-9) Januszewski AS, Alderson NL, Metz TO, Thorpe SR & Baynes JW 2003 Role of lipids in chemical modification of proteins and development of complications in diabetes. Biochemical Society Transactions 31 1413–1416. (doi:10.1042/BST0311413) Jinno M, Takeuchi M, Watanabe A, Teruya K, Hirohama J, Eguchi N & Miyazaki A 2011 Advanced glycation end-products accumulation compromises embryonic development and achievement of pregnancy by assisted reproductive technology. Human Reproduction 26 604–610. (doi:10.1093/humrep/deq388) Lee AT & Cerami A 1992 Role of glycation in aging. Annals of the New York Academy of Sciences 663 63–70. (doi:10.1111/j.1749-6632.1992. tb38649.x) Ling X, Nagai R, Sakashita N, Takeya M, Horiuchi S & Takahashi K 2001 Immunohistochemical distribution and quantitative biochemical detection of advanced glycation end products in fetal to adult rats and in rats with streptozotocin-induced diabetes. Laboratory Investigation 81 845–861. (doi:10.1038/labinvest.3780294) Matsumine M, Shibata N, Ishitani K, Kobayashi M & Ohta H 2008 Pentosidine accumulation in human oocytes and their correlation to agerelated apoptosis. Acta Histochemica et Cytochemica 41 97–104. (doi:10.1267/ahc.08014) Moley KH, Vaughn WK, DeCherney AH & Diamond MP 1991 Effect of diabetes mellitus on mouse pre-implantation embryo development. Journal of Reproduction and Fertility 93 325–332. (doi:10.1530/jrf. 0.0930325) Nass N, Bartling B, Navarrete Santos A, Scheubel RJ, Börgermann J, Silber RE & Simm A 2007 Advanced glycation end products, diabetes and ageing. Zeitschrift für Gerontologie und Geriatrie 40 349–356. (doi:10.1007/s00391-007-0484-9) Ortwerth BJ, James H, Simpson G & Linetsky M 1998 The generation of superoxide anions in glycation reactions with sugars, osones, and 3-deoxyosones. Biochemical and Biophysical Research Communications 245 161–165. (doi:10.1006/bbrc.1998.8401) Ott C, Jacobs K, Haucke E, Navarrete Santos A, Grune T & Simm A 2014 Role of advanced glycation end products in cellular signaling. Redox Biology 2 411–429. (doi:10.1016/j.redox.2013.12.016) Rabbani N & Thornalley PJ 2012 Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids 42 1133–1142. (doi:10.1007/ s00726-010-0783-0) Reproduction (2014) 148 169–178 178 E Haucke and others Ramin N, Thieme R, Fischer S, Schindler M, Schmidt T, Fischer B & Navarrete Santos A 2010 Maternal diabetes impairs gastrulation and insulin and IGF-I receptor expression in rabbit blastocysts. Endocrinology 151 4158–4167. (doi:10.1210/en.2010-0187) Rouhiainen A, Kuja-Panula J, Tumova S & Rauvala H 2013 RAGE-mediated cell signaling. Methods in Molecular Biology 963 239–263. (doi:10. 1007/978-1-62703-230-8_15) Schindler M, Fischer S, Thieme R, Fischer B & Santos AN 2013 cAMP-responsive element binding protein: a vital link in embryonic hormonal adaptation. Endocrinology 154 2208–2221. (doi:10.1210/ en.2012-2096) Schindler M, Pendzialek M, Navarrete Santos A, Plösch T, Seyring S, Gürke J, Haucke E, Knelangen JM, Fischer B & Santos AN 2014 Maternal diabetes leads to unphysiological high lipid accumulation in rabbit preimplantation embryos. Endocrinology 155 1498–1509. (doi:10.1210/ en.2013-1760) Sell DR, Nagaraj RH, Grandhee SK, Odetti P, Lapolla A, Fogarty J & Monnier VM 1991 Pentosidine: a molecular marker for the cumulative damage to proteins in diabetes, aging, and uremia. Diabetes/Metabolism Reviews 7 239–251. (doi:10.1002/dmr. 5610070404) Reproduction (2014) 148 169–178 Silveira PP, Portella AK, Goldani MZ & Barbieri MA 2007 Developmental origins of health and disease (DOHaD). Jornal de Pediatria 83 494–504. (doi:10.2223/JPED.1728) Sinclair KD & Singh R 2007 Modelling the developmental origins of health and disease in the early embryo. Theriogenology 67 43–53. (doi:10. 1016/j.theriogenology.2006.09.017) Tatone C & Amicarelli F 2013 The aging ovary – the poor granulosa cells. Fertility and Sterility 99 12–17. (doi:10.1016/j.fertnstert.2012.11.029) Thornalley PJ & Rabbani N 2009 Highlights and hotspots of protein glycation in end-stage renal disease. Seminars in Dialysis 22 400–404. (doi:10.1111/j.1525-139X.2009.00589.x) Watkins A, Papenbrock T & Fleming T 2008 The preimplantation embryo: handle with care. Seminars in Reproductive Medicine 26 175–185. (doi:10.1055/s-2008-1042956) Received 17 March 2014 First decision 3 April 2014 Revised manuscript received 15 April 2014 Accepted 12 May 2014 www.reproduction-online.org HGFEDCBAAE@?C>@=BA<?AAB;C@ "! =7A@6754A3?2@>EA@H2DG1;A@BA3@7D40CFBF@.;C@>EG@-EGA;GF?CF@2B3@,04GA3;++EC@*DEG@>EC@2*33EG)B54EC@ (GF7CBA2?A'@ &2@ AB54@ <?G%+GBA3BF@ 7C@ .EG0C>EG3E@ 6754A3?2ADE>BCF?CFEC@ 7C%?$7AAEC#@ DEAB3%3@ >EG@ H2DG1;@ .EG2B33E)3@ *DEG@ 7?3;"@ ?C>@ $7G7<GBCE@ !EF?)73B;CA2E547CBA2EC@ EBCE@ FG; E@ 2E37D;)BA54E@ )7A3B%B303'@ =BE@ >7$373B;C@ BA3@ >BE@ 04BF<EB3@ .;C@ G0B2$)7C373B;CAE2DG1;CEC#@ 6754A3?2A"@ ?C>@ ,74G?CFA+7<3;GEC@ %?@ $G;>?%BEGEC@ ?C>@ >7>?G54@ AEBCEC@ 3;++E54AE)@ 7?+@ >7A@ .EG0C>EG3E@ ,04GA3;++7CFED;3@ EBC%?A3E))EC'@ HBCE@ C$7AA?CF@ >EA@ E2DG1;C7)EC@ 3;++E54AE)A@ 7C@ A?D;$3B27)E@ E>BCF?CFEC@ <CC3E@ AB54@ E>;54@ CEF73B.@ 7?+@ >BE@ EB3EGE@ HC3B5<)?CF@ 7?ABG<EC@ ?C>@ %?@ EBCEG@ C75447)3BFEC@ G0F?CF@ >EG@ E2DG1;C7)EC@ E))EC@ +*4GEC'@ 2@ -EG)7?+@ >EG@ EB3EGEC@ HC3B5<)?CF@ ?C>@ =B++EGEC%BEG?CF@ <CC3E@ EA@ >7CC@ %?@ DEB54?CFEC@ .;2@ EBFEC3)B54EC@ 2E37D;)BA54EC@ HC3B5<)?CFA$G;FG722@<;22EC#@;>?G54@>EG@40C;31$@>EA@(GF7CBA2?A@7?+@=7?EG@DEEBC+)?AA3@BG>'@ 6E)54E@ !;))E@ >EG@ G7CA<GB$3B;CA+7<3;G@ !H@ DEB@ >EG@ C$7AA?CF@ 7C@ .EG0C>EG3E@ &2FED?CFADE>BCF?CFEC@ EBCCB223#@ BG>@ B2@ ;)FEC>EC@ >7GFEA3E))3@ ?C>@ >BA<?3BEG3'@ ?EGA3@ BG>@ >BE@ !;))E@+*G@>7A@!@DE3G7543E3'@@ "!! =EG@ HBC+)?AA@ EBCEA@ 2*33EG)B54EC@ =B7DE3EA@ 2E))B3?A@ 7?+@ >BE@ H$GEAAB;C@ >EG@ !"72B)BE@ 04GEC>@ >EG@ G0B2$)7C373B;C$47AE@>EA@7CBC54ECA@?G>E@BC@>EC@%EB@?D)B<73B;CEC@ @ ?C>@ @ DEA54GBEDEC@ !72BC@ E3@ 7)'@ #@ 4BE2E@ E3@ 7)'@ 7@ ?C>@ A;))@ B2@ ;)FEC>EC@ >BA<?3BEG3@EG>EC'@@@@@@ -;G@ HBC+*4G?CF@ >EG@ CA?)BC34EG7$BE@ C+7CF@ >EA@ BFA3EC@ 74G4?C>EG3A@ 7G@ =B7DE3EA@ 2E))B3?A@ >BE@ 7?$3?GA754E@+*G@C+EG3B)B303@DEB@G7?EC@B2@FED0G+04BFEC@)3EG'@7))A@AB54@>;54@EBCE@547CFEGA547+3@ EBCA3E))3E#@ 7G@ >BE@ +E37)E@ ?C>@ CE;C737)E@ ;G37)B303@ 2B3@ 9@ E3GE2@ 4;54@ -7GF7A@ E3@ 7)'@ '@ B3@ EFBCC@>EG@CA?)BCDE47C>)?CF@<;CC3EC@>BE@HG+;)FA547C5EC#@*DEG47?$3@A547CFEG@%?@EG>EC@?C>@EBC@ FEA?C>EA@BC>@%?G@6E)3@%?@DGBCFEC#@EAEC3)[email protected]@EG>EC'@ E>;54@%EBF3@AB54#@>7AA@3G;3%@EBCEG@ ECF27A54BFEC@ )?3%?5<EG<;C3G;))E@ ?C>@ .EGDEAAEG3EG@ CA?)BC34EG7$BE@ >7A@ ?+3GE3EC@ .;C@ ;2$)B<73B;CEC#@ BE@ %?2@ EBA$BE)@ +E37)E@ 7<G;A;2BE#@ EB3FE4EC>@ ?C.EG0C>EG3@ D)BED@ 47;@ 7C>@ !EE5E@ '@ 2@ 74GE@ @ ?G>E@ >BE@ FG 3E@ 3?>BE#@ >BE@ ("3?>1#@ 2B3@ 9@ G;D7C>BCCEC@ .EG++EC3)B543@ (@ 3?>1@ ;;$EG73B.E@ !EAE7G54@ G;?$@ E3@ 7)'@ '@ =BEAE@ DE)EF3@ EBC>E?3BF@ >BE@ :9@ @ BA@?>=<;;?:9=8:7<;69;;<5=: =?@32<1?=: B<=0/.;;?: ?<=?A: ,+*?A@/+6)(<?: ')&A?=8: 8?A: %$&'3=@?A;$&302#: B<=?: .>?A@?5A8=?2?: "5//?: >?<:8?=:!A;3$&?=:;*<?/2:3>?A:39$&:8?A: =;9/<=(3=@?/:8?A:922?A:')&A?=8:8?A:A.&;$&'3=@?A;$&302#: BA;2: 3>: 8?A: #: B=2'<$6/9=@;'5$&?: <;2: 8?A: &9(3=?: 29;: ;?/>;2: <=: 8?A: 3@?: =;9/<=: 9: *A589<?A?=: "?<&?A: ?2: 3/#: #: !(: 8?=: ?A/9;2: 8?;: (.22?A/<$&?=: =;9/<=: 9: 65(*?=;<?A?=: (.;;?=: ;5(<2: ?=856A<=?:9=8:/563/?:*3A36A<=?:9=8:39256A<=?:5(*?=;32<5=;(?$&3=<;(?=:362<1<?A2:'?A8?=#:::::: <$&2<@?: ?8<325A?=: <=: 8<?;?(: 9;3((?=;*<?/: ;<=8: : 9=8: #: %<?: '<A6?=: ;+=?A@<;2<;$&: (<2: =;9/<=: 9=8: @?')&A/?<;2?=: ;5: <(: ?A/390: ?<=?A: %$&'3=@?A;$&302: 8<?: 5**/9=@: 8?;: ?(>A+5=3/?=: ?23>5/<;(9;:3=:83;:(.22?A/<$&?:)&A;25003=@?>52#: =:5/@?:?<=?;:(.22?A/<$&?=:7<3>?2?;:+*::'<A8: ;5'5&/: 8<?: 92?A<=?: A58962<5=: 3/;: 39$&: 8<?: ?(>A+5=3/?: %+=2&?;?: @?;2?<@?A2: 9=8: ;5(<2: 8<?: /563/?: ?=@?: 8?92/<$&: ?A&&2: &<?(?: ?2: 3/#: 3#: 7<?;?: 65(*?=;325A<;$&?: "?@9/32<5=: '<A8: 8<A?62:.>?A:8?=: =;9/<=(3=@?/:39;@?/;2:83: =;9/<=:8<?: %+=2&?;?:<=&<><?A2:&<?(?:?2:3/#:3#: 9$&:>?<:;$&'3=@?A?=:7<3>?2<6?A<==?=:0<=8?2:(3=:?<=?:BA&&9=@:8?A:0?23/?=: :9=8: %*<?@?/: &39(<$6::"52&:?2:3/#::,<8?=:?2:3/#:#:: ='<?'?<2: 8<?;?: 65(*?=;325A<;$&?: BA&&9=@: 39;A?<$&?=8: <;2: 9(: 8?=: =;9/<=(3=@?/: 15//;2)=8<@: 9: 65(*?=;<?A?=:<;2:0A3@/<$&#:9(:?<=?=:<;2:<=:/3;25+;2?=:=9A:?<=?: 03$&?:%2?<@?A9=@:15=: :390: A52?<=?>?=?: =3$&9'?<;?=: &<?(?: ?2: 3/#: >#: 9(: 3=8?A?=: >??<=0/9;;2: ?<=: (.22?A/<$&?A: 7<3>?2?;:=<$&2:=9A:8<?:<@3=8?=:8?;: "%:;5=8?A=:39$&:8?;;?=:"??*25A?=#:%5'5&/:8<?:A3=;6A<*2<5=: 8?;: ":3/;:39$&:8?;: ":;<=8:8?92/<$&:9=2?A8A.$62:"3(<=:?2:3/#:#:?A3=2'5A2/<$&:830.A:6==2?=: 9(: ?<=?=: 8<?: ?A&&2?=: %*<?@?/: ;?<=#: %9*A3*&+;<5/5@<;$&?: 5=?=2A32<5=?=: 3=: : 9=8: : 0.&A?=:9:?<=?A: =&<><?A9=@:8?A: " B*A?;;<5=:3*3:?2:3/#::&<:?2:3/#::A?//?:?2:3/#:#: 3=<=$&?=>/3;25+;2?=: 8<?: (<2: : ;2<(9/<?A2: '9A8?=: ?<@?=: 8?92/<$&: @?A<=@?: " : 9=8: " A3=;6A<*2(?=@?=:<(:?A@/?<$&:9A:65AA?;*5=8<?A?=8?=:?&3=8/9=@;65=2A5//?:&<?(?:?2:3/#:3#: 9$&: &5&?: /965;?65=?=2A32<5=?= : 0.&A?=: 9: ?<=?A: !=2?A8A.$69=@: 8?A: " : 9=8: " A3=;6A<*2<5=: <=: 3=<=$&?=>/3;25+;2?=: "3(<=: ?2: 3/#: #: >?A: 39$&: 8<*5=?62<=: <;2: <=: 8?A: 3@?: 8<?: A3=;6A<*2<5=: 8?;: ": 9=8: ": 9: <=&<><?A?=: %$&<=8/?A: 9=1?A00?=2/<$&2#: 7<?: @?A<=@?A?: "??*2<1<2)2: @?@?=.>?A: 8?=: <@3=8?=: 0.&A2: 9: ?<=?A: ?<=@?;$&A)=62?=: 62<1<?A>3A6?<2: 8?A: %<@=3/63;638?: (<25@?= 3$2<132?8: *A52?<=: 6<=3;?: : 9=8: A52?<=6<=3;?: : 62: 9=8: ?<=?A: A?89<?A2?=: B*A?;;<5=: ?=2A3/?A: %$&/.;;?/?=+(?: <(: /965;?(?23>5/<;(9;: 8?A: B: 9=8: ,?56<=3;?:"3(<=:?2:3/#:#:%5(<2:/?@2:9=;?A:8?A?<2<@?A:<;;?=;;23=8:=3&?:83;;:390@A9=8:8?;: "??*25A(3=@?/;: 8?A: ?A/9;2: 8?;: =;9/<=: 89A$&: 8<?: &&?A?: /563/?: ?A0.@>3A6?<2: 3=: : =9A: *3A2<?//: 65(*?=;<?A2:'?A8?=:63==#:: 7<?;?:?A;2?=:=3/+;?=:9(03;;2?=:8<?:@?;3(2?:/3;25+;2?:3(:3@::#:"3(<=:?2:3/#::&<?(?:?2: 3/#: 3#: ?8<=@2: 89A$&: 8<?: ?//2+*3>&)=@<@?: B*A?;;<5=: 8?A: "??*25A?=: B<=/?<29=@: 3*<2?/: ##: ;5'<?:8<?:&5&?:A58962<5=:8?A:<@3=8?=:<(:B(>A+5>/3;2?=:&<?(?:?2:3/#:3:'.A8?:8<?:<A69=@: 44: : GFEDCBA@@D?>B=?<A@;>@@A:B? DF6563DF?210/.-ADED,?>B=?=+*A3?=AD?-+F+/?>B=?+>3:;FABD?)AF;>BE?AB@CD@:B=DFD?=AD?G*CF(:C,+@3'D,,DB? CD3FD&&DB%? <AD@? $AF=? =>F#6? =AD? "B3DF@>#6>BEDB? =DF? ! G/DF*A33D,3DB? 2B@>,AB210/+C6BEAEDB? =A-:BD;3AB/ DE>,+3A:B?>B3DF@3FA#6DB?@AD6D?+-A3D,?%%?2*?F:-6:C,+@3DB?*>@@?@:*A3?DAB?+B=DFD@? .A#6DF6DA3@@(@3D*? EFDA&DB? >*? =DB? *33DF,A#6DB? 2B@>,AB*+BED,? >B=? =+*A3? =AD? &D6,DB=D? DE>,+3A:B? =D@? .3:&&$D#6@D,@? '>? ;:*-DB@ADFDB%? GAB? -:3DB3AD,,DF? +B=A=+3? A@3? =+@? :F*:B? =A-:BD;3AB? =+@? AB? FA*-,+B3+3A:B@D*CF(:BDB? =DB? 1,>;:@D/? >B=? A-A=*D3+C:,A@*>@? FDE>,ADFDB? ;+BB? 0A@#6DF? D3? +,%? ?A*?D3?+,%?%?? =A-:BD;3AB? $AF;3? +,@? D*CF(:EDBD@? :F*:B? &5F=DFB=? +>&? =AD? 1,>;:@D+>&B+6*D? >B=? DF@D3'3? =AD? *D3+C:,A@#6DB?)AF;>BEDB?:B?2B@>,AB?CDA?2B@>,AB*+BED,?=D@?G*CF(:@%?GABD?EDEDB@DA3AED?2B3DF+;3A:B? =D@? 22 .? >B=? .? A@3? @DA3? ,BEDFD*? A*? +=>,3DB? FE+BA@*>@? CD;+BB3%? >*+BD? .3>=ADB? 'DAEDB? =+@@? =A-:BD;3AB? CDA? DABD*? <A+CD3D@? *D,,A3>@? (-? ? AB? 656DFDB? :B'DB3F+3A:BDB? A*? ,>3? '>? &AB=DB? A@3? 2*+E+$+?D3?+,%??++6@?D3?+,%?9?D36?D3?+,%?8%?GABD?;:*-DB@+3:FA@#6D? CDFB+6*D?=DF? 2B@>,AB&>B;3A:B? =>F#6? =A-:BD;3AB? $AF=? =A@;>3ADF3%? =A-:BD;3AB? ;+BB? =AD? 2B@>,AB$AF;>BE? CDF? DF@#6AD=DBD? DF*A33,DF? =DF? 2B@>,AB@AEB+,;+@;+=D? CDDAB&,>@@DB%? <AD? =A-:BD;3AB/+C6BEAED? ;3AADF>BE? =DF? ? &6F3? '>? DABDF? 2B6ACADF>BE? =DF? ./AB+@D? .? >B=? '>? DABDF? ;3AADF>BE? =D@? .!/:*-,DD@? >B=? =+*A3? '>? DABDF? ;3AADF>BE? =D@? 2;3/.AEB+,$DED@? )+BE? D3? +,%? 9%? <AD@DF?.AEB+,$DE?FDE>,ADF3?@:$:6,?=AD?DF@3F;3D?1,>;:@D+>&B+6*D?CDF?=AD?1"/F+B@,:;+3A:B?AB? =AD? D,,D? +,@? +>#6? =AD? 1,>;:BD:EDBD@D? CDF? =AD? D=>'ADF>BE? =DF? G!/F+B@;FA-3A:B? CDF@A#63@+F3A;D,?+*+>#6A?D3?+,%?%?"*ED;D6F3?A@3?2B@>,AB?+>#6?DAB?-:3DB3DF? DE>,+3:F?=D@? .%? +3ADB3DB? *A3? DABD*? EDBD3A@#6/CD=ABE3DB? 2 /<D&D;3? $DA@DB? DF6563D? =A-:BD;3AB@-ADED,? A*? ,>3? +>&? 2*+E+$+? D3? +,%? ? .D*-,D? D3? +,%? %? DA? ? />@DB? =AD? ;DABDB? &>B;3A:BD,,DB? 2 ? A*? 0D33ED$DCD?D-FA*ADFDB?A@3?DCDB&+,,@?=DF?=A-:BD;3AB@-ADED,?DF6563?,6DF?D3?+,%?%?2B?/ D,,DF@>#6DB? *A3? //F+=A-:'(3DB? &6F3? DABD? 2B@>,AB@3A*>,+3A:B? '>? DABDF? EDFABEDFDB? =A-:BD;3ABD-FD@@A:B?0+@@6+>DF?D3?+,%?%?? 2B? ,+@3:'(@3DB? =D@? +BAB#6DB@? ;:BB3D? DABD? 2B@>,AB210/+C6BEAED? DE>,+3A:B? :B? =A-:BD;3AB? @:$:6,? ? +,@? +>#6? ? ED'DAE3? $DF=DB%? <AD? GFEDCBA@@D? @AB=? AB? =DF? >C,A;+3A:B? ? DF5&&DB3,A#63? .#6AB=,DF?D3?+,%?%?<AD? D+;3A:BDB?=D@?G*CF(:C,+@3DB?>B=?F:-6:C,+@3DB?+>&?=DB?2B@>,AB*+BED,? @AB=? >B3DF@#6AD=,A#6%? 2*? G*CF(:C,+@3DB? =A+CD3A@#6DF? +BAB#6DB? $+F? =A-:BD;3AB? BA#63? *D6F? B+#6$DA@C+F? A*? F:-6:C,+@3DB? 6ABEDEDB? =D>3,A#6? DF6563? .#6AB=,DF? D3? +,%? %? GABD? B+,(@D? =DF? ,+@3:'(@3DB&,@@AE;DA3?'DAE3D?=D>3,A#6?DF6563D?=A-:BD;3AB@-ADED,?CDA?=A+CD3A@#6DB?ADFDB?.#6AB=,DF? D3? +,%? %? <AD@? ;+BB? '>*? DABDB? =>F#6? =AD? DF6563D? F:=>;3A:B? A*? F:-6:C,+@3DB? DF;,F3? $DF=DB%? CDF? +>#6? DABD? DF6563D? >&B+6*D? +>@? =D*? >3DFABDB? .D;FD3? A@3? *5E,A#6? =+? +>#6? =AD? =A+CD3A@#6DB? 98? ? A@?>=<;::>98<796;:58::;4<9 1800>@0;>@>9 >;<>9 >@/./0>9 ,7;+4<>50;<54<*><0@)0;4<9 ;(9 '>@8(9 &><745@;<%9 8<79 A<74(>0@;8(9 &+)@)5@;<%9 )8$#>;:><9 &'"/;<7!>@9 >09 )! 9 % 9 6;>:9 #@7>9 >;<><9 ?>@;"/0>0><9 @)<:+4@09 7>:9 (00>@!;"/><9 ,7;+4<>50;<:9 4@)8::>0*>< 9 =9 8<79 #;>9 7>@9 0@)<:9 8<79 +)@)*>!!8!@>9 @)<:+4@09 ;<9 >(=@4<)!><9 >!!><9 >@$4!?09 ;:09 8<5!)@ 9 ;:/>@9 #8@7>9 >;<9 ?>@;"/0>0>@9 ,7;+4<>50;<0@)<:+4@09 <8@9 ;<9 A<740/>!*>!!><98<0>@:8"/09&8054#:5;9>09)! 9% 99 ,8"/97>@9,7;+49#;@79;<9)<;<"/><=!):04*:0><90@)<:5@;+0;4<>!!9=>@9<:8!;<98<79998<79 9 @>?8!;>@09 ;(9 >?><:)0*9 *8(9 ,7;+49 7>@9 5>;<>9 <:8!;<9 47>@9 )=/<?;?>9 @)<:5@;+0;4<:@>?8!)0;4<9 *>;?0>9 &'"/;<7!>@9 >09 )! 9 %% 9 6;>:>@9 >$8<79 #>;:09 )8$9 >;<>9 +40><0;>!!9 8<0>@:"/;>7!;"/>9 8<50;4<9 7>@9 >*>+04@><9 ;<9 7>@9 ,7;+4<>50;<<:8!;<<0>@)50;4<9 /;< 9 6;>:9 #8@7>9 )8"/9 ;<9 )<7>@><9 0;>@>+>@;(><0>!!><9 >@:8"/><9 =>!>?0 9 <9 18:5>!?>#>=>9 $/@09 <:8!;<9 *89 >;<>@9 >@@;<?>@0><9,7;+4@)<:5@;+0;4<9&<85);9>09)! 998;9>09)! 99')00)@9)<79')00)@9% 96>@9 (4!>58!)@>9 1>"/)<;:(8:9 7;>:>@9 >?8!)0;4<9 ;:09 #)/@:"/>;<!;"/9 =>@9 7><9 @)<:5@;+0;4<:$)504@9 9 &%9 *89 >@5!@><9 &:8"/;7)9 >09 )! 9 % 9 A;<>9 <0>@)50;4<9 7>@9 *#>;9 ';?<)!#>?>9 '9 8<79 ,'9 54<<0>9 :4(;09 ;<9 7>@9 4@!;>?><7><9 ,@=>;09 *8(9 >@:0><9 1)!9 )8"/9 ;<9 >(=@4<)!><9>!!><9=>!>?09#>@7>< 9999 8:)((><$)::><795)<<9()<9$>:0:0>!!><97)::9!):04*:0><97;)=>0;:"/>@9100>@9*8(9>;<><9(;09(>/@9 ,7;+4<>50;<9 78@"/9 7):9 80>@;<>9 '>5@>09 >@:4@?09 #>@7><9 *8(9 )<7>@><9 )=>@9 )8"/9 :>!=:09 (>/@9 ,7;+4<>50;<9 ;<9 @4+/4=!):0*>!!><9 +@478*;>@>< 9 87>(9 #>;:><9 7;>9 >(=@4<)!><9 >!!><9 >;<>9 /./>@>9 >*>+0;;009 ?>?><=>@9 ,7;+4<>50;<9 78@"/9 >;<>9 ?>:0>;?>@0>9 ,7;+4;!78<?9 )8$ 9 A;<9 @8<79 7;>:>@9 54(+><:)04@;:"/><9 >?8!)0;4<9 5.<<0>9 ;<9 7>@9 (>0)=4!;:"/><9 8<50;4<9 7>:9 ,7;+4<>50;<:9 ;<9 @;(+!)0)0;4<:>(=@4<><9 &A;<!>;08<?9 )+;0>!9 %9 !;>?>< 9 <0>@9 7;)=>0;:"/><9 '04$$#>"/:>! =>7;<?8<?><9 5.<<0>9 :4(;09 7):9 ,'9 7;>9 ,8$?)=>9 7><9 !854:>9 8<79 ;+;7:04$$#>"/:>!9 *89 544@7;<;>@><9 =>@<>/(><9 >;<>9 ,8$?)=>9 7;>9 78@"/9 7><9 <:8!;<()<?>!9 $@>;9 #;@7 9 6;>:>9 +40/>:>9 #;@7978@"/97;>9?!>;"/9/4/>9!854:>)8$<)/(>9;<97;>9>(=@4<)!><9>!!><9?>:8<7>@98<797;)=>0;:"/>@9 )<;<"/><9?>:00*09&'"/;<7!>@9>09)! 9% 9999 6)(;09 :0>!!09 :;"/9 7;>9 @)?>9 <)"/9 7>(9 *><0@)!><9 >@(;00!>@9 *#;:"/><9 7><9 =>;7><9 /4@(4<>!!><9 ';?<)!::0>(><9'98<79,' 9A;<9+40><0;>!!>@9)<7;7)09;:097>@9@)<:5@;+0;4<:$)504@9A 99 <9 7>@9 4@!;>?><7><9 ,@=>;09 54<<0>9 >@:0()!:9 ?>*>;?09 #>@7><9 7)::9 <;"/09 <8@9 A9 :4<7>@<9 )8"/9 7;>9 )<7>@><9 )(;!;><(;0?!;>7>@9 ,9 ,9 ,9 8<79 ,9 ;<9 @;(+!)<0)0;4<:>(=@4<><9 7>:9 )<;<"/><:9>+@;(;>@09#>@7>< 9<97>@98=!;5)0;4<9 9 :;<79 7;>9 A@?>=<;::>9 $@9 A9 ,9 ,9 ,9 *8:)((><?>$)::09&'"/;<7!>@9>09)! 9% 96;>9,A+@>::;4<954<<0>94<9)?99+ " 9)<98<79:4#4/!9 329 9 FEDCBA@??C>=A<>;@?:=??@9A> @5> F5BE49B32?1CA> =A<> 0E9/.9B32?1CA> BC@> 02D> -> 231CA> +32?19*4?1CA> A2).DC(@C?CA> (CE<CA'> 0E2A?:E@/1C>&9A>%$F#">!0 >9<CE>!0 ->(2ECA>@A><CA>=A1CE?=).1CA> 12<@CA>A@).1>A2).(C@?B2E>9<CE> 32DCA> =A1CE.23B> <CE> 5C1.9<@?).CA> 2).(C@?DECA*C> ).@A<3CE"> =A&CECA13@).1'> ;2> 2=).> @A> #2=?/E@5/32A121@9A?C5BE49ACA> B@?.CE> :C@AC> F/EC??@9A> &9A> %$F#> DC*C@D1> (CE<CA> :9AA1C> +3C):52AA> C1> 23'> 66"> @?1> A@).1> &9A> C@ACE> B@939D@?).CA> +C<C=1=AD> <CE> <EC@> 2:19ECA> @A> <CE> E@5/32A121@9A?/.2?C>2=?*=DC.CA'>> A> 2A@A).CAB32?19*4?1CA> :9AA1C> C@AC> !:1@&@CE=AD> &9A> %$F+> > A2).> A?=3@A> 9<CE> 1@5=321@9A> @AACE.23B> &9A> 65@A> A2).DC(@C?CA> (CE<CA> ).@A<3CE> C1> 23'> 6'> =E> 1@5=321@9A> (=E<C>A#>A?=3@A">"A#> >9<CE>A#> >@A>/.4?@939D@?).CA>9A*CA1E21@9ACA>C@ADC?C1*1">=5> C@AC>?/C*@@?).C>@D2A<$C*C/19E+@A<=AD>=A<><@C>!:1@&@CE=AD>B@939D@?).CE>E9*C??C>*=>DC(.E3C@?1CA> F@A3C@1=AD>2/@1C3>' '> E2?)2>C1>23'>">%.@>C1>23'>666">@)=C3>2A<>C>+9=)>66-'>!=).>2A<CEC> !EBC@1?DE=//CA>:9AA1CA>C@AC>A?=3@A>9<CE> 2B.AD@DC>%$F+.9?/.9E43@CE=AD>A2).>65@A>*C@DCA> $C=?).> C1> 23'> "> $C=?).> C1> 23'> "> 3C55> C1> 23'> 8"> .CAD> 2A<> =@E@9A> 66-'> ;@C?C> !:1@&@CE=AD> :2AA> BCE> <@C> #!@A2?C> #!> 9<CE> /8> #!> CE93DCA'> A> 2A@A).CAB32?19*4?1CA> (=E<C> <@C> .9?/.9E43@CE=AD> <CE> #!> <=E).> A?=3@A> =A<> > A2).DC(@C?CA> 2&2EEC1C> 2A19?> C1> 23'>668'>;@C?C>!:1@&@CE=AD>@?1>/91CA1@C33><CE>CD>E><@C>!:1@&@CE=AD>&9A>%$F+'>+C5CE:CA?(CE1>@?1"> <2??> C@AC> 1@5=321@9A> BCE> C@ACA> 3ADCECA> C@1E2=5> &9A> > 1=A<CA> *=> C@ACE> EC<=*@CE1CA> %$F+ F/EC??@9A> .E1C> ).@A<3CE> C1> 23'> 6'> ;@C?> (C@?1> 2=> C@ACA> ACD21@&DC:9//C31CA> $CD=321@9A?5C).2A@?5=?> @A> 2A@A).CAB32?19*4?1CA> .@A'> ;@C?CE> $)::9//3=AD?5C).2A@?5=?> @?1> &CE5=13@).><@C>FE:3E=AD>E><@C>*(2E><C=13@).>DCE@ADCEC>!:1@&@CE=AD>&9A>%$F+">C<9).>..CEC>%$F+ F/EC??@9A>@A><CA>+32?19*4?1CA><@2BC1@?).CE>#=11CE1@CEC>).@A<3CE>C1>23'>6'>> ;=E).> <@C> %$F+&CE5@11C31C> A?=3@A> =A<> @E:=AD> :2AA> 2=).> <@C> =A1CE?).@C<3@).C> !<@/9AC:1@AC/EC??@9A> @A> F5BE49> =A<> 0E9/.9B32?1CA> CE:3E1> (CE<CA> !BB'> > A1CE> <@2BC1@?).CA> FA1(@):3=AD?BC<@AD=ADCA> (@E<> @A> +32?19*4?1CA> C@AC> DC?1C@DCE1C> /2E2:E@AC> =A<> 2=19:E@AC> CEDB2E:C@1> A2).DC(@C?CA> 0.@C5C> C1> 23'> 62"> <@C> BCE> <CA> $> @5> F5BE49B32?1CA> (@E:CA> :2AA>2&2EEC1C>2A19?>C1>23'>668'>;@C?>(@C<CE=5>.E1>*=>C@ACE>DC?1C@DCE1CA>.9?/.9E43@CE=AD>&9A> %$F+> =A<> <C??CA> 9:23@?21@9A> @A> <CA> C33:CEA'> 95@1> (@E<> <@C> F/EC??@9A> &9A> !<@/9AC:1@A> @5> F5BE49B32?1CA>=A1CE<E):1>!BB'>>!>).@A<3CE>C1>23'>6'>>> 5>0E9/.9B32?1CA>?@A<> >=A<> >A@).1>@A><CE>2DC"><2?> C.3CA><C?>A?=3@A>*=>:95/CA?@CECA"><2> <CE> $> A@).1> C/E@5@CE1> (@E<> =A<> C@AC> !:1@&@CE=AD> &9A> %$F+> 23?> #93C:3> 2=?B3C@B1'> %$F+> &CEB3C@B1> @5> 419/32?52> =A<> <@C> 1E2A?:E@/1@9AC33C> A1CE<E):=AD> <CE> !<@/9AC:1@AC/EC??@9A> =A1CEB3C@B1"> (2?> (@C<CE=5> *=E> CE..1CA> !<@/9AC:1@AC/EC??@9A> @A> 0E9/.9B32?1*C33CA> <@2BC1@?).CE> #=11CE1@CEC>.E1>>!BB'>>+>).@A<3CE>C1>23'>6'>>> 86> > FEDCBA@??C>=A<>;@?:=??@9A> & %$$#&"& &! &&&&&&% && $$&& $&&! &&#&& %>54>F4BE39B21?0CA>/CE<CA>ACBCA><C4>5.-,>1=+*><CE>>6> EC+C)09E> (5'&6.%> C$)E@4@CE0#> ;@C> 5A?=2@A"*A2@+*CA> 1+*?0=4?1:09ECA> ( > 5'&%> 6> =A<> > B@A<CA> ?9/9*2> 1A> <CA> 5'&6.> =A<> 5.-,#> ;=E+*> <@C> CE**0C> CA<9DCAC> =A<> 29:12C> E9<=:0@9A> 1A> 5'&6> =A<> 5'&> /@E<> .F> CE?0"E:0> )*9?*9E32@CE0> =A<> /1A<CE0> @A> <CA> C22:CEA#> ;9E0> @A*@B@CE0> .F> <@C> ,<@)9AC:0@A0E1A?:E@)0@9A#> > 54> E9)*9B21?0CA> /CE<CA> BC@<C> 5A?=2@AECC)09E-5?99E4CA> (5.-,> =A<> 5.-%> C$)E@4@CE0#>A0CE><@1BC0@?+*CA>FA0/@+:2=AD?BC<@AD=ADCA>*E0><CE>1ADC2>1A>5A?=2@A> => C@ACE> C*2CA<CA> *9?)*9E32@CE=AD> <C?> >(.F%>=A<><C??CA>CEB2C@B>@4>309?92#>;@C>,<@)9AC:0@A0E1A?:E@)0@9A> /@E<>9E+@CE0#> (>*9?)*9E32@CE=AD%> > ,2?>E1A?:E@)0@9A?1:09E>@?0>.F>@A><CE>1DC><@C>E1A?:E@)0@9A>?C@ACE>@C2DCAC>?9/9*2>=>?0@4=2@CECA> 12?> 1=+*> => @A*@B@CECA#> ;@C> 5A*@B@CE=AD> <CE> @C2DCA-E1A?:E@)0@9A> /@E<> <1BC@> @A<@EC:0> BCE> C@AC> 5A0CE1:0@9A>4@0>9-&1:09ECA>9ED1A@?@CE0>(1@>1A<>1E041A>6>9*1AAC??CA>C0>12#>%#>;@C?>/@E0> <@C> &E1DC> 1=> /CE> 1A> <CE> .F-CE4@00C20CA> ,<@)9AC:0@A@A*@B@CE=AD> BC0C@2@D0> ?C@A> :AA0C> F@A> )90CA0@C22CE> 1A<@<10>E>C@AC>@A*@B@09E@?+*C>.CD=210@9A>/"EC>,&>( @4>C0>12#>>@>C0>12#>%> C<9+*>/@E<>,&>DCA1=?9>/@C>.F><=E+*>5A?=2@A>=A<>5'&6>@A*@B@CE0>(+*@A<2CE>C0>12#>6%#>,=+*>@A> 21?093?0CA><@1BC0@?+*CE> 1A@A+*CA>/1E>:C@A>A0CE?+*@C<>@A><CE>,&-F$)EC??@9A>4C??B1E>(+*@A<2CE> C0>12#>6%#>;@C>E1A?:E@)04CADC>9A>,&>*@ADCDCA>/C2+*CE>1=+*>=>C@ACE>A0CE<E+:=AD><CE>.F@C2DCA0E1A?:E@)0@9A> *ECA> :1AA> /@E<> <=E+*> 5A?=2@A> =A<> 5'&6> CE**0> (+*@A<2CE> C0> 12#> 6%#> 5A> 21?093?0CA> BC?9A<CE?> @4> F4BE39B21?0CA> <@1BC0@?+*CE> 1A@A+*CA> /1ECA> <C=02@+*> CE**0C> ,&4.,-CADCA> A1+*/C@?B1E> (+*@A<2CE> C0> 12#> 6%#> ;@C?> /C@?0> <1E1=> *@A> <1??> ,&> <1?> @A*@B@09E@?+*C> 0C22D2@C<> @A> <CE> [email protected],<@)9AC:0@A-@DA12:1?:1<C> ?C@A> :AA0C#> C<9+*> C@DCA> "=?C> <@C> ,&> BCEC$)E@4@CECA> 9<CE> :C@A> =A:0@9AC22C?> ,&> 1=/C@?CA> :C@ACA> A0CE?+*@C<> @4> ,<@)9AC:0@A?)@CDC2>(9?*@1/1>C0>12#>%#>;1*CE>/@E<><@C>C<C=0=AD>1A<CECE>91:09ECA>@A><@C?CE> @DA12:1?:1<C>A@+*0>1=?DC?+*29??CA#>>>>>>> 86> > LKJIHGFEEIDCGBDAFE@CEEF?GD ;:L9DKIJC8FIK7DGF657DGCKDBFIDL43KIEEF?GD2?GD1BF3?GI@7FG0DE?GBIKGDFE7DFGDIFGID/FI8.-58D,I7-H?8FE65IKD +K?.IEEIDFG2?82FIK7D*;?G@KFJ57DI7D-8)D<(('0D&5-GJDI7D-8)D<((%$)D9IKIF7ED2?KD9IJFGGDBIKD5FIKDBFE@C7FIK7IGD #G7IKEC65CGJIGD "-KD HI@-GG70D B-EED @8-EEFE65ID ;:L9!&FI8JIGID "FID BFID +L+; D CGBD I4?@FG-EID <0D BFID IFGID .IG7K-8ID 9IBIC7CGJD F,D 8C@?EI,I7-H?8FE,CED IFGGI5,IG0D FGD 98-E7?.E7IGD BF-HI7FE65IKD -GFG65IGD2IKGBIK7DI43KF,FIK7D"IKBIGD*:-,FGD<(($)D;:L9DHIIFG8CEE7DF,D-BC87IGDKJ-GFE,CEDBFID K-GE@KF37F?GD 2?GD 2IKE65FIBIGIGD IGIGD BIED F3FB,I7-H?8FE,CE)D A-.CD .58IGD CG7IKD -GBIKI,D ++1:D *:ICE65DI7D-8)D<(((0DIK.FJDI7D-8)D<(('0D?4DI7D-8)D<(($0D19+D*:ICE65DI7D-8)D<((($0D1+D*&5-GJDI7D -8)D <((%$0D ;+9D *?CI7D I7D -8)0D <((<$D CGBD D *:L9+$D *A??8IDI7D-8)D0D&5?CDI7D-8)D<(($D*HIKEF657E-K7F@I8D187-KI?ED-GBD ?G7,FGD<(0DA-7IGH-G@D 5773G-7CK-8)E-8@)BIC;:L9$)DD 1CIKBI,D FE7D HI@-GG70D B-EED ;:L9D BFID FG7K-.I88C8KID 1@@C,C8-7F?GD 2?GD KFJ86IKFBIGD FG?8JID IFGIKD ,F7?65?GBKF-8IGD AECG@7F?GD KIJC8FIK7D **/-G@?GFGJE8??D I7D -8)D <(($$)D LFGID /IKGBIKCGJD BIED I,HK?G-8IGD F3FBE7?"I65EI8ED FG?8JID BIKD 2IKGBIK7IGD ;:L9!1@7F2FIKCGJD FGD L,HK?GIGD BF-HI7FE65IKD -GFG65IGDFE7DE?,F7D"-5KE65IFG8F65)DDDD %$%$#"! #!#!#!# #!#! ## # # !!!# LKE7ID JI"?GGIGID LKJIHGFEEID .C,D I,HK?G-8IGD F3FB,I7-H?8FE,CED CG7IKD BF-HI7FE65IGD LG7"F6@8CGJEHIBFGJCGJIGD EFGBD FGD BIKD +CH8F@-7F?GD D2IKIG78F657D*65FGB8IKDI7D-8)D<($)DIF7IKID HFE5IKDGF657D3CH8F.FIK7IDA-7IGD"IKBIGDFGDBFIEI,D -3F7I8D-8EDLKJIHGFEEIDB-KJIE7I887DCGBDBFE@C7FIK7)DDDD %$%$$# #!!! # #"! #! ######## A-ED "?58D BIC78F65E7ID &IF65IG0D B-EED BFID #,E7I88CGJD BIED I,HK?G-8IGD I7-H?8FE,CED -CD BFID BF-HI7FE65IGD LG7"F6@8CGJEHIBFGJCGJIGD .CD IFGIKD 7KCGJD F,D F3FBE7?"I65EI8D 5K70D FE7D BFID ,-EEF2ID FG7K-.I88C8KID 1@@C,C8-7F?GD 2?GD F3FBIGD F,D L9D CGBD 9D *65FGB8IKD I7D -8)D <($)D A-HIFD "CKBID BIKD -65"IFED 2?GD F3FB7K?3IGD ,F77I8ED F8D :IBD !KHCGJD JI5K7)D #,D .CE7.8F65D IFGID C-G7F7-7F2ID 1CEE-JID 7KIIGD .CD @GGIG0D "CKBID IFGID GICID I75?BID H-EFIKIGBD -CD F8ID :IB!KHCGJD CGBD 8C?KIE.IG.!-@7F2FIK7ID &I88E?K7FIKCGJD *1;0D $D IG7"F6@I87)D &CKD ACK655KCGJD BFIEIKD I75?BID ,CEE7IGD CG7IKD /IK"IGBCGJD IFGIED @?,,IK.FI88IGD F7ED * 0D F87?GD 9F?7I6$D BFID I,HK?G-8IGD &I88IGD BIKD 98-E7?.E7IGD 2IKIFG.I87D "IKBIG)D 9IFBID /IKEC65E-GE7.ID HI8IJ7IGD IFGID BIC78F65D55IKID1@@C,C8-7F?GD2?GDF3FB2IEF@I8GDFGD98-E7?.E7IGDBF-HI7FE65IKD -GFG65IGD*65FGB8IKDI7D -8)D <($)D LED FE7D HI@-GG70D B-EED +KF,38-G7-7F?GEI,HK?GIGD FGD BIKD -JID EFGB0D FG7K-.I88C8KD F3FBID FGD ?K,[email protected]**ECFFDI7D-8)D<(($$)DAFIDJIE3IF65IK7IGDF3FBIDBFIGIGD.C,DIFGIGD -8EDLGIKJFICI88I0DHIIFG8CEEIGD-HIKD-C65DBFID&I883K?8FIK-7F?G0D&I88!&I88FG7IK-@7F?G0DBFIDCG@7F?GD2?GD ><D D EDCBA@?>>B=<@;=:?>9<>>?8@= 4B3AD2@B@=<@;=;23?1=;B@=?@1BD0=<@;=?@1D2/B..<.-DB@=+D2@>*8D1=)(ABD>?%$1>2D1?9B.=)#1<AA>=2@;=#3?1$= "!7 = :?B= DB= <@;= @/2$.= ;BD= ?@1D2/B..<.-DB@= ?*?;B>?9B.= ?>1= ;<D%$= ;2>= <3CBAB@;B= 4?.?B<= ABB?@.<>>A2D=)AB=B1=2.="!!!=8>$?=5=<@;=B?@=?%$1?CBD=42D9BD=D=;?B=?12.?1-1=;BD=E3AD8@B@= E?@B= BD$$1B= B11B>?9B.3B@CB= B?>1= 2<= B?@B= >%$.B%$1B= E3AD8@B@<2.?1-1= B?@= CBD?@CBDB>= E@1?%9.<@C>*81B@1?2.=<@;=B?@B=CBD?@CB=D818.BD2@/=$?@=):8AD?@>9=B1=2.="!!!=2C2@8=B1=2.= = B8@C= B1= 2.= != #83?1= <@1BD>11/1= ;BD= B<@;= B?@BD= 32>>?B@= 99<3<.21?8@= 8@= ?@1D2/B..<.-DB@= ?*?;B>?9B.@= ?@= .2>18/>1B@= ;?2AB1?>%$BD= 2@?@%$B@= ;?B= ABDB?1>= AB92@@1B= >%$.B%$1BDB= E3AD8@B@<2.?1-1=<@;=E@1?%9.<@C>BD/CBD<@C=)23?@=B1=2.="== <;B3= >?@;= ?%$1?CB= #%$.>>B.38.B9.B= ;B>= ?*?;3B12A8.?>3<>= ;<D%$= ;B@= 311BD.?%$B@= :?2AB1B>= BD-@;BD1=ACB>B$B@=8@=;?*8*$?.?@=98@@1B@=;?B>B=?@=;BD=8D.?BCB@;B@=DAB?1=/<3=BD>1B@=42.=?3= D-?3*.2@121?8@>B3AD8= ;B>= 2@?@%$B@>= @2%$CB?B>B@= BD;B@= )#%$?@;.BD= B1= 2.= " = ;?*8*$?.?@= <@;=BD?.?*?@=2<%$=2.>="=<@;==AB92@@1=>?@;=?*?;B>?9B.02>>8/??BD1B=D81B?@B=<@;=DBC<.?BDB@= <A2<=<@;=<>233B@>B1/<@C=8@=?*?;B>?9B.@=>8?B=;?B=?*8.>B=))B?;=B1=2.="!!7=)4?<D2=B1=2.= =D2>2B3.B==?%8@B=<@;=82<18DB@=98@@1B@=;?*8*$?.?@0+D2@>9D?*1B=ABDB?1>=2A=+2C=== ?3= 2@?@%$B@B3AD8= @2%$B?>B@= )?%8@B= B1= 2.= ""= ED>1= 9D/.?%$= <D;B= ;?B= 892.?>21?8@= 8@= ;?*8*$?.?@= <3= ?*?;B>?9B.= CB/B?C1= ).= :2D?%$= B1= 2.= " = :?B>B= ?D;= ;<D%$= BD>%$?B;B@B= <.1<DAB;?@C<@CB@=ABB?@.<>>1=.2>18/>1B@=;?2AB1?>%$BD=2@?@%$B@=?B>B@=B?@B=BD$$1B=E*DB>>?8@= 8@=;?*8*$?.?@=<@;=BD?.?*?@=2<=)AA=7=)#%$?@;.BD=B1=2.=" == = = = = 75= = PONMLKJIIMHGKFHEJIDGIIJCKH H $##"! ! !!!!!!! !!#! ! EJMH P?>OMIIJCKH FMOH =J>CNMKMKH <JNK;=:C=MD9=MH 7GOFMH :J66M=IH 5432104H CFMOH /MI6MOKH .=C6H MO:J66M=6-H E;,9OH 7GOFMKH ;:H 3;NH +H >-)-H .=;I6C('I6MKH KCO:CN='D&:JI)%MOH GKFH FJ;LM6JI)%MOH $;KJK)%MKH ;GIH FM:H #6MOGIH NMI>9=6"H ;G,NM;OLMJ6M6H GKFH LMJH 2B! 0H NM=;NMO6-H ;)%H :42IC=;6JCKH :J66M=IH E'K;LM;FI2MO,;%OMKH GKFH )E2<'K6%MIMH MO,C=N6MH FJMH 54321042MIIGKNH ,C=NMKFMOH MKMH FJ>C>%J=JK"H H31@"H H.1@"H0;OKJ6JK21;=:J6C'=6O;KI,MO;IMH H.H013.-HEJMH1OC6MJKJIC=;6JCKHMO,C=N6MHGK6MOHMO7MKFGKNHFMIH4121G,,MOI-HNH MI;:6>OC6MJKH >OCH 1OCLMH 7GOFMKH ,9OH MJKMH K;='IMH :J66M=IH <E<21PH GKFH /MI6MOKH .=C6H MO7MKFM6-H EJMH P?>OMIIJCKH CKH 1MOJ=J>JK"H 1MOC?JIC:21OC=J,MO;6CO2;D6JJMO6MOH 4M(M>6COH H GKFH H 114"H 114"H H <4P.1H H GKFH M66I&GOM2<'K6%;IMH <H 7GOFMKH ;G,H 1OC6MJKMLMKMH LMI6J::6-H EJMH PONMLKJIIMH IJKFH OM=;6JH (GOH P?>OMIIJCKH JKH .=;I6C('I6MKH ;GIH NMIGKFMKH $;KJK)%MKH $CK6OC==MH!!HLMOM)%KM6HJ66M=7MO6HJKHH H<6;KF;OF,M%=MO-HH H LMOH ;G)%H MKM"H FJMH MK6I)%MJFMKFH ,9OH FJMH JK6O;(M==G=&OMH G,K;%:M"H ,9OH 3O;KI>CO6H GKFH <>MJ)%MOGKNH CKHJ>JFMK"[email protected]@"HIJKFHMJFHM6H;=-HB"H<6CO)%H;KFH3%G:IMOH!!!"H<6;%=H!!@"H<6CO)%H ;KFH)EMO:C66H!!"HIJKFH%%MOHJKH.=;I6C('I6MKHFJ;LM6JI)%MOH$;KJK)%MKHM?>OJ:JMO6H<)%JKF=MOHM6H;=-H !@-H KH FMOH .=;I6C('I6MK%%=MK,=9IIJNDMJ6H FJ;LM6JI)%MOH $;KJK)%MKH DCKK6MH (GFM:H MJKMH %%MOMH $CK(MK6O;6JCKH ;KH .1@H K;)%NM7JMIMKH 7MOFMKH <)%JKF=MOH M6H ;=-H !@"H 7;IH J:H GI;::MK%;KNH :J6H MJKM:HMO:M%O6MKH3O;KI>CO6HCKHM66I&GOMKHJKHM:LO'CK;=MHM==MKHI6M%MKHDKK6M-HG:;KMH<6GFJMKH LM=MNMK"HF;IIHIC7C%=HFJMHP?>[email protected]@"H;=IH;G)%HFJMHMKNMH;KH.1@HJ:H<MOG:H MJKH KFJD;6COH ,9OH LMONM7J)%6"H KIG=JKOMIJI6MK(H GKFH E'I=J>JF&:JMKH JI6H MO6C7H M6H ;=-H !!@"H GH M6H ;=-H !!+"H $;O;D;IH M6H ;=-H !!-H GI&6(=J)%H IJKFH IC7C%=H P:LO'CL=;I62H ;=IH ;G)%H 3OC>%CL=;I6(M==MKH FJ;LM6JI)%MOH $;KJK)%MKH FGO)%H MJKMH FMG6=J)%H I6&ODMOMH CD;=JI;6JCKH CKH .1@H J:H M==DMOKH B@H H LKJIHGFEEIDCGBDAFE@CEEF?GD JI@IGG;IF:9GI8D76:9FGB5IKDI8D453D210/.3D-,+*/D8K4GE)?K8FIK8D-I88E(CKIGDFGDBIGD&I55@IKGDCGBD@4GGDB?K8D BCK:9D BFID %G8IK4@8F?GD $F8D BIGD #K4G@KF)8F?GE"4@8?KIGD **,!D CGBD **,!D BFID #K4GE@KF)8F?GD ?GD &FI5JIGIGD KIJC5FIKIGD 768?K:9D 4GBD :AIK$?88D 211..3D AIKD +I"CGBD IFGIKD BIC85F:9D )K?$FGIG8IKIGD ?@45FE48F?GD F$D &I55@IKGD CG8IKE88;8D BFID 6F:98D IFGIKD IKE8(K@8IGD KIJC548?KFE:9IGD %G8IK4@8F?GD $F8D BIGD **,!ED CG8IKD BF4HI8FE:9IGD +IBFGJCGJIG3D AFID **,!ED JI9KIGD ;CD BIGD FJ4GBIG4@8F FIK8IGD #K4GE@KF)8F?GE"4@8?KIGD77AKIIKDI8D453D0DAIE IKJGID4GBD495FD0.3DLED@GGIGDBKIFD IKE:9FIBIGID %E?"?K$IGD **,!D **,!D CGBD **,!D CG8IKE:9FIBIGD IKBIG3D AFID L)KIEEF?GD ?GD **,!D CGBD **,!DFE8DFGD+54E8?;E8IGDBF4HI8FE:9IKD4GFG:9IGDIK998D7,HH3D>.D76:9FGB5IKDCG IK""IG85F:98.3D**,!D ?GDBI$D2D IKE:9FIBIGID*K?8IFGFE?"?K$IGDHI@4GG8DEFGBD7**,!0DCGBD**,!2.DCKBID45EDF:98FJIKD !IJC548?KDBIKD,BF)?;8IGBF""IKIG;FIKCGJDCGBDBIED5C@?EI$I84H?5FE$CEDFBIG8F"F;FIK8D7#?G8?G?;DI8D453D 0/DAIE IKJGIDI8D453D211DHIKEF:98E4K8F@I5DC$4KFD210/.3D**,!D@?G8K?55FIK8DBIGDFG8K4;I55C5(KIGD F)FB D CGBD 5C@?EI$I84H?5FE$CED HIKD BFID BFKI@8ID 8K4GE@KF)8F?GI55ID !IJC548F?GD ?GD IGIGD BFID IG8E:9IFBIGBD "KD BFID FB48F?GD -I88E(CKI4C"G49$ID CGBD BIGD #KFJ5:IKFB@484H?5FE$CED EFGBD 7I"IH KID I8D 453D 211.3D A4;CD JI9K8D 4C:9D *#0+D B4ED BIGD FGF8F45IGD 6:9KF88D BIKD FB48F?GD BIGD #K4GE)?K8D ?GD -I88E(CKIGD FGD BFID F8?:9?GBKFIGD E8ICIK83D AFID L)KIEEF?GD ?GD *#0+D FE8D FGD BIGD +54E8?;E8IGD BF4HI8FE:9IKD 4GFG:9IGD KIBC;FIK8D 7,HH3D >.D 76:9FGB5IKD CG IK""IG85F:98.D CGBD E)KF:98D B4$F8D "KD IFGID JIKFGJIKID FB48F?G3D KF8FE:9D $CEED $4GD 4G$IK@IGD B4EED BFID 99IKID **,! L)KIEEF?GD CGBD BFID IK"JH4K@IF8D 4GD F)FBIGD 4C"JKCGBD BIKD $88IK5F:9IGD )IK5F)FB($FID I9IKD IFGID 68IFJIKCGJD BIKD FB48F?GD IK$C8IGD 5FIIG3D HD BFID IKKFGJIK8ID *#0+#K4GE@KF)8$IGJID 4C:9D ;CD IFGIKD ,HEIG@CGJD BIKD FB48F?GD "9K8D $CEED BCK:9D IF8IKID G8IKEC:9CGJIGD F$D +IKIF:9D BIED -I88E(CKI@484H?5FE$CED ?GDL$HK?GIGDJI@5(K8DIKBIG3D+I@4GG8DFE8DHIKIF8EDB4EEDIFGIDI$$CGJDBIKD FB48F?GD (9KIGBD BIKD *K(F$)54G848F?GEIG8F:@5CGJD ;CD IFGIKD JIKFGJIKIGD *K?5F"IK48F?GEK48ID CGBD +54E8?;E8IGIG8F:@5CGJD "9K8D 7IF8E?GD I8D 453D 0D -IKJCE?GD 4GBD IIEID 211.D CGBD B4$F8D ;CD BIKD HI?H4:98I8IGD LG8F:@5CGJE IK;JIKCGJD HIFD BF4HI8FE:9IGD 4GFG:9IGI$HK?GIGD HIF8K4JIGD @4GGD 7!4$FGDI8D453D2101.3DDDDDD A4ED;IG8K45ID6:95EEI5IG;$DBIKDF)?JIGIEID6!L+*0DFKBD45EDFG4@8F ID?KE8C"ID7 .DJIHF5BI8D B4ED 45ED FG8IJK45IED I$HK4G)K?8IFGD F$D LGB?)54E$48FE:9IGD !I8F@C5C$D ?K5FIJ83D ACK:9D ;IFD )K?8I?58FE:9ID 6)458CGJIGD IG8E8I98D B4ED 4@8F ID 6!L+*0*K?8IFGD B4ED 4C:9D 45ED GC@5I(KIED 6!L+*0D 7G6!L+*0.DHI;IF:9GI8DFKBD7F$DI8D453D0<DLB4KBEDI8D453D2111.3D+IFDBIKD,G45EID ?GD6!L+*0D;IFJ8ID EF:9D IFGID 99IKID ,@@C$C548F?GD BIED 4@8F IGD GC@5I4KIGD 6!L+*0D 7G6!L+*0.D FGD +54E8?;E8IGD BIKD BF4HI8FE:9IGD C88IK8FIKID 76:9FGB5IKD I8D 453D 210/.3D AFIED E)KF:98D "KD IFGID 99IKID 8K4GE@KF)8F?GI55ID ,@8F F8(8D FGD BF4HI8FE:9IGD +54E8?;E8IG3D LFGID 8K4GE@KF)8F?GI55ID !IJC548F?GD BIED F:98FJIGD &FI5JIGED BFID -I88E(CKI6G894EID 7-,6.D IK"?5J8D IB?:9D GF:98D 7,HH3D >.D 76:9FGB5IKD I8D 453D 210/.3D AFID -,6D B4ED 6:95EEI5IG;$D BIKD D F)?JIGIEID @4845EFIK8D BFID *K?BC@8F?GD 54GJ@I88FJIKD -I88E(CKIGD 4CED 45?G5?,D774@F5D0>D6I$IG@? F:9D0..3DAIKD4GJI5D4GD"CG@8F?GI55I$D-,6*K?8IFGD"9K8D;CKD ><D D FEDCBA@??C>=A<>;@?:=??@9A> C4BE39A21CA> 0C/21@/./> A9,+> *.+ECA<> <CE> )E.@4(12A/2/@9A?(+2?C> '&+@E212> C/> 21%> $##"!> =A<> =A/CE?/EC@,+/> <24@/> <@C> C??CA/@C11C> C<C=/=AD> <C?> 0@(@<4C/2B91@?4=?> *.+ECA<> <CE> CE?/CA> 2DC> <CE> FA/*@,:1=AD%>> ;@C> CE.A<CE=ADCA> @4> 0@(@<4C/2B91@?4=?> :AACA> 2=,+> 4@/> <CE> 9A> =A?> DC?/C@DCE/CA> @1<=AD> 9A> >'F?!>@A>=?42AACA+2AD>DCBE2,+/>*CE<CA>'2=,:C>C/>21%>$#!%>F?> @?/> BC:2AA/> <2??> <@C> )CE9@<2/@9A> 9A> 0@(@<CA> =E> @1<=AD> 9A> EC2:/@CA> ;@,2EB9A31CEB@A<=ADCA> *@C> =4> C@?(@C1> C/+31D13921> =A<> 13921> +E/> 'E@B2EE@> $##6> F?> 2A<> AC(+9E/9@/3> 9> +@D+> (E9/C@A><@C/?!%>;@C> @1<=AD>=A<>::=4=12/@9A>9A>F?>@A<=@CE/>C@ACA>2A+21/CA<CA>9@<2/@CA>/EC??> 'C11> > 0CC> > &CE24@> $> E9*A1CC> !%> F?> 2::=4=1@CECA> @4> 1=/> =A<> FA<94C/E@=4> <@2BC/@?,+CE> =//CE/@CEC> '2=,:C> $#!%> =<C4> *C@?CA> 12?/93?/CA> C@AC> <C=/1@,+> CE++/C> CADC> 13921> @4> F4BE39> ?C1B?/> =A<> 2A<CECE> F?> @A> <CE> 12?/93?/CA1??@D:C@/> 2=> '2=,:C> C/> 21%> $#!%> ;@C?CE> C=A<> :9EEC1@CE/> 4@/> C@ACE> CE++/CA> F(EC??@9A> <C?> F CC(/9E?> F> '2=,:C> C/> 21%> $#!%>F@AC>F :/@@CE=AD>+E/>BCE><CA>E2A?:E@(/@9A?2:/9E> > ' !> => C@ACE> =??,+//=AD> (E9@A12442/9E@?,+CE> 3/9:@AC> =A<>EC@CE>2<@:21C>' CEB2=4>C/>21%>$##8> @CE+2=?>>2*E9/+>$##>E@/>C/>21%>$#!%>=?244CA>4@/> <CE> BCEC@/?> BC?,+E@CBCACA> CE++/CA> 0@(@<BC12?/=AD> :2AA> <@C> CE++/C> F @1<=AD> =A<> ::=4=12/@9A> E> <@C> BC9B2,+/C/C> ?,+1C,+/CEC> F4BE39ACA=21@/./> =E?.,+1@,+> ?C@A> '24@A> C/> 21%> $##!%>>>>>>>>> FE?/C> A/CE?=,+=ADCA> C@ACE> BEC@/CA> )21C//C> 9A> CACA> <C?> 0@(@<4C/2B91@?4=?> *C@?CA> 2=> C@AC> =A/CE?,+@C<1@,+C> CD=12/@9A> @4> F4BE39B12?/CA> =A<> E9(+9B12?/CA> +@A%> A> 6> 2DC> 21/CA> 12?/93?/CA> DC?=A<CE>2A@A,+CA>*@E<> )>=A<>>+2=(/?.,+1@,+>@4>F4BE39B12?/CA>C(E@4@CE/>',+@A<1CE>C/> 21%> $#!%> ) > =A<> <@(9(+@1@A E2A?:E@(/C> :AACA> @4> F4BE39B12?/CA> =A<> E9(+9B12?/CA> 4@/> D1C@,+CE> A/CA?@/./> A2,+DC*@C?CA> *CE<CA> ',+@A<1CE> C/> 21%> $#!%> ;CE> CED1C@,+> 9A> 12?/93?/CA> DC?=A<CE> =A<> <@2BC/@?,+CE> 2A@A,+CA> C@D/> <2??> <@C> CE++/C> E2A?:E@(/@9A> 9A> )> =A<> <@(9(+@1@A> 2=> <CA> F4BE39B12?/CA> BC?,+E.A:/> @?/> ',+@A<1CE> C/> 21%> $#!%> )> @?/> ?9*9+1> @4> F4BE39B12?/CA> =A<> E9(+9B12?/CA> <@2BC/@?,+CE> 2A@A,+CA> ++CE> C(E@4@CE/> ',+@A<1CE> C/> 21%> $#!%> ;@C?C> C=A<C> *CE<CA> <=E,+> C@AC> ?@DA@@:2A/> CE++/C> @1C> C< B?9E(/@9A> =A/CE?///> <@C> A=E> @4> F4BE39B12?/CA>=>@A<CA>@?/>',+@A<1CE>C/>21%>$#!%>A?CE><CEC@/@DCE>@??CA??/2A<>=A<><@C?C>CE?/CA> FEDCBA@??C>*C@?CA><2E2=>+@A><2??>@4>F4BE39B12?/CA>=A<>E9(+9B12?/CA><CE>C11=1.EC>C/2B91@?4=?> BCE>=A/CE?,+@C<1@,+C><2(/2/@9A?4C,+2A@?4CA>DC?/C=CE/>*@E<%>)9/CA/@C11C>C,+2A@?4CA>?911CA>@4> 91DCA<CA><@?:=/@CE/>*CE<CA%>>> C1,+C> 2:/9ECA> E> <@C> BC9B2,+/CA> CE.A<CE=ADCA> @4> 0@(@<4C/2B91@?4=?> CE2A/*9E/1@,+> ?@A<> @?/> A9,+> A@,+/> DC:1.E/%> F@AC> CA/E21C> CE4@//1CEE911C> 9A> &F > @?/> 2=DE=A<> <CE> DCC@D/CA> =A<> BCEC@/?> 86> > MLKJIHGFFJEDHCEBGFADFFG@HE JL<L:JL:JHELJKD98:@LGF76JHE5DHA:G@HE43LE9G2@KJHJE1JHJE086LF76JGH9G76E/FGJ6JE.82G:J9EBGFADFFG@HE-,+,*,E )HE (JIJL'J99JHE KJFDHCJLE &%DFJE 436L:E CJLE &8HKJ9E 8HE 4DHA:G@HJ99J$E #"M!E 'DE JGHJLE JL6<6:JHE AAD$D98:G@HE @HE (G2GCJHE DHCE F@$G:E 'DE JGHJLE 5J::9JIJL,E BGJFJE GLADHKE 0GLCE 3IJLE "E JL$G::J9:E /JL'GKEJ:E89,E+*,E)HEJLF76GJCJHJHE)HFD9GHCJ4G'GJH:JHE&8DF$@CJ99JHEF76JGH:ECJLEJL9DF:E8HE#"M!E JGHJEKJKJH:JG9GKJEGLADHKE'DEJL$G::J9H,EBGJFJE&%DFJE0JGFJHEJGHJELJCD'GJL:JE6J28:GF76JE(G2@KJHJFJE DHCEKJLGHKJLJE#6@9JF:JL@9EDHCELGK97JLGCF2GJKJ9EG$E98F$8E8D4E/MLG@HEJ:E89,E*,EB8FE))"EF76JGH:E 89F@EIJGECJLE L:ECJLEGLADHKE@HE#"M!EJGHJE0JFJH:9G76JE"@99JE'DEF2GJ9JH,EE JIJHE #"M!E A8HHE 8D76E CGJE "JKD98:G@HE CJLE 8HCJLJHE #"M! 558$G9GJH$G:K9GJCJLE 8DFF7698KKJIJHCE FJGH,E B8IJGE L37A:E 5-E JLF:%LA:E GHE CJHE 5@ADF,E 5-CJ4G'GJH:JE &%DFJE FGHCE C3HHE DHCE 0JGFJHE JGHJE KJF:JGKJL:JE(G2@9FJEDHCEGH6GIGJL:JE(G2@KJHJFJE8D4E/@F6G'808EJ:E89,EEJ@EJ:E89,EE8HKEJ:E 89,E *,E BGJE JLD$F2GJKJ9E 8HE LGK97JLGCJHE DHCE 5J::F%DLJHE FGHCE CJD:9G76E KJLGHKJLE 89FE GHE G9C:2$%DFJHE/8HKEJ:E89,E*,ELF%769G76EC843LEGF:EDH:JLE8HCJLJ$ECGJE:JDJLDHKECJLE'JH:L89JHE 7693FFJ9$@9JA39JEG$E(G2GC$J:8I@9GF$DFE5 EDHCE"M!7EF@0GJEJGHJEGHCD'GJL:JEGC8:G@HE3IJLE CGJE JL6<6:JE L8HFALG2:G@HE @HE #!E DHCE #E /8HKE J:E 89,E *,E BGJE JL6<6:JE L8HFALG2:G@HE @HE 5-E GHE !98F:@'F:JHE CG8IJ:GF76JLE .8HGH76JHE A8HHE F@$G:E 8D76E 43LE CGJE "JKD98:G@HE @HE "M!E DHCE #!EJL8H:0@L:9G76EFJGH,E MFE KGI:E 8IJLE 8D76E #"M! 5DH8I6%HKGKJE JKJE 8D4E CJHJHE C8FE ))"E CJHE J$IL@H89JHE (G2GCF:@440J76FJ9E LJKD9GJLJHE A8HH,E @0@69E )HFD9GHE 89FE 8D76E )15E KJ9:JHE 89FE 8H8I@9JE 58A:@LJHE DHCE F:JDJLHE CGJE M2LJFFG@HE DHCE MH'$8A:GG:%:E CJLE 5 E /&@DF:8CE J:E 89,E E #987@$IJE J:E 89,E ?E 8HKE J:E 89,E -*E CJLE 5 !-M2LJFFG@HE /$G:6E J:E 89,E ??E !98AJE 8HCE #98LAJE *E F@0GJE CJLE "M!L8HFALG2:G@HEDHCEL@'JFFGJLDHKE/5@LJ:'EJ:E89,EE59JGF76$8HHE8HCE)HJCG8HEE8HEJ:E 89,E*,EMGHJE DF0GLADHKECJFEJL%HCJL:JHE))"E8D4ECGJE!98F:@'F:JHECJLECG8IJ:GF76JHE&D::JL:GJLJEGF:E F@$G:E086LF76JGH9G76,EDF%:'9G76EA<HHJHE8D76ECGJEJL6<6:JHE CG2@HJA:GHA@H'JH:L8:G@HJHECGJEF@0@69E G$E :JLDFE 89FE 8D76E GHE CJLE !98F:@7@J9493FFGKAJG:E H876KJ0GJFJHE 0DLCJHE CJHE (G2GC$J:8I@9GF$DFE G$E M$IL@E DHCE L@26@I98F:JHE IJJGH49DFFJH,E GJE IJLJG:FE JL0%6H:E LJKD9GJL:E CG2@HJA:GHE HJIJHE CJ$E 19DA@FJF:@440J76FJ9E 8D76E CJHE (G2GC$J:8I@9GF$DF,E IJLE JLF76GJCJHJE GKH89$@9JA39JE 0GJE &.E 7J:9#@ E #8LI@98FJE / ##*E "FE 5 FE DHCE #!E 0JLCJHE CGJE GH:L8'J99D9%LJE D4H86$JE @HE 5J::F%DLJHE F@0GJE (G2@KJHJFJE DHCE (G2@9FJE KJF:JDJL:E /MGH9JG:DHKE .82G:J9E ,-E II,E *,E !JLJG:FE @LE !JKGHHE CJLE 6GJLE CGFAD:GJL:JHE MLKJIHGFFJE 08LE IJA8HH:E C8FFE CGJE 5 E ##E DHCE &.E GHE L%G$298H:8:G@HFJ$IL@HJHECJLE&8DFEDHCE.8HGH76JHEJ2LG$GJL:E0JLCJHE/5GF76JLEJ:E89,EE.G$EJ:E 89,E *,E )H0GJ0JG:E JGHJE :JDJLDHKE 3IJLE CG2@HJA:GHE 43LE CGJE IJ@I876:J:JHE M44JA:JE GHE !98F:@'F:JHE CG8IJ:GF76JLE.8HGH76JHEJL8H:0@L:9G76EGF:E$DFFEGHEA@$$JHCJHEJLFD76JHE8IKJA9%L:E0JLCJH,E BJLEMGH49DFFEJGHJLE2JLK9A%$GJE8D4ECJHEJ$IL@H89JHE(G2GC$J:8I@9GF$DFE0DLCJEIJLJG:FEDH:JLFD76:E DHCE GHE CJ$E L:GAJ9E ?=E E ?>=<;:988<76:57498368892:7 /7 .6;-9,9<>+7 *)('9:5-<>7 <+7 &-%7 $#"! %7 4<8'&-;7 82--7 &:7 59<8<>7 )+<--<7 :6>7 <9:<7 36>,<7 68&<:&886:=7 2-=<:%7 2'<7 -6328<32:,<:+>&+92:<:7 '><:7 ,67 <9:<>7 <>''+<:7 3366-&+92:7 2:7 9:+>&,<--6-><:7 9.95<:%7 49<87 98+7 ;<59:=+7 56>('7 59<7 <>''+<7 ?.><8892:7 5<>7 )7 2:7!7829<72:7<>9-9.9:76:5759.2.'9-9:%77<>=-<9('7,675<7?.><8892:868+<>77--+7 &67 5&887 7 59<7 )7 ;<>7 -6328<7 ><=6-9<>+7 9>57 !7 <52('7 :9('+7 *;;%7 %7 )29+7 '><:7 '2'<7 -6328<32:,<:+>&+92:<:7 ,67 <9:<>7 <><'>+<:7 9.958.<9('<>6:=7 56>('7 <9:<7 =<8+<9=<>+<7 <6;9-56:=7 2:7 9.95<:7 *<>''+<7 )?.><8892:7 89<'<7 ;;%7 %7 7 &--<>59:=87 98+7 <9:<7 <>:5<>+<7 >&:83>9.+92:7 5<>7 )7 :9('+7 :&('<98;&>%7 4&7 59<7 )3+99++7 &67 +>&:83>9.+92:<--<>7 ?;<:<7><=6-9<>+79>57*&6-&683987&:57)6-7"17&+&8&7<+7&-%7$##7>99:7&:57)6-7$##! 7<98+759<8<>7 <6:57 &67 <9:<7 <>''+<7 <>82>=6:=7 9+7 9.95<:7 ;<>7 59<7 6:&'<7 2:7 <++86><:7 '9:%7 *3<9:<7 <>:5<>+<7)?.><8892:7<>''+<7 !76:57! >&:83>9.+92:789<'<7;;%7 7*)('9:5-<>7<+7&-%7 $#"! %7 49<8<7 ?>=<;:988<7 ;<-<=<:7 5&887 59<7 <>''+<7 -6328<32:,<:+>&+92:7 :9('+7 &--<9:<7 &68><9('<:57 98+76759<7;<2;&('+<7<>8+>3+<79.95&3366-&+92:7,67<>3-><:%77 7 %$$#"!" " """" "" " """"""$"""" " "#"" 2'<7-6328<8.9<=<-77*49&;<+<87<--9+68 76:577'><:7,67<9:<>75<6+-9('7 <>''+<:7 :,&'-7 &:7 9.95<893<-:7 9+7 <9:<>7 <>''+<:7 ?.><8892:7 5<>7 -9.2=<:<:7 )('-88<-2-<3-<7 59.2.'9-9:7 <>9-9.9:7 7 *! 7 6:57 "7 *)?" %7 ?9:7 6:+<>8('9<5-9('<87 ?.><8892:868+<>7&:5789('7;<975<>7 >&:83>9.+92:75<>7<++86><):+'&8<7*) 76:57 7* ! %7?9:<7.<>=-39<77<>''+<759<7) <:=<%77'9:=<=<:798+759<7 ! >&:83>9.+92:7=<8+<9=<>+%7777 77 :+<>7<>(389('+9=6:=75<>72:7>98'<>76:57>&+'<>7&6=<8+<--+<:7.2+'<8<7*?9:-<9+6:=7&.9+<-7"%% 7 3&::7 &:7 <52('7 &6('7 <>6+<:7 5&887 59<7 5<6+-9('7 <>''+<:7 -6328<8.9<=<-7 6:+<>7 59&;<+98('<:7 <59:=6:=<:7 <9:<7 8+<--6:=7 5<87 <;>2:&-<:7 <+&;2-98687 <>6>8&('<:%7 :+<>7 :2>&-<:7 ?:+9(3-6:=8;<59:=6:=<:7 827 59<7 6+2><:7 9>57 -6328<7 :6>7 ,67 <9:<7 =<>9:=<:7 :+<9-7 >7 59<7 ?:<>=9<=<9::6:=7 <><:5<+7 6:57 59<7 4<(36:=7 5<87 ?:<>=9<;<5&>87 ;<>7 <++86><:7 &;=<89('<>+7 *>98'<>7 &:57 >&+'<>7 $#"$ %7 4&87 <'>7 &:7 -6328<7 '>+7 :6:7 5&,67 5&887 :9('+7 <++86><:7 82:5<>:7 117 7 HGFEDCBAAE@?C>@=BA<?AAB;C@ 76?<;AE@5?G@HCEGFBEDEGEB4A4E66?CF@3EG2EC>E4@2BG>1@=BEA@20G>E@.?-,@EG<6+GEC*@2.G?)@>BE ('&B>.4B;C@ BC@ %6.A4;5$A4EC@ >B.DE4BA-,EG@ #.CBC-,EC@ BC,BDBEG4@ BA41@ ";)B4@ BA4@ >BEAE@ !)A4E66?CF@ >EA@ BC4G.5E66?6+GEC@ "4; 2E-,AE6A@EBCE@)F6B-,E@2EB4EGE@!GA.-,E@ 0G@>BE@[email protected]+4@>B.DE4BA-,EG@%6.A4;5$A4EC1@@@ EDEC@ EG,,4EC@ 76?<;AEABEFE6C@ BA4@ EBC@ =B.DE4EA@ )E66B4?A@ 2EB4EG,BC@ >?G-,@ AE<?C>+GE@ "4; 2E-,AE6A4G?CFEC@ -,.G.<4EGBABEG41@ =B.DE4B<EG@ 2EBAEC@ ,+? BF@ EG,,4E@ GEBE@ E44A+?GE(@ ?C>@ GBF6$-EGB>ABEFE6@ A;2BE@ ,,EGE@ @ B;G;4EBC(@ =(@ ?C>@ EGCBE>GBF4E@ @ B;G;4EBC(@=(@,;6EA4EG;6<;C5EC4G.4B;CEC@B)@"EG?)@.? @#BAAED.,@[email protected]@8*@#B6D$@[email protected]@88:*@ EG5;?<@ E4@ .61@ *@ ;;G.>B.C@ 8*@ "-B GEA@ E4@ .61@ 1@ =B.DE4BA-,E@ #.CBC-,EC@ 2EBAEC@ EDEC .66A@ ,,EGE@ GBF6$-EGB>ABEFE6@ .? @ "-,BC>6EG@ E4@ .61@ 1@ ?>E)@ BA4@ >BE@ EG4EB6?CF@ 3;C@ ,;6EA4EG;6@ ?C>@ GBF6$-EGB>EC@ BC@ >EC@ B;G;4EBCEC@ >E?46B-,@ 3EG+C>EG4@ "-,BC>6EG*@ ?C3EG EC46B-,41@ )@ "EG?)@ >B.DE4BA-,EG@#.CBC-,EC@ BC>E4@AB-,@EBCE@>E?46B-,@EG,,4E@#;C5EC4G.4B;[email protected]@GBF6$-EGB>EC@BC@>EG@( @B;G;4EBC@=@?C>@=(G.<4B;C1@0G@,;6EA4EG;[email protected]@EBCE@,,EGE@#;C5EC4G.4B;C@C?G@ BC@ >EG@ =@ 5?@ DE;D.-,4EC1@ HBC@ %E2EBA*@ >.AA@ AB-,@ >BE@ )044EG6B-,E@ $EG6BB>+)BE@ 5?>E)@ .? @ >.A@ !)FED?CFA)B6BE?@ >EG@ %6.A4;5$A4EC@ .?A2BG<4@ BA4*@ >.AA@ >BE@ ,;6EA4EG;6<;C5EC4G.4B;C@ B)@ !4EG?AAE<GE4@ ?)@>.A@=;E64E@EG,,4@BA4@"-,BC>6EG*@?C3EG EC46B-,41@@ HBCE@$EG6BB>+)BE@ 0,G4@5?@EBCEG@EG,,4EC@ <<?)?6.4B;[email protected]?6+GEG@BB>3EAB<E6*@EBCEG@,,EGEC@ H&GEAAB;C@3;C@ >B;,B6BC*@ @?C>@ %@ )GB@[email protected]@88*@H6-,.6.6@[email protected]@*@.4,).EG?).@ E4@ .61@ *@ "-B GEA@ E4@ .61@ *@ .6A;@ 3;C@ "-,60AAE6);6E<06EC*@ >BE@ .?-,@ BC@ >EC@ %6.A4;5$A4EC@ >B.DE4BA-,EG@ #.CBC-,EC@ EG,,4@ E&GB)BEG4@ 2EG>EC1@ =BEAE@ H E<4E@ <CCEC@ 6.CF GBA4BFE@ ?A2BG<?CFEC@ ,.DEC1@ =BE@ GDEB4AFG?E@ ?)@ =G1@ .A-.6E@ ,.3.44E(.6)EG@ 3;)@ @ ;?$(EC(;A.A@ .C.6$ABEG4E@ >BE@ 6.5EC4.@ >EG@ .-,<;))EC*@ >BE@ AB-,@ BC@ >EC@ EGA4EC@ @ .FEC@ ?C4EG@ >B.DE4BA-,EC@ !)FED?CFADE>BCF?CFEC@ EC42B-<E64@ ,.44EC1@ =BE@ %6.A4;5$A4EC@ 2?G>EC@ B)@ CA-,6?AA@ BC@ FEA?C>E@ H) +CFEG<.CBC-,EC@ 4G.CA EGBEG41@ G;45@ >EG@ 2EB4EGEC@ C;G).6EC@ HC42B-<6?CFADE>BCF?CFEC@ 2BEA@ >BE@ 6.5EC4.@ EBCE@ EG,,4E@ <<?)?6.4B;C@ BC4G.5E66?6+GEG@ BB>E@ .? @ .GG.>E,.3.44E(.6)EG*@ ?C3EG EC46B-,41@ =BEAE@ HGFEDCBAAE@ D.ABEGEC@ DBA@ E454@ C?G@ .? @ EBCEG@ EGA?-,A2BE>EG,;6?CF@ ?C>@ )0AAEC@ .?A@ >BEAE)@ 7G?C>@ >GBCFEC>@ 2BE>EG,;64@ 2EG>EC1@ %EGEB4A@ DE<.CC4@ BA4@ E>;-,*@ >.AA@ EBCE@ )044EG6B-,E@ $EG-,;6EA4EGBC+)BE@ CEDEC@ EBCEG@ 3EG+C>EG4EC@ BB>5?A.))ECAE45?CF@ >EG@ 6.5EC4.@ .?-,@ >BE@ EC>;FECE@ ,;6EA4EG;6A$C4,EAE@ EG,,4@ ;C4;?>BA@ E4@ .61@ 888*@ .GG.>E@ E4@ .61@ 1@ E?E@ "4?>BEC@ 5EBFEC*@ >.AA@ >BEAE@ H E<4E@ A-,;C@ B)@ %6.A4;5$A4ECA4.>B?)@ B,GEC@ !GAG?CF@ ,.DEC1@ "-,60AAE6);6E<06E*@ >BE@ ?GA+-,6B-,@ 0G@ >BE@ EG,,4E@ C5.,6@ >EG@ BB>4G; EC@ AEBC@ <CCEC*@ ABC>@ >.DEB@ >B;,B6BC*@EDEG@(E5E4;GEC@@@?C>@>EG@ @=@B-;CE@E4@ .61@ *@ .GG.>E@ E4@ .61@ 1@ E6-,E@ 2EB4EGEC@ ?A2BG<?CFEC@ EBCE@ )044EG6B-,E@ $EG6BB>+)BE@ .? @ >EC@ BB>)E4.D;6BA)?A@ BC@ H)DG$;CEC@ ?C>@ E4EC@ ,.4*@ )?AA@ 7EFECA4.C>@ 2EB4EGEG@ !C4EGA?-,?CFEC@ :8@ @ ;:9876544832613054/2445.63 4856+3*):3;''8/&8326%7$#695938:$"$&8:3! 2/.4845898 34:5$&3%2$31%443&:.&385684392&3856984&8 &863 05%78&8431583$%698:4$%'&863$"$8:83. 5/%&5.64:%&863%2'854863;8:438&3% +3,,+333 249%69426/&83 '):3 1863 8:#618:&863 8&%7. 54243 563 15%78&54$863 ;7:.6863 2:1863 %63 15848:3 &8 83986%66&+3%$:4$856 5$354&31%44365$&362:38563*%/&.:318:3%244$ %99878618326/&354&34.618:63 1%443 1583 *8$ 1%&%&5.63 1%43 842 &%&3 856843 /. 8863 24%86458 43 54&3 7853 183 ;3 85683 86&:% 838:5&& 8::. 8385665&377+3,+33 3 &%%$#"!## ###### ##%### ((((((((((('&(%$#("!# '$$&%$&(#$'($$'$(#$&'$(((((((((((((%$#('$##( $&&$($&&$( !*43 5642 56#$6 5$83 %$4&24'%/&.:863 ;( '( ( ( #$!'"$( $ $$&( '&%'&( #!$'&3 *3 ( '%( #&!#( #!$'&( 3 *3 ( '%( '&%'&( #!$'&( 3 ; 8:.54.:. 5'8:%&.:%/&558:&8:3 88&.:3 3 ;3 8:.54.:. 5'8:%&.:%/&558:&8:388&.:333%:65&56% 5&. &:%64'8:%4833 3 ;3 $#! ( #$ !#( $ $$&'&%'&( #!$'&( 3 *3 *8&&4#2:86&$%483 6&,73 '& $$( ( &$#'!&( '$( ' ( $$#3 ,73 :8'3 #$%'!$(!#33 $$#### #####%## ;43 5:13 182& 5$3 1%443 15%78&54$83 ;6&5/ 2694781569269863 #$:8613 18:3 *:)$4$%698:4$%'&3 23 /. 8863 8:#618:269863 53 &.''8$48 3 2613 563 18:3 . 8/2 %:863 892 %&5.63 8 2 #:8:3 :.84483 7853 ;7:.3 ')$:863 77+,+3 8 $83 .648286863 1583 8 2 #:863 6%442694:8%/&5.6863 %2'3 1%43 -,3 3 A@?>=<;::>98<796;:58::;4<9 6;11>@><0;>@8<?:/4.><.;-,9 >+=@*4<-,>@9 )>,,><9 (-=><'9 &8@7>9 9 +;.9 >+=@*4<-,><9 %.-++0>,,><9 8<.>@:8$(.#9 6;>9 6-.><9 7;>:>@9 "<.>@:8$(8<?><9 &8@7><9 =;:(>@9 <4$(9 <;$(.9 /8=,;0;>@.9 8<79 &>@7><9 7>:(-,=9;<97;>:>+9!-/;.>,9-,:9A@?>=<;::>98<796;:58::;4<9-8:1 (@,;$(97-@?>:.>,,.#999 8:?>(><79 4<9 7>@9 >4=-$(.8<?9 >;<>@9 >@((.><9 7;/4<>5.;<+><?>9 9 8<.>@9 7;-=>.;:$(><9 A<.&;$5,8<?:=>7;<?8<?><9 &8@7>9 7;>9 ;@58<?9 4<9 7;/4<>5.;<9 -819 /,8@;/4.><.>9 A+=@*4<-,>9 %.-++0>,,><9 A%9 8<79 7>@><9 -7;/4?><>9 6;11>@><0;>@8<?9 8<.>@:8$(.#9 @9 7;>:>9 A/>@;+><.>9&8@7>97;>9>+=@*4<-,>9%.-++0>,,,;<;>99-8:?>&(,.#96-=>;9(-<7>,.9>:9:;$(98+9>;<9 >.-=,;>@.>:9 )>,,+47>,,'9 7-:9 2339 4<9 @41#9 8:.;<9 %+;.(9 -8:9 A+=@*4<><9 7>:9 -8::.-++>:9 239 >.-=,;>@.9 &8@7>9 48<.14@79 >.9 -,#9 233#9 )>,,><9 :;<79 78@$(9 14,?><7>9 A;?><:$(-1.><9 ?>5><<0>;$(<>. 99 68@$(9 7;>9 @48.;<>+;?>9 )8?-=>9 7>:9 )*.45;<:9 9 '9 7-:9 -,,>9 :.-++0>,,:/>0;1;:$(><9 (-@-5.>@;:.;5-9 -81@>$(.>@(,.9 %;,-4.>9 -<79 -@7;>@9 22'9 5<<><9 7;>9 )>,,><94(<>9!458,.8@9+;.9>+=@*4<-,><9;=@4=,-:.><958,.;;>@.9&>@7><#9A;<>9A<.1>@<8<?94<991 (@.9 08@9 :414@.;?><9 6;11>@><0;>@8<?9 7>@9 )>,,><9 ;@-;9 >.9 -,#9 22#9 6;>9 <0-(,9 0>,,.*/:/>0;1;:$(9 .>@+;<-,9 7;11>@><0;>@.>@9 )>,,><9 ;:.9 =>;9 >;<>@9 :/4<.-<><9 6;11>@><0;>@8<?9 :>(@9 ?>@;<?9 (4(>9 >.>@4?><;..9 .>@+;<-,>@9 )>,,.*/><9 8<79 :>.0.9 :4+;.9 7;>9 )8?-=>9 4<9 6;11>@><0;>@8<?:1-5.4@><9 1 @9 >;<>9 ?>@;$(.>.>9 )>,,7;11>@><0;>@8<?94@-8:#99 6;>9 ?>@;$(.>.>9 -7;/4?><>9 6;11>@><0;>@8<?9 >@14,?.9 8<.>@9 A;<(-,.8<?9 7>:9 :$(>+-.;:$(9 ;<9 ==#9 229 7-@?>:.>,,.><9 @4.454,,:'9 =>;9 7>+9 -+9 A<7>9 9 7>@9 9 A:9 ?@4>9 7;/40*.><-<:-++,8<?><9-81&>;:><96-<;9>.9-,#9233#99 9 9 9 9 9 329 9 NMLKJIHGGKFEIDFCHGBEGGHAIF F CHKF >=EMH<A;KI:F DKMF 987643K==KIF 2HMDF DEM10F DHKF /E=;EMF .H;F -,+HLKIF (K;'=KIF /&=JKMGKME.F $#9"!F EIDF DKMF 3EL'JKF DKGF 3 ;ABHIF F $#!F 'E(MK10;KM0'=;KIF .F DHKF 'DH<ALKIKF CH((KMKI:HKMEILF :EF HIH;HHKMKIF KM(A=L;F DHKF /E=;HHKMEILF'=GFDMKHDH.KIGHAI'=KFLLMKL';KF$FNG!F.H;F?,+HLK.F#9"F EIDF A0IKF DH((KMKI:HKMEILG0K..KIDKF #'B;AMKIF .F IG10=EGGF KM(A=L;F DHKF BEM::KH;HLKF K0'ID=EILF DKMF NGF .H;F 7K;HIG&EMKF $7!F '10F 'IG10=HKKIDKMF EG<=';;HKMEILF 'E(F 8K=';HIK4JKG10H10;K;KF "10'=KIF EIDF /E=;EMF HIF I2KGKI0KH;F AIF IGE=HIF EIDF MHAD;0 MAIHIF$!FJH=DKIFGH10FMKH(KFDH<A: ;KIFHIIKM0'=JFDKMFI&10G;KIF?F'LKFH.FNF F CHKF 987643K==KIF 2EMDKIF KI;2KDKMF (MF F 'LKF 2&0MKIDF DKGF EIDH((KMKI:HKM;KIF'10G;E.GF$'DHFEID!FADKMF2&0MKIDFDKMFCK;KM.HIHKMEILG<0'GKFJHGF 'LFF$'DHFD,4!F.H;F-L.=FDH<AIKB;HIFBE=;HHKM;F$DFF'LK!FF F F ==LK.KHIF LH=; F 'EGF <=EMH<A;KI;KIF K.JM AI'=KIF ";'..:K==KIF DH((KMKI:HKMKIF GH10F .KGKI10 .'=KF ";'..:K==KIF DHKF GH10F HIF 2KH;KMKIF "10MH;;KIF HIF G;KAJ='G;KIF 90AIDMAJ='G;KIF EGBK=:K==KIF EIDF DH<A: ;KIF DH((KMKI:HKMKIF BIIKIF $>AHGGAIIK;F K;F '=F -@6F >AHGGAIIK;F K;F '=F -@66F 7AGKIF 'IDF '1CAEL'=DF ?,,!F CHKF NI;G;K0EILF AIF #K;;:K==KIF F JHK;K;F DHKF L=H10BKH;F DHKF KHI:K=IKIF "10MH;;KF DK;'H==HKM;F :EF 'I'= GHKMKIF EIDF :KHL;F D'GGF DKMF >MA:KGGF DKMF 3K==DK;KM.HIHKMEILF JKMF KMG10HKDKIKF "HLI'=.A=KB=KF MKLE=HKM;F 2HMDF NHIKF 2H10;HLKF 7A==KF HIF DHKGK.F K;:2KMBF G<HK=;F 97NF $7KEG10FK;F'=F?,,,F7AGKIF'IDF'1CAEL'=DF?,,F#AFK;F'=F?,,F#AFK;F'=F?,,6FHFK;F'=F?,,@F'ILF K;F'=F?,-?!FF CHKGF 2HMDF 'E10F DEM10F NMLKJIHGGKF HIF DKMF AM=HKLKIDKIF MJKH;F JKG;&;HL;F CHKF /E=;HHKMEILF .H;F DH<AIKB;HIF 2&0MKIDF DKGF EIDH((KMKI:HKM;KIF '10G;E.GF $9876F 'DHF EID!F EIDF 2&0MKIDF DKMF CK;KM.HIHKMEILG<0'GKF $9876F 'DHF D,4!F DKMF K.JM AI'=KIF ";'..:K===HIHKF 9876F (0M;KF :EF KHIKMF KM00;KIF 97N4B;HH;&;F $JJF -?F !F C'(MF 2EMDKF DH<AIKB;HIF HIF KHIKMF /AI:KI;M';HAIF AIF -L.=F KM2KIDK;F2'GFKHIKMF<0 GHA=ALHG10KIF"KME.BAI:KI;M';HAIFKI;G<MH10;FCHKFKM00;KF;M'IGBMH<;HAIK==KF B;HH;&;FAIF97NF(0M;F:EFKHIKMFLKG;KHLKM;KIFDH<A: ;KIDH((KMKI:HKMEILF$JJF-?!FEIDFN<MKGGHAIF 'DH<ALKIKMF"HLI'=.A=KB=KFC':EF:&0=KIF F-F$>MK(-F'E10F'=GFF @?F F HGFEDCBAAE@?C>@=BA<?AAB;C@ 8=7654@ DE<3CC241@ @ 50D@ 8/C250D4@ ?C>@ ..-,+@ 8-DD*5+)4*@@ @ (''&%$#% %"! !%!!%!!%(!%(%(!%%" % %%!%"! % %" ! !!%%%(! %%"! !% )(,'%$E##EC@ "?G>EC@ BC@ !"EB@ EGABE>EC@ C2EG 3##EC@ B2@ 5F#@ ->B;CE<2BC@ A2B?#BEG2*@C2EG 3##@:@G@@3FE@"GEC>@>EA@?C>BEGEC!BEG2EC@/3A2?A@83>B@?C>4@ ?C>@ C2EG 3##@ : "GEC>@ >EG@ @ 3FE@ =E2EGBCBEG?CFA3AE@ 83>B@ >0%4*@ (% EA2B?CF@ >EG@ GE#32B EC@ ECFE@ ;C@ ->B;!2EC@ C3@ +9@ 3FEC@ 6?#2?G@ >EG@ )(,'% $E##EC*@ C@ >EC@ EGA?AFG?EC@ "?G>E@ C3@ +9@ 6?#2?G23FEC@ >BE@ -C!3#@ GEBEG@ ->B;!2EC@ B22E#A@ #?;GEA!EC!%3<2B BEG2EG@ $E##A;G2BEG?CF@ 8-)4@ DEA2B2@ "BE@ BC@ >#B@ E2@ 3#*@ 8+0504@ DEAGBEDEC*@ =BE@ HGFEDCBAAE@ ABC>@ 3#A@ B22E#"EG2@ BC@ @ @ 23C>3G>E#EG@ GE#32B @ !?G@ E3C>#?CFA<;C2G;##E@ 8FEA2GBE#2E@ 7BCBE1@ 500 @ FEAE2!24@ >3GFEA2E##2*@ @ -<2B BEG?CF@ ;C@ ),H@ BC@ ?C>BEGEC!BEG2EC@ $E##EC@ 8>041@ 3C@ 3F@ +@ 8>+4@ ?C>@ 3F@ @ 8>4@ >EG@ =BEGEC!BEG?CF*@ =BE@ -C3#AE@ "?G>E@ B22E#A@ =%.-(H@ ?C>@ /EA2EGC@#;2@>?GFEG2*@=BE@.;A;G#BEG?CF@C3@->B;CE<2BC%2B?#32B;C@"BG>@ GE#32B @ !?G@ E3C>#?CFA<;C2G;##E@ >3GFEA2E##21@ >BE@ 500 @ FEAE2!2@BA2@ ?C>@ B@ =B3FG3@ 3#A@ FEA2GBE#2E@ 7BCBE@ >3GFEA2E##2@ "BG>@ B22E#"EG2@ BC@ @ @ 23C>3G>E#EG*@ @ HGEAAB;C@ ;C@ /C250D1@ .GE5@ 8DEB>EA@ 3C@ 3F@ 4@ ?C>@ ..-,@ 83C@ 3F@ 54@ BC@ )(,'% $E##EC@ C3@ ->B;CE<2BC%2B?#32B;C*@ =BE@ ,-%ECFE@ "?G>E@ C3@ ,-%A;#32B;C@ ?C>@ =-%C2EAE@ B22E#A@ ,%.),@ DEA2B2*@ =BE@ HGFEDCBAAE@ ABC>@ GE#32B @ !?G@ HGEAAB;C@BC@>EG@E3C>#?CFA<;C2G;##E@3CFEFEDEC@8>3GFEA2E##2@3#A@FEA2GBE#2E@7BCBE41@ >BE@500 @FEAE2!2@"?G>EC@B22E#"EG2@BC@ @@23C>3G>E#EG*@@ @ :9@ @ FEDCBA@??C>=A<>;@?:=??@9A> 6654>@?3>C@A>2E1/CE>.-E:CE><CE>5<@,9DCAC?C>=A<>@A<=+@CE3><@C>F*,EC??@9A>)9A>(@DA-'&9'C:1'CA%><@C> $@#/3@D> 21E> <@C> "A<=:3@9A> =A<> 5=2EC#/3CE/-'3=AD> <CE> -<@,9DCACA> ;@22CECA+@CE=AD> ?@A<> !49?CA> > (,@CDC'&-AA> > @C> BCEC@3?> CE$/A3%> D@B3> C?> )9A> 6654> +$C@> )CE?#/@C<CAC> "?929E&CA%> $9BC@> 6654>A=E>@A>5<@,9+3CA>C*,E@&@CE3>$@E<>=A<><-/CE>C@A>@<C-'CE>-<@,9DCACE>.-E:CE>@?3>;@C>CE//3C> F*,EC??@9A>)9A>6654>-&>-D>7><CE>;@22CECA+@CE=AD>!5BB>>=A3CE?313+3>?9&@3><CA>C2=A<>C@ACE> CE//3CA> -<@,9DCACA> ;@22CECA+@CE=AD> !5BB> 5> A-#/> 5<@,9AC:3@A(3@&='-3@9A> FE?3C> (3=<@CA> +=> A3B>+C@DCA>C@AC>-BAC/&CA<C>F*,EC??@9A>&@3>CD@AA><CE>@A@3@-'CA>6/-?C><CE>5<@,9DCAC?C> =A<>>!49??>C3>-'>%>CAAC33>C3>-'>>=A<>BC'CDCA%><-??>C@AC>"A/@B@CE=AD>)9A>A3B> CE?3><@C>;@22CECA+@CE=AD>+=>EC@2CA>5<@,9+3CA>+='??3>F@AC>C:39,C>F*,EC??@9A>)9A>A3B>/@ADCDCA> /C&&3> <@C> -<@,9DCAC> ;@22CECA+@CE=AD> &C?CA#/&-'CE> (3-&&+C''CA !49??> C3> -'> > (#/'1??C'&9'C:1'C> 21E> <@C?CA> .C#/-A@?&=?> ?@A<> 6654 =A<> 55 > > !F6) !49??>C3>-'>>CBCA>A3B>$@E:3>-=#/>6EC2>@A/@B@39E@?#/>-=2><@C>5<@,9DCAC?C>!(&-?> -A<>(='>88>BCE><-?>6EC2@C'DCA>>!(4B9*>8>!(9*8>$@E<%>$@C>BC@>A3B%> <@C> F*,EC??@9A> )9A> 6654> =A<> F6> =A3CE<E1#:3> !-AD> -A<> (='> 8> =?3+'@#/> $@E<> <@C> E-A?:E@,3@9A> )9A> ?,3CA> -<@,9DCACA> .-E:CEA%> $@C> 5(> =A<> 567%> @A/@B@CE3> =A<> <@C> @,@<C@A'-DCE=AD> DC/C&&3> !-AD> C3> -'> > 4C''CA%> <@C> A-#/> 5<@,9AC:3@A(3@&='-3@9A> C@AC> //CEC> 4F6/9?,/9E'@CE=AD> +C@DCA%> $C@?CA> C@AC> DCE@ADCEC> &45.CADC> -A> A3B> =A<> 6EC2> -=2%>+$C@>$@#/3@DC>"A/@B@39ECA><CE>5<@,9DCAC?C>;@C?C>C9B-#/3=AD>@?3>)CE&=3'@#/>21E><@C>DC?3C@DCE3C> -<@,9DCAC>;@22CECA+@CE=AD>A-#/>5<@,9AC:3@A(3@&='-3@9A>-=??#/'-DDCBCA<>>>>> ;@C>/@CE>)9EDC?3C''3CA>FEDCBA@??C>?3C/CA>@&>F@A:'-AD>&@3>B@?/CE@DCA>(3=<@CA%><@C><@C>C<C=3=AD>)9A> 4F> @A> 6E-<@,9+3CA+C'''@A@CA> =A3CE?=#/3> /-BCA> !4C=?#/> C3> -'> %> 'C&&> C3> -'> %> /-AD> C3> -'> 7%> 9*> C3> -'> %> 9*> C3> -'> > ;@C> F*,EC??@9A> C@AC?> :9A?3@3=3@)> -:3@)CA> 4F?> -''C@AC> @?3> -=?EC@#/CA<%> =&> <@C> 5<@,9DCAC?C> @A> <@C?CA> C''CA> +=> @A<=+@CECA> !4C=?#/> C3> -'> %> 'C&&> C3> -'> > CA3E-'C> (#/'1??C'&9'C:1'C> ?@A<> <-BC@> <@C> :'-??@?#/CA> -<@,9DCACA> -:39ECA> 6654> =A<> F6> > =A<> !4C=?#/> C3> -'> %> 'C&&> C3> -'> > C@3CEC> @C'DCAC> <CE> 4F @A<=+@CE3CA> 5<@,9DCAC?C> ?@A<> #'@A> ;> =A<> A3B> !9*> C3> -'> > 9*> =A<> 9-=39ECA> ,9?3='@CECA%> <-??> <@C> 4F-B/AD@DC> 4CD='-3@9A> <CE> A3BE-A?:E@,3@9A> 1BCE> <@C> .C3/'@CE=AD> <CE>6E9&939EECD@9A>DC?3C=CE3>$@E<>!9*>C3>-'>>;@C>@A><CE>@3CE-3=E>B@?/CE>)CE$CA<C3CA> C''CA>?@A<>6E-<@,9+3CA%><@C>?@#/>+=>5<@,9+3CA><@22CECA+@CECA>:AACA>;-/CE>$-E>B@?/CE>A=E>C@AC> 5A-'?C> <CE> 3CE&@A-'CA> ;@22CECA+@CE=AD> )9A> 6E-<@,9+3CA> +=> 5<@,9+3CA> &D'@#/> ;@C> @A> <CE> )9E'@CDCA<CA> 5EBC@3> DC+C@D3CA> FEDCBA@??C> BC'CDCA> CE?3&-'?> <@C> C<C=3=AD> )9A> 4F> $/ECA<> <CE> 2E1/CA> 6/-?C> <CE> C''<C3CE&@A@CE=AD> @C'DCA> @?3> <-BC@> ACBCA> <CA> BCEC@3?> BC:-AA3CA> A3B> =A<> 6654>-=#/>6EC2> 87> > A@?>=<;::>98<796;:58::;4<9 A;<9>;<7>81;?>@90>/>;:.97-::9,+A09-<97><9*@4)414@9(4<9*@>'&.9%<1&$=98<79**#+"9;<9,!+ >><9 =;<7>1.9 ;:19 =;:>@9 <49 <;19 >@'4?19 8<79 )8::9 7->@9 !>?><:1-<79 />;1>@>@9 <1>@:88<?><9 :>;<9 >@:8>9 );11>:9 :;+#><;59 >;?><.9 7-::9 7>@9 9 (4<9 ,+A09 89 >;<>@9 @>78;>@1><9 -7;4?><><9 6;''>@><;>@8<?:>'';;><9 #==9 &#9 '@1.9 7;>9 78@9 7;>9 @>78;>@1>9 ,+A0 @-<:5@;1)><?>9 #==9 &09 8<79 >@1>9 %<1&$=9 8<79 *@>'&@-<:5@;1;4<9 #==9 &,9 (>@8@:-19 /;@79 4);19 ;:19 (4<9 >;<>@9 7;@>51><9 47>@9 ;<7;@>51><9 <1>@-51;4<9 (4<9 ,+A09 );19 %<19 &$=9 8<79 *@>'&9 -8:8?>><96;>:9=>>;<'8::197;>9#7;4?><>:>9-<?'@;:1;?9999 9 )(('&%$&& )#"! &""&)&)""& &&&#&#"&" & & "&&&")"&" & &&"& & ,!+ >><9 /8@7><9 );19 7>)9 A;<>;1><9 7>@9 6>1>@);<;>@8<?9 7$9 >;<)-;?9 );19 :;+#9 ?>?><9 ,+A09 =>-<7>19 A;<9 A;<'8::9 78@9 7;>9 :;+#0>-<78<?9 ;)9 >@?>;9 8@9 <;11@-<:';;>@1><9 4<1@4>9 >;?1>9 :;9 <;19 #8:9 7;>:>)9 !@8<79 :;<79 7;>9 <-'4?><7><9 A@?>=<;::>9 ;))>@9 @>-1;(9 8@9 :;+#0>-<78<?:54<1@4>9 9 7-@?>:1>19 )& 0>:1;))8<?9 7>@9 @>-1;(><9 ><?>9 (4<9 #7;41><9 <-9 "9 -?><9 818@9 7>@9 ,!+ >><9 <9 7><9 >@:8:?@8><9 /8@7>9 <-9 "9 818@1-?><9 7;>9#<-9@>;'>@9#7;41><9);11>:9'84@>:><-51;(;>@1>@9>:4@1;>@8<?9#,.9/;>9 ;<9 7;9 >19 -9 "$&$9 =>:@;>=><9 /8@7>.9 =>:1;))19 6-:9 A@?>=<;:9 ;:19 -:9 ;11>/>@19 ;<9 9 9 1-<7-@7'>>@9 @>-1;(9 8@9 :;+#0>-<78<?:54<1@4>9 ?>:1@;>1>9 ;<;>.9 &$$9 ?>:>119 7-@?>:1>19 9 ,+A0)+#><?>9 -<9 -?9 "9 7"9 329 9 QPONMLKJJNIHLGIFKJEHJJKDLI HLGI@?OI>I=G><IGNPIFK;;NPNL:KNPHLO9IFKNI876543NLONI2HPGNIL?10I7654/JD.?-KDLIHLGI 1F654,+L-0NJNI8K--N.JI*7@4)(7IMNJ-K88-9IFKNIQPONMLKJJNIJKLGIPN.?-K'I:HPIQ&%PNJJKDLI KLIGNPIJK7654$N0?LG.HLOJEDL-PD..NI?HJONGP#1E-I=G?PONJ-N..-I?.JIONJ-PK10N.-NI!KLKN< IGKNI IONJN-:-I2HPGNLI3K--N.2NP-IKLIII,-?LG?PG;N0.NP9IIQ&%PNJJKDLI'DLIL-MI HLGI)PN;I=?LI@?OIIHLGI><IKLI(74N..NLIL?10IJK7654$N0?LG.HLO9IFKNI876543NLONI 2HPGNI L?10I 7654/JD.?-KDLI HLGI 1F654,+L-0NJNI 8K--N.JI *7@4)(7I MNJ-K88-9I FKNI QPONMLKJJNI JKLGI PN.?-K'I :HPI Q&%PNJJKDLI KLI GNPI $N0?LG.HLOJEDL-PD..NI ?HJONGP#1E-I =G?PONJ-N..-I ?.JI ONJ-PK10N.-NI !KLKN< I GKNI I ONJN-:-I 2HPGNLI 3K--N.2NP-I KLI I I ,-?LG?PG;N0.NP9II I I /L:2KJ10NLI OKM-I NJI ?H10I N&%NPK8NL-N..I HL-NP8?HNP-NI KL2NKJN I G?JJI LNMNLI 5GK%DLNE-KLI ?H10I .HEDJNI 8N-?MD.KJ10NI FK;;NPNL:KNPHLOJN;;NE-NI ?H;I GKNI ?GK%DONLNI FK;;NPNL:KNPHLOI GNPI (74N..NLI 'NP8K--N.-9I +%DO.+E8KJ10NI QL-2K1E.HLOJMNGKLOHLONLI 20PNLGI GNPI FN-NP8KLKNPHLOJ%0?JNI ;#0PNLI :HI NKLNPI JKOLK;KE?L-I ONPKLONPNLI 5GK%D:+-NL?L:?0.I ?8I QLGNI GNPI ?GK%DONLNLI FK;;NPNL:KNPHLOI =FKJJNP-?-KDLILN.?LONLI<9IPK-KJ10I8HJJI8?LINGD10I?L8NPENL IG?JJIGKNJNPIQ;;NE-ILK10-I?H;-P?- I 2NLLI 8?LI GKNI O.NK10NLI .HEDJNEDL:NL-P?-KDLNLI 20PNLGI GNJI HLGK;;NPNL:KNP-NLI ?10J-H8JI 'NP2NLGN-NI=FKJJNP-?-KDLILN.?LONLI<9IQKLNI8O.K10NI7D..NI'DLI(7Q$IE?LLILK10-I?HJONJ10.DJJNLI 2NPGN IG?I?H10I.HEDJNI:HINKLNPI$NNKL;.HJJHLOIGNPI(7Q$45E-K'K--IKLI?GH.-NLIN..NLI;#0P-I=?LJJDLIN-I ?.9I<9III /8IKLM.K1EI?H;INKLNI.?LO;PKJ-KONI5HJ2KPEHLOIGNPI'NPLGNP-NLIKL-P?H-NPKLNLIQL-2K1E.HLOJMNGKLOHLONLI MN.NONLI GKNI QPONMLKJJN I G?JJI MNPNK-JI KLI GNLI NPJ-NLI @?ONLI NKLNJI NGNLI /LGK'KGHH8JI 2NJNL-.K10NI PHLG.?ONLI HLGI DP?HJJN-:HLONLI ;#PI NKLNLI ONJ-P-NLI ,-D;;2N10JN.I HLGI G?8K-I ;#PI NKLNI %D-NL-KN..NI :HE#L;-KONI 5L;..KOENK-I ONONL#MNPI 8N-?MD.KJ10NLI P?LE0NK-NLI 2KNI MNPON2K10-I K8I 2NK-NPNLI !NMNLI GN-NP8KLKNP-I2NPGNL9IFKNJIJ-N..-ILK10-ILHPINKLNIOPDNI%NPJL.K10NIHLGIE.KLKJ10NINP?HJ;DPGNPHLOI;#PI MNPNK-JI'DPIGNPI,102?LONPJ10?;-IMNE?LL-NI8#--NP.K10NI,-D;;2N10JN.J-PHLONLIG?P IJDLGNPLI?H10I;#PI GKNI ?JJKJ-KNP-NLI 7N%PDGHE-KDLJ-N10LKENLI =57@<9I $NKI NKLNPI $N;PH10-HLOI ?HNP0?.MI GNJI 3H--NP.NKMNJI 2NPGNLIGKNIQ8MP+DLNLI;#PINKLNIEHP:NINK-IKLINKLN8I=GNP:NK-IHL:HPNK10NLG<IGN;KLKNP-NLI60P8NGKH8I EH.-K'KNP-9I @PD-:I GNPI :HLN08NLGNLI QP;D.ONI GNPI .N-:-NLI ?0PNI K8I $NPNK10I GNPI 4Q8MP+DEH.-HPI = 47?-NL<I ;N0.NLI !?LO:NK-MNDM?10-HLONL9I 6D10I KJ-I LK10-I ONE.P- I 2?JI GNPI Q8MP+DI 20PNLGI JNKLNPI NPJ-NLI @?ONI ;#PI NKLNI D%-K8?.NI HLGI ONJHLGNI QL-2K1E.HLOI MP?H10-9I F?JJI GKNI 60P8NGKNLI LK10-I GN8I L?-#P.K10NLI QK.NK-NPI HLGI -NPHJ8K.KNHI NL-J%PN10NL I MN2NKJNLI 'NPJ10KNGNLNI N&%NPK8NL-N..NIHLGIN%KGN8KD.DOKJ10NI,-HGKNLIMNKI3NLJ10IHLGI@KNPI=$?'KJ-NPICC IDHLOIN-I?.9ICC I ,KL1.?KPI N-I ?.9I I 31Q'D+I I FH8DH.KLI N-I ?.9I I 3EKLNLI N-I ?.9I I .NKENPJI N-I ?.9I I N8EN8N+NPIN-I?.9I IDN.ENPIN-I?.9I<9I/LIGNPIN-NPKLP8NGK:KLIKJ-IG?JI00NPNI7KJKEDIGNJI I=!,<I2D0.MNE?LL- IG?JIGHP10INKLNINP00-NI5MDP-P?-NIHLGI%NPKL?-?.NI,-NPM.K10ENK-I ONENLL:NK10LN-IKJ-I=?.ENPIN-I?.9ICCB IDHLOIN-I?.9ICC I6KN8?LLI?LGIPNL:+1EKI<9I/L2KN2NK-I CBI I 543210/..2-,0+-*/.),../(02/02- %$,#",4- +!.- 21,4".32/"- 12/- 20.20- 122/0#,.."- /4+- !)",2##- )(0"4(24.- +/.),"/24"-/0-2"-!#--!44!.(-2"-!#--$#2/)24.-2"-!#--5/02-/"/32-#,..(#324,03!,.- +24- (4#/2320+20- 412/"- /."- +!..- /- /01#/)- !,- ("20"/2##2- 023!"/2- $(0.2,2020- +/2("/!#20- $,#",412+/03,0320- 24!,.32,0+20- 24+20- ..20- ,- 2/02- 22/0"4"/3,03- ,0+323212020!##.-24./."/2420+2-240+24,0320-+2.-214(0!#20-2"!1(#/.,.-,0+-.(/"-#!034/."/32.,0+2/".+20-,-24/0+240 '&- ?>=<;;:98<==>976 2:16 0;/1.-6 /:=,+*+6 :,9:6 )-):6 ;:+</-(,='):6 &(<=+,*,+%+#6 >;6 =,')6 <96 ":1%9!:1+:6 09+ ,'(>97=/:!,97>97:96 <9*><==:96 2>1')6 :,9:96 ;++:1(,'):96 2,</:+:=6 ;:((,+>=6 :1!:96 !,:6 (-<(:96>9!6:9!-1,9:96:7>(<+,-9=;:')<9,=;:9#6!,:6!<=6-+,;<(:6,9+1<>+:1,9:6;7:/>97=;,(,:>6 !:=6 0;/1.-=6 7<1<9+,:1:9#6 7:=+1+6 2,:=6 8)1+6 /:1:,+=6 %)1:9!6 !:16 &1%,;(<9+<+,-9=)<=:6 *>6 -;(::96 :1%9!:1>97:96 !:=6 :;/1.-9<(:96 +-88 :')=:(=6 2,:6 !<+<+,-96 !:=6 :;/1.-9<(:96 +-88 :')=:(=6 <96 :,96 ":1%9!:1+:=6 %)1=+-88<97:/-+6 <996 =,')6 9:7<+,"6 <>86 !,:6 :,+:1:6 09+ ,'(>976 :;/1.-9<(:16 ?:((:96 <>= ,1:96 0,96 ;++:1(,'):16 2,</:+:=6 ;:((,+>=#6 ,9=/:=-9!:1:6 /:,6 ;<97:(9!:16 -;(,<9':6 !:16 &<+,:9+,99:9#6 ,=+6 :,9:6 1=<'):6 816 :,9:6 =-('):6 <!<+,":6 :)(1-71<;;,:1>976 >9!6 =+:)+6 ,;6 !,1:+:96 ?>=<;;:9)<976 ;,+6 :,9:;6 =%+:1:96 /:17: ,')+6 -!:16 :1))+:;6 2,</:+:=,=,-6 !:16<')-;;:96 2,:6"-1(,:7:9!:61/:,+6*:,7+#6 :('):6>= ,1>97:96:,9:6!,</:+,='):6+-88 :')=:((<7:6!:16>++:16<>86 !:96 :;/1.-9<(:96 :+</-(,=;>=6 %)1:9!6 !:16 &1%,;(<9+<+,-9=:9+ ,'(>976 )<+6 (=6 :,96 *:9+1<(:=6 +:((7(,:!6 !:=6 ;-(:>(<1:96 9<==>97=;:')<9,=;>=6 >1!:6 !:16 1<9=1,+,-9=8<+-16 0 6 >9+:1=>')+62<816 >1!:96 (<=+-*.=+:96!,</:+,='):16<9,9'):962,</:+,='):=6,:1;-!:((6<9<(.=,:1+6 ;6!:960,98(>==6!:16)-1;-9:((:96<+-1:9#69=>(,9#66=6>9!6!,-9:+,96*>6!,=1,;,9,:1:9#6 >1!:96 (<=+-*.=+:96 7:=>9!:16 <9,9'):96 >(+>1/:!,97>97:96<>=7:=:+*+6>9!6;-(:>(<1:6!<+<+,-9=;:')<9,=;:96<9<(.=,:1+66 96 /:,!:96 :1=>')=;-!:((:96 >1!:6 /: ,:=:9#6 !<==6 =,')6 !:16 &1%,;(<9+<+,-9=:;/1.-6 <96 :,96 ).:17(.%;,='):=6 09+ ,'(>97=;,(,:>6 )-1;-9:((6 >9!6 ;:+</-(,=')6 <9<==+6 2,:6 017:/9,==:6 !,:=:16 1/:,+6(<==:96=,')6 ,:68-(7+6*>=<;;:98<==:966 • 0,9:6 !,</:+,='):6 +-88 :')=:((<7:6 !:16 >++:16 8)1+6 *>6 :,9:16 -;:9=<+-1,='):96 01))>976 !:16 &1-!>+,-96 >9!6 ":1;,9!:1+:96 9=>(,96 >9!6 :9=,+,",+%+6 ,;6 >+:1,9:96 >9!6 :;/1.-9<(:96: :/:6<;6<766!:161<",!,+%+6/:,;6<9,9'):96 • >871>9!6 !:16 9+:1<+,-96 * ,='):96 !:;6 6 >9!6 !,-9:+,96 ,1!6 >9+:16 !,</:+,='):96 09+ ,'(>97=/:!,97>97:96 ,96 6 <7:6 <(+:96 (<=+-*.=+:96 !,:6 ;:+</-(,='):6 >9+,-96 !:=6 9=>(,9=6!>1')6!,-9:+,96 :,+7:):9!6-;:9=,:1+6 • 0 6 8>97,:1+6 <(=6 *:9+1<(:16 :1;,++(:16 * ,='):96 9=>(,96 >9!6 !,-9:+,96 ,96 <9,9'):9/(<=+-*.=+:96<7666!,</:+,='):16,:1:6 546 6 CBA@??>=<@AAB=;: • 8B<;7B=6:6>7:B=5>7A432>61243>=:0>/>.5-7@BAA5@55B=;:6>A:,,0+:2?:*?)7(-':B=6:&7-.3-)1@A5>=: 2A5: >2=>: ;>;>=1%B<2;>: 862.-=>#52=7>;B1@52-=: 2=: 6>=: )>26>=: C>11#-?.@752?>=5>=: 2=: "1@A5-/(A5>=:62@)>52A43>7:!@=2=43>=:=@43 >2A)@7: 81A: -1;>: 62>A>7: 8=.@AAB=;: @=: 6@A: 62@)>52A43>: ?;>)B=;A?212>B: 57>5>=: 2?: 2.26?>5@)-12A?BA: <-1;>=6>:>7%=6>7B=;>=:@B<: • "1@A5-/(A5>=: 62@)>52A43>7: !@=2=43>=: >2A>=: >2=>: ?@AA2>: 8##B?B1@52-=: 2=57@/>11B1%7>7: 2.26>A2#>1:@?:&@;::6>7:7@2625%5:@B<: • 2>:*.7>AA2-=:-=:+431AA>1?-1>#1>=:<7:6>=:2.26?>5@)-12A?BA:80 :B=6:+0*"4:62>: 2=57@/>11B1%7>: 2.26A.>243>7B=;: >7212.2=: B=6: 862.-.3212=: 6>=: >55A%B7>57@=A.-75: B=6: >5@)-12A?BA: 8": B=6: 8&: B=6: 62>: @62.-;>=>: 2<<>7>=/2>7B=;: 80: A2=6: 2=: "1@A5-/(A5>=:62@)>52A43>7:!@=2=43>=:>7335: • ,=: "1@A5-/(A5>=: &@;: : 62@)>52A43>7: !@=2=43>=: >2A5: 62>: 7>6B/2>75>: &7@=A#72.52-=: -=: &":@B<:>2=>:7>6B/2>75>:'26@52-=:32=:: 2>: )>-)@435>5>=: *<<>#5>: A.7>43>=: <7: >2=>: 2=32)2>75>: *=>7;2>;> 2==B=;: @BA: >55A%B7>=: B=6: >2=>: <-742>75>: 2=57@/>11B1%7>: 2.26A.>243>7B=;: 2>: ;>=@B>: 7A@43>: )>6@7<: >25>7>7: =5>7AB43B=;>=: *7335>:1B#-A>A.2>;>1:2?:5>7BA:#==>=:>6-43:=B7:)>62=;5:6@<7:>7@=5 -751243:;>?@435: >76>=: @=;<72A52;>: !-=A>B>=/>=: >2=>7: 8=.@AAB=;: @=: >7%=6>75>: *=5 24#1B=;A)>62=;B=;>=: B76>=: ?25: 21<>: 6>7: >?)7(-=@1>=: @BAA5@??/>1112=2>: 0: B=5>7AB435: ,=: 62>A>7: #-==5>=: 862.-=>#52=' >7?255>15>:*<<>#5>:@B<:62>:@62.-;>=>:2<<>7>=/2>7B=;:)>1>;5: >76>=:: • *2=>: <73>: 862.-=>#52=>.-A252-=: <375: /B: >2=>7: ;>A5>2;>75>=: 8=/@31: 7>2<>7: 862.-/(5>=: @?: *=6>:6>7:@62.-;>=>=:2<<>7>=/2>7B=;:?B72=>7:>?)7(-=@1>7:+5@??/>11>=: 0:: • 7: ?B72=>: >?)7(-=@1>: +5@??/>11>=: A2=6: 6@A: B=62<<>7>=/2>75>: @43A5B?: B=6: 62>: >5>7?2=2>7B=;A.3@A>:62>:A>=A2)1>=:>=A5>7:<7:62>A>:?>5@)-12A43>:7-;7@??2>7B=;::: • ,=: 62>: ?>5@)-12A43>: 7-;7@??2>7B=;: -=: >?)7(-=@1>=: C>11>=: 2A5: 62>: 0*"'@)3%=;2;>: 0>;B1@52-=:-=:7><:=5):B=6:80:2=-12>75: 2>: >7/2>15>=: *7;>)=2AA>: )2>5>=: >7A5>: 8=A@5/.B=#5>: <7: >2=: )>AA>7>A: >7A5%=6=2A: 6@<7: 2>: 6>7: >?)7(-=@1>: >5@)-12A?BA: 62>: >25>7>: *=5 24#1B=;A<%32;#>25: -=: *?)7(-=>=: B=6: 62>: A.%5>7>: 8=<%112;#>25: ;>;>=)>7: ?>5@)-12A43>=: *7#7@=#B=;>=: )>>2=<1BAA5: @)>2: 2A5: >2=>: 8=.@AAB=;: @=: 6@A: 2=57@B5>72=>: 62@)>52A43>: ?;>)B=;A?212>B: 62>: 62>: >25>7>=5 24#1B=;: A243>75: 6>7: 24352;A5>: 8BA1A>7: <7: 62>: ;>/>2;5>=: >?)7(-=@1>=: *<<>#5>: >)>=: 1B#-A>: B=6: ,=AB12=: A43>2=>=: @B43: @=6>7>: @#5-7>=: 2>: 2.26>: B=6: 6@A: 862.-/(5-#2=: 862.-=>#52=: >2=>: />=57@1>: ">6>B5B=;: /B: 3@)>=: 99: : 10//.-,+ (-'&-+ %&+ '/$#."%.%'&"+ !/ -,&+ !!#&$/!"%+ '+ -!0#.%!+ ,+ /.%!-".#+ ."+ !/ -,&"'+ .%&-+ '"%!-.%'"+.%+%!+!##0#.-+#!!#+'%'"+%!+0%!-'"!+#0/!"++/ -,&"'+!##+.-!+!"'%'!+%&+"0%-'%'&".#+ ."+ &-/&".#+ ."!+ '%+ .+ '+ ..$%'!+ $#.%''%,+ %&+ !0-!+ '!-!"%'.%'&"+ ."+ 0-'.#+ + /.%!-".#+ %,$!+ *+ '. !%!+ /!##'%0+ *+ '/$.'-+ !"&-'"!+ -!0#.%&-,+ /!."'/+ "&-/.##,+ !"0-'"+ ."+ &$%'/.#+ '"%-.0%!-'"!+ /'#'!0+ '+ #!.+ %&+ &/$#!+ ."!+ '"+ !/ -,&"'+ /!%. &#'/+ 0-'"+%!+$-!'/$#."%.%'&"+$!-'&+'%+&"!0!"!+&-+0-%!-+!!#&$/!"%+ !+ $0-$&!+ &+ %!+ 0--!"%+ %0,+ .+ %&+ !./'"!+ %!+ -!#.%'&"'$+ !%!!"+ /.%!-".#+ '. !%!+ /!##'%0+ ."+ !/ -,&".#+ /!%. &#'/+ '"+ !&-%+ %&+ !%%!-+ 0"!-%&&+ /&#!0#.-+ ..$%.%'&"+ /!."'/+%&+.+'. !%'+0%!-'"!+/'#'!0++.+!"%-.#+/!'.%&-+%!+%-."-'$%'&"+.%&-+,#'+( -!$&"'!+!#!/!"% '"'"+$-&%!'"+ +."+'%+%-."-'$%'&"+.%&-+./'#,++."+ +!-!+ .-.%!-'!+'"+-. '"+%!+-. '%+ #.%&,%+'"+"&-/.#+!!#&$/!"%+ +."+'"+.+'. !%'+$-!".",+/&!#+ '%+'. !%'+-. '%+."'/.#+/&!#+&+ !%%!-+'-'/'".%!+%!+'"#0!"!+&+'"''0.#+.%&-+ 0+ .+ '"0#'"+ + ."+ .'$&"!%'"+ #.%&,%+ -&/+ !.#%,+ -. '%+ !-!+ 0#%0-!+ '%+ .-'&0+/!'0/+0$$#!/!"%++ &%+ !$!-'/!"%.#+ .$$-&.!+ &!+ %.%+ + %.!+ $.-%+ '"+ %!+ !/ -,&/.%!-".#+ -&%.#+ &""!%'"+%!+/.%!-".#+'"0#'"+'".##'"+."+!/ -,&"'+.'$&"!%'"+,"%!'+!+/.'"+-!0#%+."+ !+0//.-'!+.+&##&!+ • + /.%!-".#+ '. !%!+ /!##'%0+ #!.+ %&+ .+ &/$!".%&-,+ '"-!.!+ $-&0%'&"+ &+ + ."+ !-!.!+'"0#'"+!"'%''%,+'"+ #.%&,%+."+0%!-'+&"+.,++&+$-!".",+'"+%!+-. • '%+++ !+#.+&+'"0#'"+'+&/$!".%!+ ,+.'$&"!%'"+.+$.-%+&+.+/!%. &#'+..$%.%'&"+$-&!+ %&+!0-!+!/ -,&"'+#0&!+/!%. &#'/+ • "+ + .,+ &#+ -. '%+ #.%&,%+ + .%+ .+ ."+ .- '%!-+ '"+ %!+ !/ -,&/.%!-".#+ -&%.#+ &""!%'"+/.%!-".#+'"0#'"+'".##'"+."+!/ -,&"'+.'$&"!%'"+-!!$%&-+,%!/+ 1+ • 0!+%&+%!+'!-!"%+'"0#'"+."++'".#'"+'"+!/ -,& #.%+."+%-&$& #.%+!##+'"+'. !%'+ #.%&,%+ %!+ !/ -,&+ .+ .+ !##+ #'"!.!$!''+ + -!0#.%'&"+ ."+ .'$&"!%'"+ !$-!'&"+&"+.,++&+-.''%,+ !+ /&#!0#.-+ ..$%.%'&"+ %&+ .+ '. !%'+ 0%!-'"!+ !"'-&"/!"%+ #!.+ %&+ .#%!-.%'&"+ '"+ !/ -,&"'+ #'$'+ /!%. &#'/+."+%-'#,!-'!+.0/0#.%'&"++++ • #.%&,%+!!#&$!+'"+'. !%'+!"'-&"/!"%+.0/0#.%!+'"%-.!##0#.-+#'$'+.-+. &!+%!+ "&-/.#+#!!#+ *))+ + 432210/. +*)0(''&%$. %#. "(/. !($('. #%0. &)&. 2(1% &'2. . &)&. '%01!(. )(0& &)&$. 1$. • 1&)%)& &$. #1/. 1&. 01$')%0. 1$. 2(1% &'2. . 1$. . &)%!($('&'. 4+-. 1$. 1&)%!($&. &##(0($&1&%$. . 10(. &$0(1'(. &$. 1'%/''. #0%2. &1(&. 01&'. 1. 1/..)0(!$1$/. .01$'0&)&%$.%$.-.&'.(0(1'(.&$. 1'%/''.1/.. .#0%2.&1(&.01&'. • )%&$&$!.%.1.0(3(.%*&1&%$. (. 3$(0 /&$!. 2(1$&'2. #%0. (. ($#%0(. &$01( 3 10. &)&. 1323 1&%$. &$. 1'%/''. #0%2. &1(&.01&'.$(('.#30(0.1$1 /'&'.1$.1$.%$ /.(.)10 /.(*) 1&$(././)(0! /(2&1.. %$! 1'&$!. %$'(3($('. %#. (20/%$&. 11)1&%$. %. 1. &1(&. ($&0%$2($. 2(1% &. )0%!0122&$!. (0(. '3&(. &$. ) 30&)%($. 230&$(. (20/%$&. '(2. ( '. . . ( '. ($%2)1''.(.#3 .)0%(''.%#.1&)%!($('&'.3'.%##(0&$!.1.'3&1 (.2%( .%.'3/.1&)%!($('&'. .(.(( %)2($1 .&2)1.%#.1&)%$(&$.30&$!.3$&##(0($&1(.!0%.1$.((02&$1&%$.%#. (20/%$&. '(2. ( '. (0(. ( 3&1(. /. &$('&!1&$!. !($(. (*)0(''&%$. 1$. #3$&%$. %#. (02&$1 /. &##(0($&1(.( '.(.%'(0(.(##('.1$.(.'32210&'(.1'.#% %(. • &)%$(&$.(*)%'30(.30&$!.(10 /.)1'('.%#.(( %)2($. (1'.%.1$.&$0(1'(.$32(0.%#. #3$&%$1 . (02&$1 /. &##(0($&1(. 1&)%/('. (2%$'01&$!. 1. &0(. &$# 3($(. %#. 1&)%$(&$.%$.1&)%!($('&'.&$..( '. • (. 3$&##(0($&1(. !0%. 1$. ((02&$1&%$. 10(. %. '($'& (. )1'('. #%0. 1&)%$(&$ 2(&1(.2(1% &.)0%!0122&$!.&$..( '. • (. +2(&1(. 0(!3 1&%$. %#. 0(#-. $-,. 1$. . &'. 03&1 . #%0. (. %'(0(. (##('.&$..( '. . 21(0$1 . &1(('. &$# 3($('. (20/%. (( %)2($. &$. 2/0&1. 1/'. ('&('. %. 01&&%$1 . #1%0'. &$'3 &$. 1$. ! 3%'(. %(0. $30&($'. )10&3 10 /. &)&'. 1$. 1&)%"&$('. &"(. 1&)%$(&$. $((. 2%0(. 1($&%$. &$. 0(')(. %. (&0. 1)1&/. %. 0(!3 1(. (20/%$&. 2(1% &'2. (. (20/%. &'( #.1'.1$.1'%$&'&$!.1)1&/.%.11).%.2(1% &.1$!('.(.300($.'3/. (10 /.'%'.(. )&%1 . 0% (. %#. +. &$. (. (20/%$&. 11)1&%$. )0%(''. &'. 2% (3 10. 11)1&%$. 21/. 1/. (. #%3$1&%$. #%0. '3'()&& &/. %. &'(1'('. 0%3!%3. 1(0. &#(. (. 0('3 '. #0%2. &'. '3/. %!((0. &.300($."$% (!(.(21$.1$.&$($'&(.10(.1 0(1/.30&$!.(10 /.)0(!$1$/.&$.%0(0.%.)0(($. %$! 1'&$!.(##('. &"(.%('&/.&$. 1(0. &#(. -,-. . KJIHGFIEGDHGCHJBA@J?> > :9H8>768>5F4F?AJIF8>368>2I1A8>068>3FI1A8>068>71?AJ8>768>=///6>.-IGF?IGEBIEGH>1,>91DJ@H>H49G+1?> *HDH-1)H*>,G14>J@>DJIG1(4FIEGH*>F@*>(,HGIJ-JCH*>11B+IH?'>B14)FGFIJDH>41G)A1-1&JBF-> HDF-EFIJ1@>1,>H49G+1?>BE-IEGH*>HJIAHG>J@>?HGE4(,GHH>4H*JE4>1G>J@>?HGE4( ?E))-H4H@IH*>4H*JE46>%1-6>$H)G1*6>#HD6>"!8>!;" !!"6>*1J'=<6=<<;322=</( ;/"=///<"!'!!;"'':2#(%$#!6<6;(0> :->#FGJBA8>:68>HGGHFE8>68>0?JJ?8>68>1E*HGI8>68>01EC8>6K68>GJF@I8>68>HBHG?8>668> %HG4J--1*8>68>EJ&@1I8>68>;<= 6>,,HBI>1,>*J,,HGH@I>BE-IEGH>?+?IH4?>1@>F*J)1B+IH> *J,,HGH@IJFIJ1@(GH-FIH*>)G1IHJ@>:#$>J@>91DJ@H>H49G+1?6>:@J46>$H)G1*6>3BJ6>= "8> =<" ==!6>*1J'=<6=<=6F@JGH)G1?BJ6;<= 6<=6<=<> :-IFGH1?8>6568>%1@I4J@+8>%68>;<==6>$>F@*>IAH>$0>B1(FBIJDFI1G?'>?H@?1G?>,1G>A1G41@F-> F@*>4HIF91-JB>?J&@F-?6>FI6>$HD6>%1-6>H-->J1-6>=;8>= = ="=6>*1J'=<6=<!@G4!<;> :4GJ8>668>HGIGF@*8>68>:J-AFE*8>68>GJ4F-*J8>68>=//=6>$H&E-FIJ1@>1,>F*J)1?H>BH--> *J,,HGH@IJFIJ1@6>26>FII+>FBJ*?>FGH>J@*EBHG?>1,>IAH>F;>&H@H>H)GH??J1@6>6>KJ)J*>$H?6>!;8> = / = "6> :@&H-F?IG18>6%68>2&@FI1DF8>0668>EH1D8>668>3IHJ@*-HG8>#6:68>3IH@&GH@8>668>%H@*H-?1A@8> 68>GHH@H8>K6:68>;<<!6>$H&E-FIH*>H)GH??J1@>1,>:0">J?>GHEJGH*>,1G>IAH>)G1&GH??J1@> 1,>@HEGF->)G1&H@JI1G>BH--?>I1>@HEG1@?6>6>HEG1?BJ6>,,6>6>31B6>HEG1?BJ6>;!8> "/< <<6> :@&H-F?IG18>6%68>%F?1@8>6K68>2&@FI1DF8>0668>EH1D8>668>3IH@&GH@8>668>1-*4F@8>668> GHH@H8>K6:68>;<<"6>#1@GH&E-FIJ1@>1,>FBIJDFIJ@&>IGF@?BGJ)IJ1@>,FBI1G>">J?>GHEJGH*>,1G> *J,,HGH@IJFIJ1@>1,>@HEGF->)G1&H@JI1G>BH--?>J@I1>F?IG1B+IH?6>6>HEG1?BJ6>,,6>6>31B6> HEG1?BJ6>;"8>!/ !//6>*1J'=<6=";!.$326! (< 6;<<"> :GJIF8>568>JAFGF8>368>EBAJ8>68>0FFAF?AJ8>%68>%FH*F8>68>%J+F&FF8>68>71IIF8>68>3AJ414EGF8> 268>FF4EGF8>068>%J+F1F8>68>EGJ+F4F8>768>J?AJ*F8>%68>5F4F?AJIF8>368>E918>68> %FI?E9FGF8>68>%EGF&EBAJ8>%68>A41I18>568>E@FAF?AJ8>068>%FI?ECFF8>568>=///6> FGF*1JBF->*HBGHF?H>1,>F@>F*J)1?H(?)HBJ,JB>)G1IHJ@8>F*J)1@HBIJ@8>J@>19H?JI+6>J1BAH46> J1)A+?6>$H?6>144E@6>;"8>/ !6> FBAF8>68>3FF*8>$68>E@&1G8>68>:G?-F@JF@8>36:68>;<< 6>:*J)1@HBIJ@>J@>+1EIA'>GH-FIJ1@?AJ)>I1> DJ?BHGF->F*J)1?JI+8>J@?E-J@>?H@?JIJDJI+8>F@*>9HIF(BH-->,E@BIJ1@6>#JF9HIH?>FGH>;8>" "";6> FHG8>68>KJE8>668>$19HGI?1@8>668>,?IGFIJF*J?8>:68>=//!6>$1-H>1,>J@?E-J@(-JH>&G1IA>,FBI1G?>J@> H49G+1@JB>F@*>)1?I@FIF->&G1IA6>H-->"8>! ;6> =<;> > RQPONMPLNKONJOQIHGQFE AMN@OHOGG?E>=<=?E;M:OF?E9=8=?ER76N5?E4=3=?ED210=E/HOEO.-:MGMPQ7GE,7NEPHOE@:7I+M*OE7,E ):5I7:5FQFEQGEOMN:5E(7LFOEO(@N57F=E'N7I=E&MP:=E%IM*=E$IQ=E#=E$=E%=E1D?EDC"!DC!C=E AMN@OHOGG?E>=<=?E;M:OF?E9=8=?ER76N5?E4=3=?ED21=EOMFLNO(OGPE7,E(OPM@7:QPOFEQGEFQG):OE -NOQ(-:MGPMPQ7GEO(@N57FEMEGO6E(OMGFEP7EFPL*5E(OPM@7:QIEI7GPN7:EQGEOMN:5EO(@N57F=E =E>(@N57:=E>.-=E7N-H7:=E0B?E20!=E AMNGOPP?E=<=?EAMKQFPON?EA==?ED22!=E;HMPEQFEPHOENO:MPQ7GFHQ-E@OP6OOGEPHOE(OPM@7:QF(E7,E -NOQ(-:MGPMPQ7GEO(@N57FEMG*EPHOQNE*OKO:7-(OGPM:EI7(-OPOGIOE7:=E9O-N7*=EOK=E 0B?EDC"DBB=E*7QDC=DCC$DC212"D22!CD0BDDC"%9DBB=C=40E AMKQFPON?EA==?ED22"=EL:PLNOE7,E-NOQ(-:MGPMPQ7GEO(@N57FE,MIPFEMG*EMNPQ,MIPF=E3L(=E9O-N7*=E #-*MPOED?E2DD0=E AOGGOPP?E=&=?E97FF?E$=>=?ER7G)7?E<=%=?EAMG7+?ER=?E3O(MPQ?E&=?E7HGF7G?E<=;=?E3MNNQF7G?E$==?E MI7L)M:*?E4=%=?ECC=E9O)L:MPQ7GE7,E;GPEFQ)GM:QG)E*LNQG)EM*Q-7)OGOFQF=E=EAQ7:=E HO(=E11?EBC22BDCC0=E*7QDC=DC10@I=C0"1CCE AON@ML(?E<=?E$HMG(L)M(?E<=?E$PLIH@LN5?E8=?E;QO*O?E=?E<NGON?E3=?EGIH?E8=?ECC=E G*LIPQ7GE7,EG7KO:EI5P7+QGOFEMG*EIHO(7+QGOFE@5EM*KMGIO*E):5IMPQ7GEOG*-N7*LIPFE *OPON(QGO*E6QPHEMEI5P7(OPNQIE@OM*EMNNM5=E5P7+QGOE0D?ED2CB=E *7QDC=DCD!=I5P7=CC1=DD=CDE AONGON?E3=$=?ER5G)FPM*MMF?E$='=?E$-MHN?E%=?E7G7?E=?E/H7((OFOG?ER=?ENOK7G?E=%=?E$5KONFOG?E #=?E9OFO:MG*?E=>=?ECC0=E%*Q-7GOIPQGEMG*EQPFENOIO-P7NFEMNOEO.-NOFFO*EQGE@7GO,7N(QG)E IO::F=EA7GOEB"?E002=E*7QDC=DCD!=@7GO=CC0=C!=CCE AHML(QI+?ED2!=EGFL:QG:Q+OE)N76PHE,MIP7NFE8EEMG*EEQGE*QM@===QM@OP7:7)QM=ED2!EE 'L@O*E9OFL:PE;;;E7IL(OGP=E#9RE HPP-666=GI@Q=G:(=GQH=)7K-L@(O*BD1BB!7N*QGM:-7FDQP77:>GPNOJ$5FPO(= '>GPNOJ='L@(O*='L@(O*9OFL:PF'MGO:='L@(O*O,ML:P9O-7NP'MGO:='L@(O*97 I$L(EMIIOFFO*E!=!=C2=E AH7L(Q+?E%=?E3LMG)?E/=8=?EKMG7K?E=?E8MG)Q?ER=?EQM7?E9==?E;77?E$=R==?EHOG?E$=3=?E97GMQ?E=?E CC=E%GE%/*ONQKO*E-O-PQ*OEFOGFQPQJOFE(O:MG7(MFEP7EM-7-P7FQFEMG*EQGHQ@QPFEPHOQNE )N76PHEMG*E(OPMFPMFQF=E=E:QG=EGKOFP=EDDC?E!0B!"C=E*7QDC=DD1D!CDE AQONHMLF?E%=?E&M6N7PH?E'='=?ECC2=EL:PQ-:OE:OKO:FE7,ENO)L:MPQ7GE*OPON(QGOEPHOEN7:OE7,EPHOE NOIO-P7NE,7NE%8>E9%8>EMFEI7((7GEF7Q:EQGEQG,:M((MPQ7G?EQ((LGOENOF-7GFOFEMG*E *QM@OPOFE(O::QPLFEMG*EQPFEI7(-:QIMPQ7GF=EQM@OP7:7)QME"?E"D!B=E *7QDC=DCC1FCCD"CC2D0"2E AQ))ONF?E==?E$PONG?E$=?ED21B=EOPM@7:QF(E7,EPHOE-NOQ(-:MGPMPQ7GE(M((M:QMGEO(@N57=E%*K=E 9O-N7*=E'H5FQ7:=E!?ED"2=E A:M+O?E;=R=?E:MN+O?E$==?ED22C=EG*LIPQ7GE7,EM*Q-7FOE,MPP5EMIQ*E@QG*QG)E-N7POQGEM%A'E@5E QGFL:QG:Q+OE)N76PHE,MIP7NDE8DEQGEB/BRDE-NOM*Q-7I5POF=EAQ7IHO(=EAQ7-H5F=E9OF=E 7((LG=ED1B?E12D=E DCBE E IHGFEDGCEBFEAFH@?>H=< 87F@65D>>4<32124<87F>0/4<.2-24<,C0+7*?4<)24<(+>D'?D>4<-2&24<3@?5H04<%24<3@?$GA4<"24<!::!2< -@GHBDGH>'<GED>=@EH*GH+>< D@G+E<;<D>0<1,8<DEF<H5*+EGD>G< +E<@F77<=CEBHBD7<0CEH>'<FDE7/< 5+C=F<0FBF7+*5F>G2<(+72<1F772<8H+72<!!4<;;;!2< 87++5'DE0F>4<224<!::!2<-0H*+=HG/<D>0<)HDFGF=2<)HDFGF=<1DEF<!4<!9!!92< 0+H;:2!0HD@DEF2!2;!2!9!< 87$?FE4<(24<&DGGH4<(224<"F=GD4<324<D?>4<82824<D?>4<12,24<!::92<>GEH>=H@<?FGFE+'F>FHG/<H>< D0H*+=F<GH==CF<+ < DG=*F@H H@<H>=C7H><EF@F*G+E<6>+@6+CG<5H@F<H=<D==+@HDGF0<HG?< 0H FEF>@F=<H><*DGGFE>=<+ <'F>F<F*EF==H+>2<.2<8H+72<1?F52<!4<;;;:;2< 0+H;:2;:9@2(9:9!::< 8+'D>4<.2324<I+0H=?4< 224<;2<+<@+5*DEG5F>G=< +E<H>=C7H>=GH5C7DGF0<F+@/G+=H=<H><I;< D0H*+@/GF=<0F H>F0</<F>0+'F>+C=<-1,&:<D>0<"I92<.2<1F77<8H+72<;94<:!:2< 8ED=DF57F4<)2I24<!::2<?F5DGH@<EFBHF<=FEHF=<D0H*+@/GF<H+7+'/2<?F<*FEH7H*H>< D5H7/<+ < =GEC@GCED7<7H*H0<0E+*7FG<*E+GFH>=<=GDH7HADGH+><+ <7H*H0<0E+*7FG=<D>0<@+>GE+7<+ <7H*+7/=H=2< .2<IH*H0<,F=2<94<!9!2<0+H;:2;;97E2,:::;9.I,!::< 8EFHGHF=FE4<%24<I/+>=4<324<7F>>H6F>4<-2(24<-=?G+>4<"24<8EC0FE4<"24<%H77H>'G+>4<(24<ID@DC04<"24< +C=6+ 4<24<.+>F=4<24<!::2<FF0D@6<EF'C7DGH+><+ <*<D@GHBHG/<BHD<-!<H=<F==F>GHD7< +E<=CEBHBD7<+ <F5E/+>H@<7HBFE<@F77=2<"F>F=<)FB2<!;4<!:!:!2< 0+H;:2;;:;'D029:!:< 8EH>=GFE4<,24<;2<1DE+><0H+H0F<*E+0C@GH+>< E+5<'7C@+=F</<G?F<*EFH5*7D>GDGH+><EDHG< F5E/+2<*2<1F77<,F=2<;4<:92< 8EH>=GFE4<,2I24<;2<ID@GDGF<0F?/0E+'F>D=F<D@GHBHG/<H><G?F<*EFH5*7D>GF0<5+C=F<F5E/+2< 8H+@?H52<8H+*?/=2<-@GD<;;:4<999;2< 8EH>=GFE4<,2I24<;2<ID@GDGF<0F?/0E+'F>D=F<D@GHBHG/<H><G?F<*EFH5*7D>GDGH+><EDHG<F5E/+2< 8H+@?H52<8H+*?/=2<-@GD<;94<!::2< 8E+>7FF4<(24<;2<-0BD>@F0<*E+GFH><'7/@+=/7DGH+><H><0HDFGF=<D>0<D'H>'2<->>C2<,FB2<(F02< 94<!!!92<0+H;:2;;9D>>CEFB25F0292;2!!< 8C@?D>D>4<2-24<HD>'4<-2 24<!::2<"F=GDGH+>D7<0HDFGF=<5F77HGC=2<.2<17H>2<>BF=G2<;;4<99;2< 0+H;:2;;!.1!::!9;< 1D5D@?+ $>FE4<124<3DBD'F4<(24<!::;2<>=C7H>7H6F<'E+G?< D@G+E<<0F H@HF>@/2< +E52<,F=2<< 3C**7<;4<;!:2<0+H9< 1DEED=@+4<824<8+D0D4<(24<,+0E'CFA4<24<1+E+7FC4<824<8DEEH4<&224<FH'D4<-24<!:;2<)+F=<@C7GCEF< 5F0HC5<H> 7CF>@F<+ =*EH>'<HEG?<FH'?G<FEGH72<3GFEH72<;::4<;!;!2< 0+H;:2;:;2 FEG>=GFEG2!:;2:2::< 1FF7F>4<(24<BD><%FH==F>EC@?4<(2(24<&EFH>4<.24<35HG4<.2.24<FE5FH0F>4<.2&2%24<3*EFFCF>FE'4< (24<BD><IFFCF>4<224<)F7F5DEEFBD><0F<%DD74< 2-24<!::2<"E+G?<0CEH>'<H> D>@/< D>0<FDE7/<@?H70?++0<H><EF7DGH+><G+<7++0<*EF==CEF<D>0<+0/< DG<5FD=CEF=<DG<D'F<;< ;:9< < HGFEDCFBDAED@EG?>=G<; 7ECD<;65;432;?>G10DE=;C=0;</6=FC=E6B<17;?6=?EGAE0;?6=FD61<;.6D=;F6;<B.5EDFG1E; /CDE=F<-;,B+-;*E/D60-;)(5-;'=&1-;%$#;%"!!%"8-;06G:9-:9>B+DE/0E/%"; EE1E=#;-#;AC=;EG<<E=.DB?>#;--#;*66<#;--#;3ED+EG0E=#;---#;AC=;HEEBE=#;2-'-#; E1E+CDDEAC=;0E;CC1#;,--#;%99"-;607;?6+/6<GFG6=;G=;?>G10DE=;C=0;C061E<?E=F<; .6D=;C5FED;G=;AGFD6;5EDFG1G@CFG6=;6D;</6=FC=E6B<;?6=?E/FG6=-;-;1G=-;'=06?DG=61-;EFC.-; %#;$:"$%-;06G:9-:%:9?-%99%!; EE1E=#;-#;AC=;EG<<E=.DB?>#;--#;3ED+EG0E=#;---#;AC=;HEEBE=#;2-'-#;E1E+CDDEAC=; 0E;CC1#;,--#;%99!-;B.EDFC1;0EAE16/+E=F;G=;?>G10DE=;C=0;C061E<?E=F<;.6D=;C5FED;432; C=0;</6=FC=E6B<;?6=?E/FG6=-;,B+-;*E/D60-;)(5-;'=&1-;%#;%":%"!-; 06G:9-:9>B+DE/0E=9; >C6#;-#;+6DE#;--#;%99!-;42%;E/G&E=EFG?;DE&B1CFG6=;C=0;D61E;G=;0EAE16/+E=F;C=0; 0G<EC<E-;7F6G=E;D6F>;2C?F6D;*EA-;:#;::::%9-;06G:9-:9:-?7F6&5D-%99!-9:-998; >C//C@#;'-#;1.6D=6@#;- -#;C+/6<#;-#;>E#;H-#;C1G=#;-2-#;BD/>7#;--#;6D0G&=6=#;3-#; %99!-;0G/6=E?FG=;E=>C=?E<;G=;AGFD6;0EAE16/+E=F;65;<G=E;E+.D76<-;6+E<F-;=G+-; '=06?DG=61-;8#;:!%9"-;06G:9-:9:-06+C=GE=0-%99!-98-99"; >G#;--#; ?>1EG=#;-H-#;61E7#;-,-#;%999-;,G&>;G=<B1G=1GE;&D6F>;5C?F6D;:;42:;C=0; G=<B1G=;?6=?E=FDCFG6=<;FDG&&ED;C/6/F6<G<;G=;F>E;+6B<E;.1C<F6?7<F;AGC;06=DE&B1CFG6=; 65;F>E;42:;DE?E/F6D-;'=06?DG=616&7;:$:#;$"!$$"%-; >GDC1C#; - -#;>C=&#;,-#;CF@B#;-#;.B'1>EG&C#;H-#;C6#;-#;C>6=#;-#;2G=E&610#;-#;CG1#; --#;%99-;2CFF7;C?G0;<7=F>E<G<;G<;E<<E=FGC1;G=;E+.D76=G?;0EAE16/+E=F;5CFF7;C?G0; <7=F>C<E;=B11;+BFC=F<;C=0;+6<F;65;F>E;>EFED6@7&6FE<;0GE;G=;BFED6-;D6?-;CF1-;?C0-; ?G-;-; -;-;:99#;8!-;06G:9-:9"/=C<-9:$:99; >DGAGC#;--#;6#;*--#;HC+.#;-#;,C&GCDC#;-#;6=F+G=7#;-*-#;660+C=#;*-,-#;:-; >6</>6D71CFE0;*';.G=0<;</E?G5G?C117;F6;F>E;=B?1ECD;/D6FEG=;-;CFBDE;8#;!88 !8-;06G:9-:9!8!88C9; >BD?>G11#;--#;EDE=0E<#;,--#;E+6DE#;-#;:-;EBD6/<7?>616&G?C1;0E5G?GF<;G=;?>G10DE=;65; 0GC.EFG?;+6F>ED<-;;DE/6DF;5D6+;F>E;611C.6DCFGAE; 07;65;EDE.DC1;C1<7-;+-;-; ).<FEF-;7=E?61-;:98#;%8"%!-; G6<#; -#;BDB<#;-#;B6A<#;-#;2C.GC=#;-#;*E>#;-#;6//E1#;-#;%9:9-;'(/DE<<G6=;65; C0G/6=E?FG=;DE?E/F6D<;C=0;E55E?F<;65;C0G/6=E?FG=;G<656D+<;G=;+6B<E;/DEG+/1C=FCFG6=; E+.D76<-;,B+-;*E/D60-;)(5-;'=&1-;06G:9-:9>B+DE/0E:; 1CB<E=#;--#;CF>GE<E=#;'-*-#;,C=<E=#;-#;E0ED<E=#;)-#;E=<E=#;--#;HCBE=.6D&#;-#; ?>+G0F#;H-#;C++#;-#;%99-;)AEDEG&>F;C=0;F>E;+EFC.61G?;<7=0D6+E;G=;C0B1F; 655</DG=&;65;6+E=;GF>;0GEFFDECFE0;&E<FCFG6=C1;0GC.EFE<;+E11GFB<;6D;F7/E;:; 0GC.EFE<-;-;1G=-;'=06?DG=61-;EFC.-;$#;%$$%$"9-;06G:9-:%:9?-%99998; :98; ; NMLKJILHJGKJFKMEDCMBA <;I:E987K6A54346A39CKB6A24146A0LIC/JM/.K6A-4546A,H96A+46A<DHC6A34*46A*I:;9J6A34)46A-9HBLI(/% -9HBBI6A$46A@##"4A CBH;MCAMCEJKIBKBAILL:AIEM/AB:CLDIBKA.KCKALJICBEJMLM9CAMCADH8ICA I/M9E:LKB4A84A34AD:BM9;4A6A@@#4A <987B6A*446AIGICM6A4246A2KJ.6A4146ANMC6A+46A3K;MEB6AN446ANI;ICLK6A-46A$IJ9EM6A446A II;I6A-4)46AIJ;96A446A<DKKBK79J96AN46AMC.6A+4%+46AHBBK;;6A4,46ANMC/K8ICC6A46A 1IJL;K:6A46A2IKJ6A,44<46A7MEM6A046AKBDIMKB6A+46ANH/.ILK6A-46A9BBKLLM6AN46A0EDKJKJ6A 446A??4AALJICB.KCMEA89HBKAMLDAIA/K;KLM9CAMCALDKAE9;;I.KC9HBA/98IMCA9A I/M9CKELMCA/MB;I:BAK;KGILK/AEMJEH;ILMC.AI/M9CKELMCAIC/AM8J9GK/AMCBH;MCA BKCBMLMGML:4AC/9EJMC9;9.:A@6A>"4A/9M@?4@@?KC4??%@?>"A <9CJM.DL6A-446A,HF8 C6A46A;KEDCKJ6AN46A0H6A4 46A19.KCKBED6A34246A-9CL8MC:6A-46A??4A ,KC98K%M/KAICI;:BMBA9A<2ALIJ.KLA.KCKBAJKGKI;BAIAE9JKAJ989LKJAJKHMJK8KCLA9JA E-AJKB9CBMGKCKBB4A-9;4A<K;;A@@6A@@?@@@?"4A <JH8K6A*4N46A./KC6AN46A)KBL6A$446AKDM6A54046A0EDKJFMC.KJ6A46AICMK;B6A046A-EHMK6A46A 2MBED96A546A1I88IC6A446A$9JJMB6A34-46AI7K;KI6A46A?@@4ABB9EMILM9CA9AK9BHJKAL9A /MI7KLKBAMCAHLKJ9AMLDAI/M9BML:AIC/AILA/MBLJM7HLM9CAMCAIA8H;LMKLDCMEA9H;ILM9CA9A :9HLDALDKA;9JMC.AKJMCILI;AHLE98KBAI89C.A<DM;/JKCA<1A0LH/:4A MI7KL9;9.MIA6A"#4A/9M@?4@??B??@%?@?%@#%A <HM6A4%246A)IC.6A<46ANM6AN46AIC6A46AD9H6A+46A)H6A46A<HM6A4%146AH6A4%+46A)H6AN4%N46A?@@4A CBH;MCA/KEJKIBKBA8:9EIJ/MI;AI/M9CKELMCAJKEKL9JA@AKJKBBM9CAGMIA 5LAIC/A 9@AILDI:4A<IJ/M9GIBE4AKB4A/9M@?4@?#EGJEGJA I7K;KI6A46AKLLMLL6A4346A??@4A CLJIHLKJMCKA/MI7KLMEAKCGMJ9C8KCLAE9CKJBAJMBBA9JAL:KAA /MI7KLKBA8K;;MLHBAIC/A97KBML:AMCALDKA9BJMC.6AMCAI//MLM9CAL9A.KCKLMEABHBEKLM7M;ML:4A34A K/MILJ4AC/9EJMC9;4A-KLI74A3-A@6A@?"@?#@4A I7K;KI6A46AKLLMLL6A4346A1ICB9C6A4N46A 8KJIL9JK6A,46A2KCCKLL6A4146A5C9;KJ6A)4<46A@###4A 2MJLDAKM.DL6AL:KAA/MI7KLKB6AIC/AMCBH;MCAJKBMBLICEKAMCAM8IA C/MICAEDM;/JKCAIC/A :9HC.AI/H;LB4AMI7KLKBA<IJKA6A##?4A IC%,99J6A-46A0IBB9C6A046AIGIJIBDGM;M6A46A;8I.9J6A-46A@##4AJKBBM9CA9A.;HE9BKA LJICB9JLKJAIC/A.;HE9BKAHLIKAMCADH8ICA99E:LKBAIC/AJKM8;ICLILM9CAK87J:9B4A 1H84AKJ9/4A4AC.;4A@6A?"@?4A ICM6A<46A08MLD6A4,46AKBB9;MC6A046ANKJ9:6A46A0LIEEMCM6AN46AM;;I.K9MB6A46AIJM89CL6A<46AM;DIH/6A ,46A@##4AMKJKCLMILM9CA9AK87J:9CMEABLK8AEK;;BAMCL9AI/M9E:LKBAMCAGMLJ94A34A<K;;A0EM4A @@?AALA@@6A@#@"4A K<DMIJI6A*4-46ABLJILMI/MB6A46A97KJLB9C6A4346A@##?4AA.J9LD%/KMEMKCE:ADKC9L:KAMCA DKLKJ9F:.9HBA8MEKAEIJJ:MC.AICAMCBH;MC%;MKA.J9LDAIEL9JA A.KCKA/MBJHLK/A7:A LIJ.KLMC.4A$ILHJKA6A""?4A/9M@?4@?"?"I?A K<DMIJI6A*4-46A97KJLB9C6A4346ABLJILMI/MB6A46A@##@4AIJKCLI;AM8JMCLMC.A9ALDKA89HBKA MCBH;MC%;MKA.J9LDAIEL9JA A.KCK4A<K;;A>6A"#"#4A @?>A A GFEDCBEAC@DC?DF>=<F;: 6D:5DCE43=2:102:/B<.DC=D-.D<2:,02:+B*)(DC2:'02:14&F<2:602:6D%>4ACE2:$02:9##"0:!BEDC<B%:F<;A%F<: ECDBE*D<E:F*)C4@D;:)CD F*)%B<EBEF4<:D*&C-4:.D@D%4)*D<E:F<:.FB&DEF>:CBE;0: 6FB&DE4%43FB:2:880: 6D:5DCE43=2:102:/B<.DC=D-.D<2:,02:+B*)(DC2:'02:14&F<2:602:6A(CB;<D2:02:6D%>4ACE2:$02:9##90: 'EF*A%BE4C-:B<.:F<=F&FE4C-:D((D>E;:4(:3%A>4;D:B<.:F<;A%F<:4<:CBE:&%B;E4>-;E: .D@D%4)*D<E:F<:@FEC40:6FB&DED;:82:970: 6D%BF3%D2:0!02:$4<B;2:$0 02:BA>=D2:,002:4C<A2:02:CF>=BC.2:'0!02:"880:,<.A>EF4<:4(: B.F)4<D>EF<:F<:;D%DEB%:*A;>%D:&-:F<(%B**BE4C-:>-E4F<D;:F<:@F@4:B<.:F<:@FEC4:;EA.FD;0: <.4>CF<4%43-:92:##70:.4F9809"98D<0"88 88: 6D%*B;2:/02:@B<:.DC:544C<2:02:!D%%;EC*2:02:$34A2:02:'B;;4<D 4C;F2:+02:9##0:,<.A>EF4<:4(: 1!:B>EF@BE4C:)C4EDF<;:F<:;)DC*BEF.;:.4 < ;ECDB*:EBC3DE;:B<.:F*)%F>BEF4<;:(4C: =B)%4F.:3DC*:>D%%:.F((DCD<EFBEF4<0:!4%0:<.4>CF<4%0:B%EF*0:!.:72:98"990: .4F9809"98*D<.070990997: 6D<DC2:5002:9#770:,*)%B<EBEF4<0:=D:C4%D:4(:)C4EDF<B;D;2:B<.:&%4>B3D:4(:F*)%B<EBEF4<:&-: )C4EDF<B;D:F<=F&FE4C;0:.@0:<BE0:*&C-4%0:D%%:F4%0:2:9"0: 6D;@DC3<D2:02:!F>=B%F2:G02:B=%F2:02:"880:CB<;>CF)EF4<B%:CD3A%BEF4<:4(:*DEB&4%F;*0: +=-;F4%0:1D@0:2:90:.4F98099")=-;CD@0888"0"88: 6D;@DC3<D2:02:B=%F2:02:9###0:+DC4F;4*D:)C4%F(DCBE4C B>EF@BED.:CD>D)E4C;:<A>%DBC:>4<EC4%: 4(:*DEB&4%F;*0:<.4>C0:1D@0:"82:#0:.4F9809"98D.C@0"80088: 64&CF<;-2:$002:B3B;=F*B2:502:+AC;D%2:/002:G4<32:002:$4=<;4<2:G002:9###0:C-4)CD;DC@BEF4<:4(: ; F<D:D*&C-4;: FE=:CD.A>D.:%F)F.:>4<ED<E0:=DCF43D<4%43-:92:90: .4F980989'88# #9###97" : 64=DCE-2:0'02:D*D%D;2:0G02:'>=A%E?2:10!02:9##0:D*)4CB%:)BEEDC<:4(:, ,:D)CD;;F4<:.ACF<3: *4A;D:)CDF*)%B<EBEF4<:D*&C-43D<D;F;0:!4%0:1D)C4.0:6D@0:72:"9"0: .4F980988"*C.09887898: 644%D-2:002:D<<DEE2:!002:;&4C<D2:002:9###0::>CFEF>B%:C4%D:(4C:>!+:CD;)4<;D:D%D*D<E &F<.F<3:)C4EDF<:1:B;:B:4 B>EF@BE4C:F<:;EDC4% CD3A%BED.:ECB<;>CF)EF4<:4(: =-.C4- *DE=-%3%AEBC-%:>4D<?-*D::;-<E=B;D:)C4*4EDC0:$0:F4%0:=D*0:"72:" "#90: 6C<DC2:02:+%B3D*B<<2:02:9##0:+DCF<BEB%:=-)DCF<;A%F<F;*:B;:)4;;F&%D:)CD.F;)4;F<3:(B>E4C: (4C:.FB&DED;:*D%%FEA;2:4&D;FE-:B<.:D<=B<>D.:>BC.F4@B;>A%BC:CF;:F<:%BEDC:%F(D0:54C*0: !DEB&0:1D;0:54C*0:'E4(( D>=;D%(4C;>=A<3:54C*0:!EB&4%F;*D:"2:"9""90: .4F98098; "887 9889: 6CD-DC2:02:D%%DC2:502:!B=(4A.F2:02:GBA.DE2:/02:CD-2:02:B=%F2:02:9##0:+4;FEF@D:CD3A%BEF4<: 4(:E=D:)DC4F;4*B%:&DEB 4F.BEF4<:)BE= B-:&-:(BEE-:B>F.;:E=C4A3=:B>EF@BEF4<:4(: 987: : GFEDCBEAC@DC?DF>=<F;: 5DC43F;42D:5C41F0DCBE4C/B>EF@BED.:CD>D5E4C;:-,,+*)(:'F41(:&D11:+A;5F>D;:%AC(:&D11:'F41(: $C#B<(:""!: "" (: A0CB;<D;!:%(!:B<.DC=D.D<!:(!:*4F<!:(!:D1>4ACE!:(!:,B250DC!:(!:D:DCE4#=!:*(!:9(: 1A>4;D:B<.:5CA@BED:2DEB41F;2:F<:5CDF251B<EBEF4<:1B;E4>;E;:0C42:<4C2B1:B<.: .FBDEF>:CBE;(:(:*D5C4.(:DCEF1(:7!:9 9""(: A24A1F<!:(&(!:GB<.!:(+(!:B<:4<E044CE!:+(,(!:D1F;;D<!:%(&(!:&44<D<!:%(!:DC=BB#!:((!: >=CDAC;!:(G(!:A<;D12B<!:(+(!:D;EDC!:+((!:DCBD.E;!:(,(!:%@DC;!:(G(!:898(:%00D>E:40: F<:@FEC4:>A1EACD:40:=A2B<:D2C4;:4<:FCE=DF#=E:40:<D4C<;(:A2(:*D5C4.(:$30(: %<#1(:!: 8 9(:.4F98(98 =A2CD5 .D5 : A<<F<#!:(*(!:&B;=2B<!:(!:*A;;D11!:(G(!:=425;4<!:((!:4C2B<!:*((!:*4DC!:*(G(!:898(: 'DEB/43F.BEF4<:F;:D;;D<EFB1:04C:24A;D:44>ED:.D@D1452D<EB1:>425DED<>D:B<.:DBC1: D2C4:.D@D1452D<E(:'F41(:*D5C4.(:7!:897(:.4F98(98 F41CD5C4.(998(879: %.BC.;!:,(+(!:B4C!:(!:B;E!:(*(!:D<BED;BCB<!:+(!:888(:*D#A1BEF4<:40:#D<D:D35CD;;F4<: :*%',:B<.:&+,(:'F4>=F2(:'F45=;(:+>EB:9!:9899(: %1>=B1B1!:(!:>=BF00!:((!:2FE=!:((!:*F24<!:%(!:'F1.FCF>F!:(!:D1;4<!:((!:B.4@;!:(!:88(: <;A1F<:B<.:0BEE:B>F.;:CD#A1BED:E=D:D35CD;;F4<:40:E=D:0BE:.C451DE/B;;4>FBED.:5C4EDF<: B.F545=F1F<:F<:5CF2BC:=A2B<:EC45=41B;E;(:+2(:(:$;EDE(:<D>41(:9!:9"9 9"(: .4F98(989 (B4#(88(8(89: %<#D1;!:(&(!:*BBCBB<!:(!:DF;ECFE?DC!:*(!:=BC2B!:+(!:FD1;D<!:('(!:>=B1F!:((!:.D:CFD;!: +(+((!:,F<B55D1;!:(+(!:A!:((!:89(:<;A1F</1FD:#C4E=:0B>E4C:5C424ED;:>BC.FB>: 1F<DB#D:F<.A>EF4<:F<:@FEC4::;D1D>EF@D:D35B<;F4<:40:DBC1:2D;4.DC2(:ED2:&D11;:BE(: $=F4:!:998(:.4F98(988 ;ED2(9 8: %CF4<!:((!:#<BE4@B!:((!:4<D2FE;A!:(!:B#BF!:(!:&=BEEDCDD!:,(!:DF;2B<<!:(!:;FB4!:((!: =B<#!:(!:B;BF!:(!:EBC!:*(!:1B<<DC!:&(!:B=<!:(!:&BC2DB<!:&((!:A!:((!: ACCB!:((!:'=B<4E!:(!:4<FB!:'(,(!:&1F<D!:((!:B2AD1!:((!:=A12B<!:((!:88(: ,CD@D<EF4<:40:=D5BEF>:;EDBE4;F;:B<.:=D5BEF>:F<;A1F<:CD;F;EB<>D::<4>.4<:40:>+,: CD;54<;D:D1D2D<E/F<.F<#:5C4EDF<(:&D11:DEB(:98!:8 (: .4F98(989 (>2DE(88(98(88": %@DC;!:((!:.D:B1!:((!:F;;DC!:((+(!:88(:*F;:40:>4251F>BEF4<;:40:5CD#<B<>:F<:42D<: FE=:E5D:9:.FBDED;:<BEF4<F.D:5C4;5D>EF@D:;EA.:F<:E=D:DE=DC1B<.;(:':7!:9(: .4F98(99 2(78(79 8(%%: B;;=BADC!:(!:1DF<!:(!:DA2B<<!:(!:%;?1F<#DC!:(!:,B;>=D!:*(!:88(:4C24<B1:CD#A1BEF4<: 40:B.F54<D>EF<:#D<D:D35CD;;F4<:F<:/G9:B.F54>ED;(:'F4>=D2(:'F45=;(:*D;(: &422A<(:8!:987987(:.4F98(988 C>(889( 8": D1F#!:,(!:9""(:'4.:0AD1:2BEB41F;2:B<.:.FBDED;:2D11FEA;:F<:5CD#<B<>(:D.(:&1F<(:4CE=: +2(: 9!: (: 987: : EDCBA@C?A>BA=BD<;:D98 4BA3?92:180/./18EBB9B18-/,/18+66*/8(8'2CB:CD@&8A2&B8%2A8CAD3&$<BAD#B8@98@:8B:BA3$892?A<B8#?AD:38 "2>D:B822<$CB8!@C?A@CD2:8@:#8B@A&$8B!"A$28#B>B&2'!B:C/8.2&/8 B'A2#/8B>/818 7757+67/8#2D76/766+!A#/+658 4D9<;BA18/1875/8B>B&2'!B:C8ABC@A#@CD2:8D:8<?&C?AB#8'ABD!'&@:C@CD2:8A@""DC8B!"A$29/8,/8 B'A2#/84BACD&/8518777+/8 4D9<;BA18/18@>D9CBA18//18755/8$3B:8CB:9D2:8D:8C;B82>D#?<C8@:#8?CBA?982%8A;B9?98 !2:B$918;@!9CBA98@:#8A@""DC9/8,/8 B'A2#/84BACD&/85518**5/8 4D9<;BA18/18;@>@CCB@&!BA18/18DB"@;:18/18@>@AABCB8@:C2918(/18?A@:C;2:18/18+67+/8 @""DC8@98@8AB'A2#?<CD>B8!2#B&8%2A8;?!@:8;B@&C;/8 B'A2#/8@!"/80:3&/8718776/8 #2D76/76 07+66578 4D9<;BA18/18@:C2918(//18;DB!B18 /18 @!D:18/184D9<;BA18/18+676/8(#D'2:B<CD:89CD!?&@CB98 3&?<29B8?'C@B8D:8A@""DC8"&@9C2<$9C9/8D2&/8 B'A2#/8185*/8 #2D76/765"D2&AB'A2#/776/6**8 4&BD9<;!@::18./18 $:B#D@:18//18+666/8 B3?&@CD2:82%89CBA2&8AB3?&@C2A$B&B!B:C8"D:#D:38 'A2CBD:8783B:B8B'AB99D2:8D:8&D>BA8A2&B82%8D:9?&D:8@:#8'A2CBD:8D:@9B8<(C/8D2<;B!/8 ,/851877/8 4&22#18./ /18DB"2&#18,/E/1875/8&?<29B8!BC@"2&D9!8"$8'ABD!'&@:C@CD2:8'D38B!"A$29/8,/8 B'A2#/84BACD&/8187+/8 42ABC=18./18?D<;@A#18/184BAA18/1842?%B&&B184/187555/8CBA2&8AB3?&@C2A$8B&B!B:C8"D:#D:38 'A2CBD:7<8D98@8!@2A8!B#D@C2A82%8D:9?&D:8@<CD2:82:8C;B8;B'@CD<8B'AB99D2:82%8 3&?<2D:@9B8@:#8&D'23B:B9D9AB&@CB#83B:B9/8A2</8@C&/8(<@#/8<D/8/8/8(/85*187+ 7++/8 42?&B918//182AAB&&D180/18@992:B2A9D18/187557/8 0.83B:B8?9B82%8@&CBA:@CD>B8("D:#D:38 #2!@D:983B:BA@CB98!?&CD'&B8@:C@32:D9C982%8<(.D:#?<B#8CA@:9<AD'CD2:/8B&&8*185 5/8 4218/0/182&C2:18E/(/180AD<92:18/4/184ADB#!@:18,/0/18;@18-//18B&&BA18/18.@<2?3@&#18/(/18 &B!!18/,/18+66/8 B3?&@CD2:82%8<$<&D:878@:#8:C76"83B:B8B'AB99D2:8"$8<(. AB9'2:9D>B8B&B!B:C"D:#D:38'A2CBD:8#?AD:38B@A&$8@#D'23B:B9D98D:>2&>B98#D%%BAB:CD@&8 'A2!2CBA8!BC;$&@CD2:/8,/8D2&/8;B!/8+1865*76/8 #2D76/76"</.6*++668 4218/0/184@:B&&18/./180AD<92:18/4/18.@@18/./18A299:218,//18,A18&B!!18/,/18+66*/8 B'&BCD2:82%8<(.AB9'2:9B8B&B!B:C"D:#D:38'A2CBD:(478D:;D"DC98@#D'23B:D<8 <2:>BA9D2:82%8E78<B&&98B<C2'D<@&&$8B'AB99D:38((B:;@:<BA"D:#D:38'A2CBD:8 08@&';@1808"BC@182A8( 83@!!@8+/8,/8D2&/8;B!/8+718676/8 #2D76/76"</.*66+668 7658 8 MLKJIHKGIFJIEJLDCBLA@ =IHADH<@=;<@:HB9LBL<@8;<@7DH6LH<@:;<@7DLHDDH<@M;<@5LBJ4<@3;<@24AKHBKLB4<@1;<@84690LBJ<@/;.;<@-J60L4IJ<@ 1;<@,L+BJIL<@3;<@?***;@/BAG6LB@IJDJ)K4I@LA404I(@1<@H@BJ'6&@IJD4+BLEJ9<@CL+C%H00LBLK&@ LBAG6LB%6L$J@+I4'KC@0HDK4I@//@IJDJ)K4I@LB@0JKH6@HB9@DHBDJI@DJ66A;@546;@2J66;@-L46;@?*<@ #"! #" ;@ =IL9CHB96JI<@M;<@?*?;@:HKC'H&A@40@+6GD4AJ@(JKH46LA(@LB@0JIKL6LEJ9@IHLK@4FH@HK@FHIL4GA@)IJ% L()6HBKHKL4B@AKH+JA;@);@2J66@3JA;@""<@#>##?;@ =ILKE<@8;<@">??;@318@H@ALB+6J@IJDJ)K4I@0LKA@(G6KL)6J@6L+HB9A;@IJB9A@-L4DCJ(;@7DL;@#<@" #";@94L?>;?>?;KLA;">??;> ;>> @ =IGJLA<@;<@AH4<@;7;<@HF4IADCL<@7;<@JKA%3JJ9<@.;<@ILD$A4B<@5;3;<@JB<@=;;<@-LCHLB<@-;;<@ M49LAC<@;=;<@">>?;@:I4KJ46&KLD@D6JHFH+J@)I49GDK@40@#>%$.H@H9L)4D&KJ@D4()6J(JBK% IJ6HKJ9@)I4KJLB@LBDIJHAJA@0HKK&@HDL9@4L9HKL4B@LB@(GAD6J@HB9@DHGAJA@'JL+CK@64AA@LB@ (LDJ;@:I4D;@HK6;@1DH9;@7DL;@;@7;@1;@* <@">>">?>;@94L?>;?>!#)BHA;>?*?!* @ 8HI9BJI<@.;;<@MJJAJ<@;;<@?* ;@CJ@I46J@40@+6GD4AJ@HB9@)&IGFHKJ@KIHBA)4IK@LB@IJ+G6HKLB+@ BGKILJBK@GKL6LEHKL4B@&@)IJL()6HBKHKL4B@(4GAJ@J(I&4A;@.JF;@2H(;@B+6;@?><@"# "*;@ 8JIK4'<@;<@:LJKL6LBJB<@;;<@$L%IFLBJB<@;<@H)IL4<@;<@3LAAHBJB<@1;<@IL$AA4B<@:;<@H(AKJB<@ 1;<@=LACJI<@3;5;<@">>;@)IJAAL4B@40@0HKK&%HDL9%CHB96LB+@)I4KJLBA@LB@CG(HB@H9L)4AJ@ KLAAGJ@LB@IJ6HKL4B@K4@4JALK&@HB9@LBAG6LB@IJALAKHBDJ;@.LHJK464+LH@!<@??? ??";@ 94L?>;?>>!A>>?"%>>%??!%@ 8C4AC<@">>#;@5HBB4AJ@%)C4A)CHKJ@IJDJ)K4IA@BJ'@K'LAKA@LB@KCJ@K;;; HK@3JF@546@2J66@-L46;@ ">>#@%@:G5J9@3JAG6K@ @.4DG(JBK;@3M@ CKK)''';BDL;B6(;BLC;+4F)G(J9?"?"#*4I9LBH6)4A"*LK446BKIJE7&AKJ (";:BKIJE;:G(J9;:G(J93JAG6KA:HBJ6;:G(J9.J0HG6K3J)4IK:HBJ6;:G(J93 ,.4D7G(@HDDJAAJ9@;";>*;@ 8LDGJ6<@2;<@MJ@-4GD<@;<@">>;@4I(4BH6@IJ+G6HKL4B@40@0JKH6@+I4'KC;@4I(;@3JA;@@7G))6@#<@ " ##;@94L?>;??*>>>>*?>#@ 8LG9LDJ<@?**#;@.L00JIJBKLH6@J)IJAAL4B@40@(JAAJB+JI@IL4BGD6JLD@H;;; @26LB@B94DILB46@5JKH;@ ?**#@%@:G5J9@3JAG6K@ @.4DG(JBK;@3M@ CKK)''';BDL;B6(;BLC;+4F)G(J9 *#>>4I9LBH6)4A"?LK446BKIJE7&AKJ( ";:BKIJE;:G(J9;:G(J93JAG6KA:HBJ6;:G(J9.J0HG6K3J)4IK:HBJ6;:G(J93, .4D7G(@HDDJAAJ9@;";>*;@ 84BEH6JE<@8;1;<@54BK(LB&<@5;3;<@?* *;@2&D6LD@15:@AKL(G6HKJA@A4(HK4AKHKLB@+JBJ@ KIHBADIL)KL4B@&@)C4A)C4I&6HKL4B@40@23-@HK@AJILBJ@?##;@2J66@*<@! >;@ 8IHGI<@.;<@.GIJK<@M;<@84G&<@5;<@?**;@:C&64+JBJKLD@)4ALKL4B@40@KCJ@4I9JI@MH+4(4I)CH@IHLKA<@ CHIJA@HB9@H66LJA;@HKGIJ@#!*<@#####;@94L?>;?># #!*###H>@ 8IL00LB<@5;;<@7G6<@;7;<@">>;@/BAG6LB@IJ+G6HKL4B@40@0HKK&@HDL9@A&BKCHAJ@+JBJ@KIHBADIL)KL4B@I46JA@ 40@7=@HB9@73-:%?D;@/-5-@ML0J@<@*>>;@94L?>;?> >?"?>>>>""!@ ??>@ @ FEDCBAD@B?CB>CE=<;E:9 7B6D<59432359108039/.E-6;C=DE;9A;.9-6,+=+:DE=96?AB+9:+;.B6*C39)E6,39(C:39'@B:398159&1$#139 .6E"80388##!80 0080#819 7@CBBCE,,65935910039/.E-6;C=DE;"9A;[email protected]:9CDA395981$839 .6E"803808&!3.EACD3100#3030019 AC;CB593359C+CB593359@;593592ACCB5973596C,CB5933598 039<ABA=DCBE>ADE6;969A9 =/BC@,ADC.9C;<A;=CBE;.E;9-B6DCE;39CDA6,E:*39 598$8&39 AE59359ABD*A;5937359100839<C9*6,C=@,AB9E6,6+9A;.9;6*C;=,AD@BC969D<C9A=DE?ADE;9 DBA;:=BE-DE6;9A=D6B!=/9BC:-6;:E?C9C,C*C;D9E;.E;9A*E,+969DBA;:=BE-DE6;9A=D6B:"9 A=DE?ADE;9DBA;:=BE-DE6;9A=D6B9-B6DCE;:9A;.9<6*C6:DA:E:397C;C91#598$8839 AE5932359FE@593596@6:59233597BCC;593(3598 39BA;:=BE-DE6;9A=D6B9/9='/9=,6;C:"9A;9 CDC;:E?C9A*E,+969,C@=E;C9>E--CB9-B6DCE;:9A,C9D69:C,C=DE?C,+96B*9'/E;.E;9 <CDCB6.E*CB:397C;C:9C?395910$10 039 AE5935926,A;593359AB:CC593 359/,,C;59/33594E?A-BA:A.593598 BC:-6;:C:397C;C9-B39#5918$39 39/9A;.9:DBC::9 A**6;.593598 39(C=6?CB+9A;.9=@,D@BC969D@A,9*6@:C96?A39'AD@BC98&59139 A;593592A;59359FE59F359<A;593592A;59F359A;59359100 39<C9B6,C969E;:@,E;9A;.9,@=6:C9E;9 66:C9-BE*AB+9<C-AD6=+DC9DBE,+=CBE.C9A==@*@,ADE6;3939-39)E6,39181598$839 .6E"803811!C30111809 /94D@.+966-CBADE?C9(C:CAB=<97B6@-59CD>CB59)3359F6C59F3359+CB59/3(359BE*,C593(359 <A6?ABE;.B593596@:DA;593(359A..C;593(359=A;=C593(3596.59359=;D+BC593359 AD:5933'359CB::6;59)359(6CB:59343594A=:593/35910039+-CB,+=C*EA9A;.9A.?CB:C9 -BC;A;=+96@D=6*C:39'39;,3939C.39598 8$100139.6E"80380&!'6A0#0# 9 ABD*A;5937359F@59359 E*593F359 6=EA59733594<@BE59359)@DCA@593592A;59359BA;C,5923F359 [email protected];DE593597BC+5943359(6;59359AE5935910039(6,C96B9A=DE?ADE;9 DBA;:=BE-DE6;9A=D6B99E;9:DBC::E;.@=C.9CDA=C,,9A-6-D6:E:396,39C,,39)E6,39159#18$ #139.6E"803881!)31383#18#131009 AB?C+593)359 A+C593F3598 039;:@,E;9E;=BCA:C:9D<C9=C,,9;@*CB969D<C9E;;CB9=C,,9*A::9A;.9 :DE*@,ADC:9*6B-<6,6E=A,9.C?C,6-*C;D969*6@:C9,A:D6=+:D:9E;9?EDB639C?39A*39 ;,3988059 &$ &#39 A@=C59359'A?ABBCDC94A;D6:59/3594E**59/359C;;E;593597,6*593/3597BC593594=<E;.,CB59 359E:=<CB59)359'A?ABBCDC94A;D6:59/35910839/==@*@,ADE6;969A.?A;=C.9,+=ADE6;9C;.9 -B6.@=D:9E;9D<C9BAED9,A:D6=+:D9@;.CB9*ADCB;A,9.EACDC:39(C-B6.39A*39;,39859 8& $8#39.6E"80380!(808 9 CE.59323596,,59(3594=<CD,E=59359(A=ED>593(359 CC;A;59323598 39/.E-6-<E,E;9E:9A9 :-C=EE=9*ABCB969,E-E.9A==@*@,ADE6;9E;9.E?CB:C9=C,,9D+-C:9A;.9.E:CA:C:39C,,9E::@C9 (C:391 590 $1839 8889 9 KJIHGFIEGDHGCHJBA@J?> ;H:9HGA8G?I7>65457>3HG2EJ@7>1505457>18@/HG7>157>.HJG?H7>45-5,5+57><**)5>3HGJ@FIF:>8EIB89H>8(> ?J@':HI8@?>F@&>I%J@?>F(IHG>F??J?IH&>B8@BH$IJ8@#>F>?"?IH9FIJB>GHDJH%>8(>B8@IG8::H&> ?IE&JH?5>!4-> <7><=5>&8J#=*5== 95 5*<5> ;H9/H9H"HG7>5057>BA%FGCHG7>+57>!8JF@J7>457>A9B/H7>-57>KH>FB7>57>BA:FII7>57>,8G&A8((7>57> <*=)5>((HBI?>8(>H9G"8>BE:IEGH>9H&JF>&8>@8I>$HG?J?I>F(IHG>J9$:F@IFIJ8@#>F> AJ?I8:8'JBF:>?IE&">J@>9JBH5>;E95>H$G8&5>(5>@':5><7><<*< 5> &8J#=*5=* AE9GH$&HI)==> ;HGCJ'7>57>;H&GJB/7>57>48GF@IIH7>57>.887>5;57>F:J9J7>657>48@I9J@"7>457><** 5>+!>B8@IG8:?> AH$FIJB>:J$J&>9HIF8:J?9>IAG8E'A>@EB:HFG>A8G98@H>GHBH$I8G>330'F99F5>,FIEGH> )<7>=*= 5>&8J#=*5=* @FIEGH*<==*> ;H%JI?8@7>K5+57>4FGIJ@7>.5K57>KHH?H7>;5-57>=5>((HBI?>8(>9HIF8:JB>J@AJJI8G?>8@>98E?H> $GHJ9$:F@IFIJ8@>H9G"8>&HDH:8$9H@I>F@&>IAH>H@HG'">9HIF8:J?9>8(>J?8:FIH&>J@@HG> BH::>9F??H?5>48:5>H$G8&5>1HD5>) 7> < *5>&8J#=*5=**<+ =* <=* ) # < ##0141 5*5+<> ;H"@HG7>57>F87>K557>-FGHII7>K57>9JIA7>5457>=5>3GHJ9$:F@IFIJ8@>98E?H>H9G"8?> J@IHG@F:JCH>9FIHG@F:>J@?E:J@>DJF>GHBH$I8G9H&JFIH&>H@&8B"I8?J?#>$FIIHG@>8(>E$IF/H> F@&>(E@BIJ8@F:>B8GGH:FIJ8@?5>1HD5>!J8:5>= )7>)5> ;J&H@7>57>:JIC@HG7>57>;FGI9F@@7>457>1H?8"H7>57><**5>@?E:J@>F@&>IAH>6>?"?IH9>J@>IAH> AE9F@>$:FBH@IF>8(>@8G9F:>F@&>&JFHIJB>$GH'@F@BJH?5>-5>0@FI5><=7>*5> &8J#=*5====5=)*5<**5*=* 5> ;JGFJ7>;57>.FGJF@7>357>.J/"87>,57><*==5>H'E:FIJ8@>8(>H9G"8@JB>?IH9>BH::>?H:(GH@H%F:>F@&> $:EGJ$8IH@B">">:HE/FH9JF>J@AJJI8G">(FBI8G5>!J8BAH95>-5>) 7>==< 5> &8J#=*5=*)<!-<*=*<=<> ;8H:/HG7>457>.F??H@?7>057>;H:&7>57>GH@C"B/J7>+57>!H?H@(H:&HG7>57>;FD:JBH/7>57>JH9H7>;57> H?(F"H7>157>BAH::F@&HG7>.57><*=)5>>JGIA>8(>AHF:IA">BF:DH?>F(IHG>J@IGF(8::JBE:FG> 88B"IH>IGF@?(HG5>H$G8&5>6HGIJ:5>1HD5><7>= 5>&8J#=*5=*=1D<@=0> ;8?AJ7>;57><** 5>@>DJIG8>$G8&EBIJ8@>8(>8DJ@H>H9G"8?>F@&>IAHJG>F$$:JBFIJ8@>(8G>H9G"8> IGF@?(HG5>AHGJ8'H@8:8'">7>5> ;E7>57>KJF@'7>357>$JH'H:9F@7>!5457>=5>0&J$8>J?>F>@8DH:>F&J$8?H?$HBJ(JB>'H@H> &"?GH'E:FIH&>J@>8H?JI"5>-5>!J8:5>+AH95><=7>=*=** 5> ;E'7>+57>F@'7>-57>0A9F&7>,557>!8'F@7>-557>?F87>557>K8&J?A7>;5657><**)5>BF&AHGJ@>J?>F> GHBH$I8G>(8G>AHF9HGJB>F@&>AJ'A98:HBE:FG%HJ'AI>(8G9?>8(>0BG$ *F&J$8@HBIJ@5> 3G8B5>,FI:5>0BF&5>BJ5>5>5>05>=*=7>=* *=* = 5>&8J#=*5=* $@F?5*)* <=*=> ;E99:HG7>57>+8:H7>5-57>!:H@&"7>-5057>F@??7>57>0'ECCJ7>057>BA9J&7>57>!HHG9F@@7>657>BAIC7> 57>=)5>FG'HIH&>9EIFIJ8@>8(>IAH>+!>'H@H#>B89$H@?FIJ8@>%JIAJ@>IAH>+!06> (F9J:">8(>IGF@?BGJ$IJ8@>(FBI8G?5>3G8B5>,FI:5>0BF&5>BJ5>5>5>05>=7>)=5> ==<> > HGFEDCFBDAED@EG?>=G<; 87C6C5C4;324;1B=C>C<>G4;024;/C.C7BDC4;024;-,DG5C.G4;-24;0C=C.C4;+24;/G<>G@C5C4;*24;+C)C7C4; (24;'=,4;+24;85C>C<>G4;*24;&C7C6CFC4;(24;-G)C6C5C4;%2$824;-CF<B@C5C4;&24;#""#2;! EACFE; <EDB7;?,=?E=FDCFG,=;,;CG,<E$EDGAE;C?F,D4;CG,=E?FG=4;G=;CFGE=F<;5GF>;F)E;:; GCEFE<2;GCEFE<;CDE;#4;::2; 8=B.CG4;(24;/C.C<>G7C4;&24;CFC=CE4;-24;0C.CFC4;/24;+C5C4;024;(BDG>CDC4;+24;35CFC4;024; (CFC)C7C4;+24;#""2;E6B CFG,=;,;CG,=E?FG=;DE?EF,D;6E=E;EDE<<G,=;G=;GCEFG?; 7G?E2;372;%2;>)<G, 2;!=,?DG=, 2;-EFC2;#4;!#2; ,G:"2::#CE=,2""::2#""; %C?.<,=4;2324; G<,=4;(2324;B4;&224;D,B6>C=4;-2+24;#""2;EDG=CFC ;,BF?,7E<;G=;<G=6 EF,=<; , ,5G=6;G=;AGFD,;EDFG G@CFG,=;C;7EFC$C=C )<G<2;<FEF2; )=E?, 2;:"94;:92; ,G:"2:"":23 2""""::2##2:; %C=C=G4;24;C=GF>C;(B7CDG4;224;#":2;3;6C77C;6E=E;$;3;DEAGE52;GCEFE<;-EFC2; +)=D2;,G:"2:":2<2#":2"2":; %C=<<,=4;24;/64;322$*24;1B4;324;ECFGE4;24;3 ;3@@CG4;-24;+?DECF,=4;2324;#""2; B?,<E; ?,=FD, <;!;C?FGAGF);G=;G< EF;?E <;AGC;DE6B CFE;>,<>,D) CFG,=;,;0#2;D,?2; /CF 2;3?C2;+?G2;'2;+2;32;:"4;:":::":2;,G:"2:"9=C<2""":"; %E,=64;2%24;>,4;+2%24;HEE4;*2+24;E4; 2(24;HEE4;&2+24;(5,=4;02*24;(,=64;82(24;#""2;!E?F;,; ?)F, C<7G?; GG;?,=FE=F;,=;G=;AGFD,;EAE ,7E=FC ;EG?GE=?);,;,AG=E;8;E7D),<2; 0>EDG,6E=, ,6);#4;2;,G:"2:":2F>EDG,6E=, ,6)2#""2"2":; %G=4;2H24;/EG 4;24;#""2;?3-$DE<,=<GAE;E E7E=F$G=G=6;D,FEG=;EDE<<G,=;C=; DE6B CFG,=;G=;F>E;7,B<E;DEG7 C=FCFG,=;E7D),2;ED,2;C72;!=6 2;:94;2; ,G:"2:9"!$"$"#; %G=4;2H24;/EG 4;24;#":"2;0>E;DE<E=?E;C=;C?FGACFG,=;,;F5,;E<<E=FGC ;FDC=<?DGFG,=;C?F,D<; ?3-;DE<,=<E;E E7E=F$G=G=6;D,FEG=;C=;?3-$EE=E=F;FDC=<?DGFG,=;C?F,D; 301:;G=;F>E;F5,$?E ;7,B<E;E7D),2;G, 2;ED,2;#4;2; ,G:"2:"G, DED,2:"2"; %G=4;2H24;/EG 4;24;#":2;0>E;DE6B CFG,=;,;F>E;EDE<<G,=;C=;C?FGACFG,=;,;F>E;E<<E=FGC ; 301:;FDC=<?DGFG,=;C?F,D;G=;F>E;7,B<E;DEG7 C=FCFG,=;E7D),2;ED,2;C72;!=6 2; :4;::2;,G:"2:9"!$:9$"9; %,>C==E<<E=4;-24;E 6>C=G4;-224;-,E=<4;'24;#""2;>CF;FBD=<;!;,=;E 2;+G6=C 2;:4; :#:::##2;,G:"2:":2?E <G62#""2"2"":; %,>=<,=4;-2024;-C>7,,4;+24;CFE 4;-2+24;#""92;8=FED7EGCD);7EFC, G<7;C=;E=ED6EFG?<; BDG=6;7BDG=E;ECD );E7D),6E=E<G<2;%2;G, 2;>E72;#4;9:9:"2; ,G:"2:"?29""""##""; %B=6>EG74;!2+24;H,BE=4;!224;>G4;-2-2$&24;1D, ,AC4;32824;G E)4;%2(24;-, E)4;(2*24;#"::2; DEG7 C=FCFG,=;E,<BDE;,;7,B<E;E7D),<;F,;C 7GFG?;C?G;DE<B F<;G=;EFC ;6D,5F>; ::9; ; DCBA@?B>@=A@<AC;:9C87 @A8B@C;BC497342241A07/.7;?B;:->,7+@41B:7C97B:A74338,@C9+*7)C42*7(A,@40*7'%$7#!' #'*7 04C6*6%/C42@A,@40*666*65'7 ?@??8$7**$72?@C4$7(**$7C$7*$7*7A@>73?BB.7?;C07/C90C9+7,@4BAC975$73@AA73?BB.7 ?;C08$7?907AB?/42C;7@C87?@A@8*7AB?/42C8*7%'$76 6!*7 04C6*66#*AB?/42***57 ?8A@$7*$748;:A9$7*$7?.49$7*$7?8A@$7*$7@A8,4$7*$7498-(4A@4$7*$7/A9/C;:2A@$7**$7 ?B8;:$7*(*$7C2+$7*$7%*70C,49A;BC97?907CB87@A;A,B4@87C97949-?2;4:42C;7 8BA?B4:A,?BCBC8*7 >B7%5$766! 66*704C6*66#+>B**!67 ?.A$7*D*$76!*7@AC,2?9B?BC497+@41B:73?;B4@7,:.8C424+.*7(A=*7(A,@40*7$766 6!*7 :>@?9?$7**$7CA?99$7*$7*79A@+.7AB?/42C87C97,@AC,2?9B?BC497/4=C9A7A/@.487 0A@C=A07C97=CB@474@7C97=C=4*7)C42*7(A,@40*7#$7'5! '%#*7 CA88$7*$7 @AA98BAC9$7D**$7:CBA$7(**$7DAA$7D*$7(A;:2A@$7**$7C882A.$7**$76'!*7.,A77 C98>2C9-2CA7+@41B:73?;B4@7@A;A,B4@7C87,@A8A9B7C97@?B78A@>*7@4;*7?B2*7;?0*7;C*7*7*7 *7'5$7!! !!5*7 C2/.$7**$7A?@.$7(**$7?;9A88$7**$7>@@C9+B49$7**$76'*7AB?27?907?BA@9?27 2C,4,@4BAC97AB?/42C87C97:>?97,@A+9?9;.7;4,2C;?BA07/.7B.,A770C?/ABA87A22CB>8*7 *72C9*7904;@C942*7AB?/*7'$76!# 6!56*7 C$7*)*$749+$7*$7C$7**$7>:$7**$7C$7*-*$7DC$7**$749+$7**$7>9+$7**$7#*7 ;57?90779A+?BC=A2.7@A+>2?BA7?0C,49A;BC97+A9A7A,@A88C497C97-D67 ?0C,4;.BA8*7C?/ABA87%%$765 6%*7 C$7*)*$7,4BB8$7 **$7?2=4@8A9$7**$7:C:$7**$722A9/A@+A@$7*$7412A$7**$7,CA+A2?9$7 )**$76%*7>?277/C90C9+78,A;C3C;CB.74376()67;49B@422A07/.7?78C9+2A7 ?C947?;C07C97B:A7/?8C;7:A2C-244,-:A2C704?C9*742*7A22*7)C42*76%$7%' %''*7 C$7**$7?@>?@0$7*$7BA,:A98$7*$7D4>0A9$7*$722814@B:$7*$742A.$7**$766*7 0C,49A;BC97?907?0C,49A;BC97@A;A,B4@87C97B:A74>8A7,@AC,2?9B?BC497A/@.47?907 >BA@>8*7>*7(A,@40*73*79+2*7#$7' %*704C6*6:>@A,0A7 C88A/?:$7**$723?@8C$7*$70?8$7**$7.99$7*$76!#*7:A7AB?/42C;73?BA7437,2?8?7 2C,4,@4BAC987C9794@?278>/A;B87?907C97,?BCA9B871CB:7C98>2C97@A8C8B?9;A7?907 A904+A94>87:.,A@B@C+2.;A@C0?AC?*7C?/AB424+C?76$7%6 %*7 2ACA@8$7***$7=?9749B344@B$7***$7CB8$7D***$7CA;:B/?>A@$7*$7(48A/44$7**$7 A2C88A9$7***$7449A9$7*$7A@:??+$7* *$7)?8BC9+8$7D*$7;:@A>@8$7**D*$7=A@8$7*D**$7 >4>2C9$7***$765*77;>2B>@A7A0C>7?33A;B87,48B-9?B?271AC+:B7C97:>?987 0>@C9+7B:[email protected]?@874372C3A*7>*7(A,@40*73*79+2*7$7##6 ##*7 04C6*6:>@A,0A>%7 2A$7**$7DACB9A@$7**$7?B849$7*$7A8BA@4=?$7*$7(A>8;:$7**$7 4?28B49A$7*D*$7@?<9C9$7 )*$76*798>2C9-C90>;A07?0C,4;.BA70C33A@A9BC?BC49*7;BC=?BC497437()7@A8;>A87 6657 7 CBA@?>A=?<@?;@B:98B76 >3B210@8@7B76/?1.6A9@6>??@7A6:>=7@36-,6B89B-BAB1861/62?@8,+>AB18*6)*6(B1+*6'9@.*6&%$"6 &!&!4*631B5*5%-:*5!&&6 +@.."6*)*"61@7+@?"6*)*"6(1?>7"6*"6'1+A18"6C**"6@+3@?"6*"6@=7:9"6)**"65!*687=+B86 7AB.=+>A@76:?@72187@6@+@.@8A6-B83B8062?1A@B86>:AB<BA,6B86@2 &6>836C56:@++6 +B8@7*6)*6(B1+*6'9@.*6&%"65%&*6 ?B79@?"6*C*"6?>A9@?"6**"6&5&*66?1+@6/1?6A9@6>?-=?06@//@:[email protected]+>8A>[email protected]?,16 3@<@+12.@8A6.@A>-1+B:6.13B/B:>AB186A167=221?A6?>2B36:@++62?1+B/@?>AB18*61+*6 @2?13*6@<*6%"655&*631B5*5&.?3*&&%6 C>A>7>"6*)*"6 ?B//B8"6*)*"6118"6**"6>80"6'*"6=+"6**"6&*6::=2>8:,6>836/=8:AB1861/6 A9@65467A@?1+6?@0=+>A1?,6@+@.@8A6>836$46-16B868=A?BAB18>+6?@0=+>AB1861/6A9@6/>AA,6 >:B367,8A9>7@60@8@6B86+B<B806>8B.>+7*61+*6'@++*6(B1+*6&"64!$4%*6 C>?@8:@"6*'*"6:@?8"6**"6>?3"6'**"6&%*687=+B86?@:@2A1?67A?=:A=?@6>836BA76 B.2+B:>AB1876/1?6A9@6 56?@:@2A1?*6'=??*62B8*6A?=:A*6(B1+*65%"6$%4*6 31B5*55$*7-B*&%*%*%6 C@@"6**"6'@?>.B"6*"65&*61+@61/60+,:>AB186B86>0B80*688*6*6*6:>3*6:B*6$$"6$%*6 C@@7@"6*)*"6&&*6=B@A62+@>7@"631681A63B7A=?-6>69,21A9@7B761/[email protected]?,16.@A>-1+B7.6>836 <B>-B+BA,*6(B177>,76@76@<*61+*6'@++*6@<*6(B1+*6&"6!4!*6 31B5*5&-B@7*55%6 C@@7@"6*)*"6(>?A18"6**"65!*6,?=<>A@6>8360+=:17@6=2A>@6-,6.1=7@61<>6>836 [email protected]+>8A>[email protected]?,17*6)*6@2?13*6@?AB+*6%&"65*6 C@@7@"6*)*"6(>=.>88"6'* *"6(?B718"6**"6:<1,"6* *"6A=?.@,"6* *"6&!*6@A>-1+B7.61/6 A9@6<B>-+@6.>..>+B>[email protected]?,16=B@A8@776?@<B7BA@3*61+*6=.*6@2?13*65"6$$%$%&*6 31B5*5.1+@9?0>8$46 C@@7@"6*)*"6A=?.@,"6* *"6(>=.>88"6'* *"6:<1,"6* *"6&%*6.-?,16<B>-B+BA,6>836 .@A>-1+B7.61-@,B806A9@6=B@A6?=+@7*6=.*6@2?13*6/*680+*6&&"6%4*6 31B5*59=.?@23@.&46 C@/@-<?@"6*"6'9B8@AAB"6 *"6?=:9>?A"6)*'*"6A>@+7"6(*"6&$*61?AB8061=A6A9@6?1+@761/66>+29>6 B86@8@?0,6.@A>-1+B7.6>836<>7:=+>?691.@17A>7B7*6)*6'+B8*68<@7A*655$"64%54!*6 31B5*55%&)'&%!6 C@180"6**"6-?>9>."6*'*"6 =2A>"6*"6CB."6*'*"6'9@"6**"6=A.>:9@?"6**"6&5&*64"6 >62177B-+@6?@0=+>A1?61/617A@10@8B:63B//@?@8AB>AB186B869=.>86>3B217@3@?B<@[email protected] :@++7*6)*6'@++*6(B1:9@.*655"6&%&%4*631B5*5&:-*&546 C@A9"6*"683@?7@8"6**"6?,7A,"6)*"6>?81"6C*"6177B80"6*"6>?<B80"6**"6+,<-@?0"6*"6&!*6 +@<>A@36+@<@+761/69B09.1+@:=+>?@B09A6>3B218@:AB86B86A,2@6563B>-@A@7*6)*6'+B8*6 831:?B81+*6@A>-*6"65!$55*631B5*5&5:*&!$6 5546 6 MLKJIHKGIFJIEJLDCBLA@ ML<CKJB;@:989;@7HI65;@49;@3LBAK2B;@1909;@022IJ;@/9.9;@?--,9@.+*IJAAL2B@2)@(1':@)2I@KCJ@ LBAG&LB%&L$J@<I2#KC@)HDK2IA@HB6@KCJLI@IJDJ*K2IA@LB@CG(HB@*IJL(*&HBKHKL2B@J("I52A9@ 02&9@1J*I269@8JF9@!,;@? !? -9@62L?9??-%,-?--,>!,? !:8% 018 99%'@ ML<CKJB;@:989;@022IJ;@/9.9;@3LBAK2B;@1909;@7HI65;@49;@?--9@12GKLBJ@H66LKL2B@2)@CG(HB@ LBAG&LB%&L$J@<I2#KC@)HDK2I%@&L<HB6@D2G&6@"JBJ)LK@D&LBLDH&@LB%FLKI2@)JIKL&LEHKL2B@DG&KGIJ9@ 7G(9@1J*I269@+)[email protected]<&9@? ;@ ?!! ?9@ MLB;@9;@ML;@09;@MLHB;@9;@CJB;@M9;@MLG;@9;@? 9@'2@J))JDK@2)@J("I52@DG&KGIJ@(J6LH@2B@ "LIKC#JL<CK@HB6@&JB<KC@2)@BJ#"2IBA9@7G(9@1J*I269@+)[email protected]<&9@;@?,>?,>,9@ 62L?9?- CG(IJ*6JK-@ MLG;@99;@H$JI;@9;@JI$LBA;@:99;@12"JIKA2B;@.99;@.)AKIHKLH6LA;@:9;@?-- 9@0LDJ@DHII5LB<@BG&&@ (GKHKL2BA@2)@KCJ@<JBJA@JBD26LB<@LBAG&LB%&L$J@<I2#KC@)HDK2I@@<)%?@HB6@K5*J@?@/ @ IJDJ*K2I@<)?I9@J&&@,;@-,9@ M2ILHG+;@0909;@IJBBHB;@19/9;@/226(HB;@1979;@?--!9@026G&HK2I5@)GBDKL2B@2)@1.91.0@ H&*CH@CJKJI26L(JIA@6J*JB6A@G*[email protected]@H&*CH@*C2A*C2I5&HKL2B9@9@L2&9@CJ(9@>-;@ -! 9@ M2GJK;@9% 9;@7H5CGIAK;@/9;@/2BEH&JE;@ 99;@/LIHI6;@9;@8JDHG+;@9% 9;@9@CJ@D2HDKLFHK2I@/%?@ LA@LBF2&FJ6@LB@KCJ@IJ<G&HKL2B@2)@KCJ@&LFJI@DHIBLKLBJ@*H&(LK25&KIHBA)JIHAJ@@<JBJ@ J+*IJAAL2B@"5@D:0@LB@D2("LBHKL2B@#LKC@7' !@H&*CH@HB6@D:0%IJA*2BAJ@J&J(JBK% "LB6LB<@*[email protected]@9@L2&9@CJ(9@,,;@ ,--? 9@ 62L?9?,!"D90,@ MGKE;@9;@DC(L6;@39;@'LJCIA;@9;@DCKE;@/9;@[email protected]&@I2&J@2)@1.@)H(L&5@*I2KJLBA@ 6GILB<@JB2*GA@J("I52<JBJALA9@0JDC9@8JF9@;@>>9@ 0HHCA;@8909;@<6JB;@M9/9;@BJ&&%JI<J2B;@949;@4LBBJ5;@/9M9;@3H6#H;@199;@72$HBA2B;@9.9;@ 8H"J&JH;@89;@4IJK2#A$L;@:9;@.D$J&;@1979;@1J#JIA;@09;@,9@8JKJI(LBHBKA@2)@AJIG(@ H6L*2BJDKLB@LB@*JIA2BA@#LKC@HB6@#LKC2GK@K5*J@?@6LH"JKJA9@:(9@9@.*L6J(L2&9@?>>;@, ? ,!9@62L?9?- HJ$#(?@ 0HJ6H;@49;@$G"2;@49;@CL(2(GIH;@9;@ GBHCHACL;@9;@0HKAGEH#H;@9;@0HKAG"HIH;@49;@?-->9@ D8':@D&2BLB<@HB6@J+*IJAAL2B@2)@H@B2FJ&@H6L*2AJ@A*JDL)LD@D2&&H<JB%&L$J@)HDK2I;@H*0?@ :6L2AJ@02AK@H"GB6HBK@/JBJ@KIHBADIL*K@?9@L2DCJ(9@L2*C5A9@1JA9@2((GB9@?;@ >-9@62L?9?>""ID9?-->9,@ 0HJ$H#H;@9;@JIBLJI;@ 9;@HK2;@09;@'2(GIH;@9;@LB<C;@09;@B2GJ;@9;@2$GBH<H;@9;@(HL;@79;@ 2$25H(H;@09;@1JL(2&6;@:9;@/&L(DCJI;@M979;@ACLL;@9;@?---9@02GAJ@: %@BG&&@(GKHBKA@ 6LA*&H5@)JHKGIJA@2)@H@AJFJIJ@K5*J@2)@(JD2BLG(@HA*LIHKL2B@A5B6I2(J9@9@L2&9@CJ(9@ ,!;@?,? ?,?-9@ 0HL&&HI6;@9;@E"J$2FH;@9;@/GL<B2K;@ 9;@JIIJHG;@9;@1H(;@9;@25IH&%HAKJ&;@9;@8G*2BK;@9;@ ?9@.))JDK@2)@H6L*2BJDKLB@2B@"2FLBJ@<IHBG&2AH@DJ&&@AKJI2L62<JBJALA;@22D5KJ@ ??>@ @ MLKJIHKGIFJIEJLDCBLA@ =HKGIHKL<B@HB;@J=:I9<@;JFJ8<7=JBK6@5J7I<;6@4L<86@3B;<DILB<86@20@/.6@ ;<L-?,6??2+)?(>>'>2/>'2'/.@ &H0@%60@$H:IJI<0@#60@"HCH0@!6%60@%< L=H0@60@ML0@M60@$CHB0@466'60@!HG80@#60@$CHB0@M60@/,,/6@ BDIJHAJ;@:JKH@'<L;HKL<B@:GK@B<@LBAG8LB@IJALAKHBDJ@<I@8GD<AJ@LBK<8JIHBDJ@LB@=LDJ@ 8HDLB@H;L7<BJDKLB6@6@4L<86@$CJ=6@/>>0@.(+2.(++?6@;<L-?,6?,>() :D6$/,,.+//,,@ &LBJB0@"60@";JIAKI='#BKKL8H0@60@HLBL<0@60@"GLHIL0@#6'&60@GGIL0@60@/,?.6@<JA@8<B@LB@ FLKI<@DG8KGIJ@7I<=<KJ@8HIJ@<I@JAKHKL<BH8@HJ@:H:LJA@G=6@5J7I<;6@6@3B86@/20@ 2/22.(6@;<L-?,6?,.)CG=IJ7);JA(?,@ &H<0@60@%LHBL0@$6%60@5L< HA0@56#60@MHB8HLA0@!60@HB0@M60@5H=<A0@660@HB0@ 60@$CILAK'5<:JIKA0@ $660@<B0@660@%L=0@56'60@MLG0@60@<B0@M6 60@/,,+6@#!!M?@:LB;A@K<@H;L7<BJDKLB@ IJDJ7K<IA@HB;@=J;LHKJA@H;L7<BJDKLB@ALBH88LB@HB;@GBDKL<B6@HK6@$J88@4L<86@20@?+ /.6@;<L-?,6?,.2)BD:?(,(@ &HA<B0@6M60@#BJ8HAKI<0@6&60@BHK<FH0@660@%GJ<F0@660@MLB0@60@IJJBJ0@M6#60@<8;=HB0@ 6360@/,,6@#@IJG8HKJA@KCJ@7I<8LJIHKL<B@HB;@;LJIJBKLHKL<B@<@<8L<;JB;I<D9KJA6@ &<86@$J886@JGI<ADL6@/0@.>/.2,6@;<L-?,6?,?+) 6=DB6/,,6,.6,,(@ &H9I0@460@&<BK=LB90@&60@/,,?6@IHBADIL7KL<BH8@IJG8HKL<B@:9@KCJ@7C<A7C<I98HKL<B';J7JB;JBK@ HDK<I@$5346@HK6@5JF6@&<86@$J88@4L<86@/0@+,6@;<L-?,6?,.2).,2,+2@ &D<BH8;0@"660@HB0@60@&G88H0@"60@&GI7C90@%6360@4J9JBJ0@60@C8AA<B0@#60@%B<8J;J@ "9BKCJALA@I<G70@/,,6@!IJKJI=@:LIKC@HB;@8<@:LIKC@JLCK@H=<B@LB@FLKI<@JIKL8LEHKL<B@ ALB8JK<BA-@H@A9AKJ=HKLD@IJFLJ@HB;@=JKH'HBH89AJA6@3GI6@6@:AKJK6@9BJD<86@5J7I<;6@ 4L<86@?(+0@?.2?(26@;<L-?,6?,?+) 6J <I:6/,,6,6,.@ &D3F<90@660@/,,.6@&HBL7G8HKL<B@<@;<=JAKLD@HBL=H8@J=:I9<A@HB;@L=78LDHKL<BA@<I@ ;JFJ8<7=JBK6@5J7I<;6@<=JAK6@#BL=6@[email protected]@/+2/>6@ &JIE<G0@60@4<GDCJBH0@&60@M<GL;L0@460@&H;HBL0@"60@!I<AK0@60@4J88JFL88J0@60@/,,,6@JKH8@ =HDI<A<=LH@IJ8HKJ;@K<@=HKJIBH8@7<<I89@D<BKI<88J;@K97J@?@;LH:JKJA@AKI<B89@L=7HLIA@ AJIG=@8L7<7I<KJLB@D<BDJBKIHKL<BA@HB;@D<=7<ALKL<B6@6@$8LB6@!HKC<[email protected]@?>/.6@ &J9JI0@6360@H:JBJI0@660@?/6@$9D8LD@#&!@IJA7<BAJ@J8J=JBK@:LB;LB@7I<KJLB@$534@HB;@ =<;G8HK<I@7I<KJLB@$53&@HIJ@7I<;GDKA@<@;LAKLBDK@JBJA6@GD8JLD@#DL;A@5JA6@/,0@+?,+6@ &J9JI0@6360@H:JBJI0@660@?.6@$9D8LD@H;JB<[email protected]'=<B<7C<A7CHKJ@IJA7<BAJ@J8J=JBK@ :LB;LB@7I<KJLB@$534@HB;@IJ8HKJ;@KIHBADIL7KL<B'HDKLFHKLB@;J<9IL:<BGD8JLD@HDL;' :LB;LB@7I<KJLBA6@3B;<DI6@5JF6@?(0@/+/,6@;<L-?,6?/?,)J;IF'?('.'/+@ &L88A0@I60@56&6@@4ILBAKJI0@56M60@?+>6@9JB@D<BAG=7KL<B@<@7IJL=78HBKHKL<B@=<GAJ@ J=:I9<A6@378@$J88@5JA6@(>0@..>'.((@ &LGIH0@"60@HB0@6'60@4IE<AK<AL0@60@!HILAL0@&660@"DCG8KE0@$660@M<B;<A0@$60@8LFJI0@460@%L==J80@ #6560@/,,/6@GBDKL<BH8@D<BAJIFHKL<B@<I@8L7L;@AK<IHJ@;I<78JK@HAA<DLHKL<B@H=<B@ ??>@ @ LKJIHGJFHEIHDIKCBAK@? ;IHK:K9KA8?765;8?GA4?32;10?/;73.-HI:GJI4?9H,JIKA@?KA?+G++G:@8?6H,@,9BK:G8?GA4? 6KCJ*,@JI:KF+)?()?'K,:)?&BI+)?%008?$%%#$"$%%#0)?4,K!> )> 01C)% 11> % ? ,:I*8?))8?% >)?*9IH:*CI+KG?GA4?G9,9J,@K@!?+ICBGAK@+@?,H?C,AIAKJG:?+G:,H+GJK,A@? GA4?9HIAGAC*?:,@@?KA?4KGIJKC?,+IA)?3HIA4@?A4,CHKA,:)?IJG)?3?>%8?0="=%)? ,AJ,F4K@8?7)8?K+,AIGF8?L)8?'HK@@IJJI8?L)8?,HI@J8?()&)8?GEGH48?5)8?LG,A48?()8?>)?2+9GCJ?,? G?CB,:I@JIH,:?IAHKCBI4?4KIJ?,A?+GJIHAG:?GA4?IJG:?9:G@+G?:K9K4@?GA4?IJG:?4I9,@KJK,A?KA? 9HIAGAJ?HGKJ@)?LKI?CK)?18?%1$"%1# )? ,,HG4KGA8?7)6)8?% )?6*@:K9K4I+KG?KA?J*9I?%?4KGIJI@?+I::KJF@)?GJ)?&:KA)?;HGCJ)?A4,CHKA,:)? IJG)?#8?># ">#)?4,K!> )> $=AC9IA4+IJ> ? ,FAJ,H48?;)8?IEAK8?')8?6I:8?7)8?KCB,:@8?()8?LK8?)8?6GAK8?&)8?5,IHJ@,A8?)8?&BG+IH@8?2)8? +KJB8?7)8?>1)?6KCK@JH,AKC?JGHIJKA?C,A@JHFCJ@!?HI9,HJIH@?GA4?+,4KKIH@?,? +G++G:KGA?IAI?I9HI@@K,A)?;H,C)?GJ:)?7CG4)?CK)? )?)?7)?>8?1$ $"1$ 0)? ,F@JG48?)8?(,AI@8?'))8?3G*:,H8?())8?>)?2A@F:KA?KACHIG@I@?:K9,IAKC?IAD*+I?GCJKEKJ*?KA? BF+GA?G4K9,C*JI@?KA?9HK+GH*?CF:JFHI)?()?FJH)?>%8?=#"=0 )? GGA,8?)8?GJGKHK8?)8?3GGBG@BK8?)8?% )?5I:GJK,A@BK9?IJIIA?,EKAI?,,C*JI? +,H9B,:,*?GA4?KA?EKJH,?4IEI:,9+IAJG:?9,JIAJKG:)?*,JI?&G+)?A:)?>18?#$">)? 4,K!> )> >0 0>1 $#> ? GGA,8?)8?3,I8?3)8?&B,K-KFHG8?))8?GD4G8?3)8?3,+KJG8?)8?>)?2@,:GJK,A?GA4? CBGHGCJIHKDGJK,A?,?';%=8?G?A,EI:?I:GJKA-KA4KA?9H,JIKA?9FHKKI4?H,+?BF+GA? 9:G@+G)?()?'K,CBI+)?/3,*,.?>% 8?= $"=>%)? GEGHHIJI?GAJ,@8?7)8?5G+KA8?)8?3,AGC8?)8?K@CBIH8?')8?% =)?&I::?:KAIGI-@9ICKKC?@KAG:KA?,? KA@F:KA?GA4?KA@F:KA-:KI?H,JB?GCJ,H?2?KA?HGKJ?:G@J,C*@J@)?A4,CHKA,:,*?>18?#>#" #%1)?4,K!> )>%> IA)% 0- =%>? GEGHHIJI?GAJ,@8?7)8?3,AGC8?)8?KH@JIKA8?)8?;GAJG:I,A8?)8?G*I8?;)8?K@CBIH8?')8?% 2A@F:KA?GCJ@?EKG?+KJ,IA-GCJKEGJI4?9H,JIKA?KAG@I?9B,@9B,H*:GJK,A?KA?HGKJ? :G@J,C*@J@)?5I9H,4)?&G+)?A:)?>%=8?#>0"#%)?4,K!> )>#$ HI9)>) % 1? 1)? IABG+8?();)8?,@@8?3)())8?KJ@,@8?2)8?:,,4G8?6))8?&BG::K@8?()5))8?% %)?FJHKJK,A?GA4?JBI? IGH:*?,HKKA@?,?G4F:J?4K@IG@I)?7@KG?;GC)?()?&:KA)?FJH)?>>?F99:?$8?#$0"#1%)? KI+GAA8?)8?HIAD*CK8?&)8?% )?7:JIHGJK,A@?,?I9HI@@K,A?,?4IEI:,9+IAJG::*?K+9,HJGAJ? IAI@?KA?9HIK+9:GAJGJK,A?,EKAI?I+H*,@?*?KA?EKJH,?CF:JFHI?C,A4KJK,A@!?K+9:KCGJK,A@? ,H?@F@IFIAJ?4IEI:,9+IAJ)?3BIHK,IA,:,*?#$8?%>"$1)? ,:GA8?&))8?LG:,H8?)7)8?>)?GHKG:I?GCCF+F:GJK,A?,?KA@F:KA-:KI?H,JB?GCJ,H?22?KA? +,F@I?JK@@FI@?4IKCKIAJ?KA?KA@F:KA-:KI?H,JB?GCJ,H?22?HICI9J,H)?2AJ)?()?'K,CBI+)?&I::? 'K,:)?$>8?>1%>">1$$)? G8?)8?5,DI8?L))8?&DICB8?);)8?>=#)?6KHICJ?4I+,A@JHGJK,A?,?HG9K4?KA@F:KA-:KI?H,JB? GCJ,H?22?5ICI9J,H?KAJIHAG:KDGJK,A?GA4?HIC*C:KA?KA?HGJ?G4K9,C*JI@)?2A@F:KA?@JK+F:GJI@? >>=? ? KJIHGFIEGDHGCHJBA@J?> =;:98J@?E7J@87J6H>5G43IA>2FBI4G>99>1H5GF1FIJ4@>0/>.41E7FIJ@5>IAH>9-,899>GHBH+I4G> GHB/B7J@5>+G4BH??*>)*>(J47*>'AH.*>;&$#><"!: <"";*> F7J@#>*8,*#>(4G1J5@4@#>**#>EG+A/#>(**#>;$=;*>1J+4@HBIJ@>F@1>IAH>B4@IG47>42>2H.F7H> GH+G41EBIJDH>2E@BIJ4@?*>JIF.*>4G.*><$#>;!< ;*>14J=$*=$=&(<8$8=;8!<!=!8 *$$$=$8:> F.+2HG#>*#>F@1HGAH/1H@#>9*#>H>HGI45A#>*#>=<<*>9@BGHF?H1>?/@IAH?J?>42>IE.4G>@HBG4?J?> 2FBI4G8F7+AF>J@>EIHGJ@H>H+7F@I?>2G4.>+GH5@F@I>1JF0HIJB>GFI?>F@1>J@>+GJ.FG/>BE7IEGH?> 42>EIHGJ@H>BH77?>J@>AJ5A>57EB4?H*>JF0HIH?>"&#>=;=" =;;"*> F@IF7H4@#>*#>F/H#>*K*#>=<<&*>9-,89>F@1>J@?E7J@>GH5E7FIH>57EB4?H>IGF@?+4GI>J@>.4E?H> 07F?I4B/?I?>DJF>9-,89>GHBH+I4G*>47*>H+G41*>HD*>""#>= &*>14J=$*=$$;9'9=$<8 ;<:=<<&$:""==98!*$*';8 > F+F#>*#>FGI.F@@#>**#>4?H@IAF7#>**#>F11E#>(**#>JJIHGJ#>**#>-4712J@H#>9**#>=<<=*> G45H?IJ@?>J@1EBH>143@8GH5E7FIJ4@>42>J@?E7J@87J6H>5G43IA>2FBI4G89>9-,89>GHBH+I4G?>J@> AE.F@>0GHF?I>BF@BHG>BH77?>+4IH@IJF7>FEI4BGJ@H>G47H>42>9-,899*>47*>@14BGJ@47*>(F7IJ.*> 1>:#>$< =*> FG6HG8E22H@#>)*K*#>F6F.EGF#>*#>J7DHG#>*#>J6EBAJ#>*#>J55H?#>*#>4?AJ1F#>*#>H@CH7#>**#> F@?BAI#>(*#>F7?A#>*#>;$=!*>8BF1AHGJ@>J?>H??H@IJF7>24G>F1J+4@[email protected]> GHDF?BE7FGJCFIJ4@*>)*>(J47*>'AH.*>;#>;"& ;"<*>14J=$*=$"0B*==!*":"!:> FG6HG8E22H@#>)*K*#>F7?A#>*#>;$="*>'FG1J4.HIF047JB>H22HBI?>42>F1J+4@HBIJ@*>(H?I>GFBI*>H?*> '7J@*>@14BGJ@47*>HIF0*>;#>= <=*>14J=$*=$=&*0HH.*;$=!*$<*$$=> FIA.F+HGE.F#>**#>FF#>*#>'AHE@5#>**#>E5FIAF?#>*#>)4?JFA#>*#>4J@F#>**#> (G44.2JH71#>*#>H75AJ@5FG48E5E?I4#>*#>773441#>**#>FA7?IG4.#>)**#>47F@#>'*)*#> ;$=$*>,FII/>FBJ1?>F7IHG>57/BHG47J+J1>.HIF047J?.>F@1>J@1EBH>7J+J1>1G4+7HI>24G.FIJ4@#> ?/@B/IJF7J?FIJ4@>F@1>B/I46J@H>+G41EBIJ4@>J@>AE.F@>IG4+A407F?I?>3JIA>[email protected]>57EB4?H> H22HBI>4G>J@IHGFBIJ4@*>7FBH@IF>!=#>;!$ ;!<*>14J=$*=$=&*+7FBH@IF*;$$<*=;*$=!> FE7FE?6J?#>)**#>E7#>**#>=<<*>4G.4@F7>GH5E7FIJ4@>42>.4E?H>2FII/>FBJ1>?/@IAF?H>5H@H> IGF@?BGJ+IJ4@>J@>7JDHG*>)*>(J47*>'AH.*>;&"#>:" :*> HG6?#>'**#>H@@J@58H@1F77#>**#>-J7.4EG#>**#>FIAH?#>*'*#>=<<:*>K4BF7JCFIJ4@>42> .H??H@5HG>GJ04@EB7HJB>FBJ1?>24G>J@?E7J@87J6H>5G43IA>2FBI4G>9>9-,89#>9-,899#>F@1>IAH>I/+H> =>9-,>GHBH+I4G>J@>IAH>4DJ@H>4DFG/>IAG4E5A4EI>IAH>H?IG4E?>B/B7H*>@14BGJ@4745/>=!&#> :;&& :;!*> HG?H@5JHD#>**#>-GHH@#>**#>;$$!*>AH>G47H>42>,'(>2F.J7/>.H.0HG?>J@>BH77>5G43IA#> ?EGDJDF7>F@1>F+4+I4?J?*>+4+I4?J?>9@I*>)*>G45GF.*>'H77>HFIA>#>;;: ;;*> HIIJII#>*)*#>(FJG1#>**#>7HB6#>**#>(H@@HII#>**#>@437HG#>*'*#>=<!*>BH??JDH>0H?JI/>J@> 22?+GJ@5>42>J.F>9@1JF@>4.H@>3JIA>JF0HIH?>1EGJ@5>GH5@F@B/*>*>@57*>)*>H1*> !$#>;"; ;":*>14J=$*=$:&)=<!$;$!!$$:$;> ==<> > HGFEDCFBDAED@EG?>=G<; 7G?6=E5;435;HCG2DE5;735;16DFB=0HC/6F>E5;H35;.D?>G--C5;,35;7E+=6F5;*35;76=FED5;.3.35;)EDF>E-6F5;(35; ,6D'GED5;.30&35;%BDC=F>6=5;(35;,>CACFFE07C-/ED5;735;98::3;$+#ED-G#G'G?; >+#ED?>6-E<FED6-E/G?;'GEF;G=;#DE#B"EDFC-;DC""GF<;C!!E?F<;2E=E;E #DE<<G6=;G=;F>E; E/"D+65;DE<FDG?F<;!EFC-;2D6F>;C=';G=?DEC<E<;6!!<#DG=2;<B<?E#FG"G-GF+;F6;6"E<GF+3; >EDG62E=6-62+;5;993;'6G:83:8:3F>EDG62E=6-62+398:83838:; 7GE5;3H35;::3;,6/#CDCFGAE;<FB'GE<;6!;E/"D+6;/EFC"6-G</;G=;ECD-+;#DE2=C=?+3;3;E#D6'3; 1EDFG-3;B##-3;95;989:3; 7-C2E/C==5;.35;98::3;CFED=C-;'GC"EFE<;C=';#EDG=CFC-;#D62DC//G=23;CD-+;$B/3;%EA3;5; 3;'6G:83:8:3ECD->B/'EA398::3838:; 7-CFF5;335;FC=G<<FDEEF5;35;,C<<6=5;3135;$6CD'5;,3(35;C-G=<>C5;35;7E==+?665;35; ?E='DG?5;435;98893;F;(G=?E=F<;%E?-CDCFG6=;:8;+ECD<;6=;6BF?6/E<;6!;'GC"EFG?; #DE2=C=?GE<3;%GC"EF3;E'3;:5;9:9983;'6G:83:8 3: 0 :398893883 ; 76G<<6==EF5;,335;)BD'G5;.335;&CD=5;335;: 3;>E;?>D6=6-62+;6!;C'G#6<E;FG<<BE;C##ECDC=?E; C=';'G<FDG"BFG6=;G=;F>E;>B/C=;!EFB<3;CD-+;$B/3;%EA3;:85;:::3; 76G<<6==EF5;,335;HC(E--E5;35;)BD'G5;.335;:3;&D6F>;C=';'EAE-6#/E=F;6!;C'G#6<E;FG<<BE3; 3;7E'GCFD3;::5;:3; 76E--0)DC F6=5;H35;$6--G=2<>EC'5;735;&G-FG=C=5;%35;7GFF<0EE5;35;FECDF5;35;:3; =C?FGACFG6=;6!;F>E;&10;2E=E;G=;/G?E;DE<B-F<;G=;#EDG=CFC-;-EF>C-GF+3;.==3;*3;3;.?C'3;?G3; 95;888:3; 7DE--E5;35;F66AG?5;35;)6 >C//ED5;35;6F-G5;35;C-'5;%35;.D=6-'5;&335;6-!5;35;988:3; =<B-G=0-GE;2D6F>;!C?F6D;;&10;C=';-6=2;&10;'G!!EDE=F-+;C!!E?F;'EAE-6#/E=F; C=';/E<<E=2ED;DG"6=B?-EG?;C?G';C"B='C=?E;!6D;&10"G='G=2;#D6FEG=<;C=';F+#E;;&1; DE?E#F6D<;G=;G=;AGFD6;#D6'B?E';"6AG=E;E/"D+6<3;='6?DG=6-62+;: 95;:8::3; G5;H35;C"EDG5;35;/B'C5;35;C=25;35;.-FCDE6<5;35;>C=25;35;%E=FG=5;35;$E'DG?5;35; )C='+6#C'>+C+5;&35;$CG5;35;4-E!<+5;35;6=F/G=+5;35;9883;.'G#6?+FE;,); #D6/6FE<;G=<B-G=;DE<G<FC=?E;G=;6"E<GF+3;,E--;EFC"3;5;993; '6G:83:8:3?/EF398838:388; C/G=5;*35;>GE/E5;35;1G<?>ED5;35;?>G='-ED5;35;?>/G'F5;35;1G<?>ED5;)35;*CACDDEFE;C=F6<5;.35; 98:83;CFED=C-;'GC"EFE<;G/#CGD<;2C<FDB-CFG6=;C=';G=<B-G=;C=';&10;DE?E#F6D; E #DE<<G6=;G=;DC""GF;"-C<F6?+<F<3;='6?DG=6-62+;::5; : :3; '6G:83:9:8E=398:808:; C##6-EE5;%3.35;FBD/5;335;)E>DE='F<E=5;435;?>B-F@5;&3.35;7E'ED<E=5;3.35;ED"5;35;:93; =<B-G=0-GE;2D6F>;!C?F6D;;C?F<;F>D6B2>;C=;E='62E=6B<;2D6F>;#CF>C+;DE2B-CFE'; "+;G/#DG=FG=2;G=;ECD-+;/6B<E;E/"D+6<3;&E=E<;%EA3;5;93; :98; ; DCBA@?B>@=A@<AC;:9C87 4A:3>8827410127/?.B-927,1+127D-@C?>*27+1+127)--('?92741&1276%%617$:A7;#+0"@A!>.?BA(7 A9:?9;A@" C9(C9!7@-BAC97#$"67?;BC=?BA87B@?98;@CBC-97C97@A8-98A7B-7;#+0" (AA9(A9B7@-BAC97C9?8A7#1717C-.17:A'1752766617 4AC:A@27&127>:@'?9927,127-?;27127/-.B?98C27,10127>B<C27127&?:97=-97-@8;:A27&127&?:927 &11276%17#!A"(AA9(A9B7C98>.C978A;@ABC-97-37B:A7A9(-;@C9A7?9;@A?87C97=CB@-73@-'7 3AB>8A87-37(C? ABC;7?9(79-9(C? ABC;7?BCA9B817C? ABA87?@A727617 4AC'-.(27#1+127)@>8 27+1127,-8?@?827127@CA8271/127+-@C274127+?9C?27127.?>88271+127 -..C9827$127C('?92741D127).C';:A@27+1127).C';:A@27D1&1276%%17:-9(@-(8.?8C?7?9(7 9A>@-.-!C;?.7? 9-@'?.CBCA87C97#$"5"(A3C;CA9B7'C;A17?B>@A7 %2755517 (-C616 %55?7 4A>8;:271127-.B-927D1#127,.A''27112751747?;BC=?BC-97C9(>;A87?(C-!A9A8C87C97$"D67 ;A..817+-.17A..17C-.1752766517 4A>8;:271127&8CA:270127:>@[email protected],127DACB9A@271/127.A38271+127@?<9C9271276%%17 98>.C97C9:C CB879>;.A?@7:-8:?B?8A7?;BC=CB7@A>C@A'A9B73-@7B:A7"BA@'C9?.7(-'?C97 -37B:A7C98>.C97@A;AB-@179(-;@C9-.-!762755%17 4A>8;:271127&8CA:270127,.A''27127&-A33.A@27127@?<9C9271276%%1798>.C97C9:C CB87 (A:-8:-@.?BC-97-37?(A9-8C9A72"'-9-:-8:[email protected]'A9B" C9(C9!7 @-BAC9?;BC=?BC9!7B@?98;@CBC-973?;B-@"67A33A;B7-979>;.A?@7:-8:-8A@C9A7 :-8:?B?8A"5?179(-;@C9-.-!76275655517 4C.A271,127?@??99-->.-827+1127/'?927#1&127:C27+1274?B?;<?271,127+-.A27,1&127517 $:A70,#B7?B:?7C87@A8A9B7?9(73>9;BC-9?.7C97B:A7@AC'.?9B?BC-97'->8A7 A' @-17A=17C-.17527 17(-C61661( C-15117 4- C98-9271&127A9-82711276%%617).>;-8A7'AB? -.C8'7C97B:A7B@-:A;B-(A@'7?9(7C99A@7;A..7 '?887-37B:A7@? CB7A' @-17174A@-([email protected]%627%%%17 4-8A9271127+?;->!?.(271#127517#(C-;BA7(C33A@A9BC?BC-973@-'7B:A7C98C(A7->B17?B17 4A=17+-.17A..7C-.17 27%17(-C6169@'57 4-88271127&A'?BC27127D-9!-27,1#127A99ABB271127D>;?82701127@C;8-92741D127+?;->!?.(27 1#1275179:C CBC-97-37?(C-!A9A8C87 7/9B78C!9?.C9!17;CA9;A75%27%%17 4-B:27127# A@9?B:27+10127DAA27/1&1270@?BB27D127A99A27127)-.C;:-8C27#1270A8;-=CB<271&127 6%%1798>.C9".CA7!@-B:73?;B-@877?9(77ABC(A7?9(7'A88A9!A@74#7.A=A.87C97 '?;@-8-'C;7C93?9B87-37(C? ABC;7@A!9?9;CA81717-;17)9A;-.179=A8BC!1727 17 4-BAC92701276%%617B@>;B>@A27A=-.>BC-927A*@A88C-97?9(7@A!>.?BC-97-37C98>.C9".CA7!@-B:7 3?;B-@877?9(717)@-B:7?;B-@87:>@7CB<1727617 4>[email protected]$1127-8:?@B27+127;:'C(27127;:B<27)1276%%517+>.BC.A7'4#7C8-3-@'87-37 B:A7B@?98;@CBC-97?;BC=?B-@7@-BAC9747!A9A@?BC-97 7?.BA@9?BC=A78.C;C9!7?9(7 8A;C3C;7A*@A88C-97C97@C'?@78A@'?B-;BA817+7176627666517 6567 7 LKJIHGJFHEIHDIKCBAK@? <FJ;:9@;K8?76568?4G32IH18?068?/GA18?.6-68?4:33GA,8?/6L68?+KG8?76*68?)CBIHIH8?(6'68?=&>%6? $K##IHIAJKG3?JHGA@IA,:JBI3KG3?JHGA@":HJ?:#?G,K":AICJKA?C:!"3I I@6?GH,K:EG@C6? $KG2IJ:36?>8?%6?,:K>&6>>>%=%&>%? )GJJGH8?-6-68?)GJJGH8?<68?=&>=6?A@F3KAHI1F3GJI,?I "HI@@K:A?:#?G,K":AICJKA?HICI"J:H@?KA?!F@C3I? GA,?#GJ?CI33@6?I33?K:36?AJ6?8?>=>=6?,:K>&6>&%==&>=&=%? )CBIHIH8?(6'68?/K33KG!@8?)68?:13KGA:8?568?G3,KAK8?68?L:,K@B8?4668?>6?-?A:EI3?@IHF!?"H:JIKA? @K!K3GH?J:?>8?"H:,FCI,?I C3F@KEI3?KA?G,K":CJI@6?76?K:36?BI!6?=&8?=%=%6? )CBKA,3IH8?568?K@CBIH8?)68?BKI!I8?<68?K@CBIH8?68?)GAJ:@8?-6068?=&>6?C-5(HI@":A@KEI? I3I!IAJ?2KA,KA1?"H:JIKA?G?EKJG3?3KA;?KA?I!2H:AKC?B:H!:AG3?G,G"JGJK:A6? 'A,:CHKA:3:1?>%8?==&===>6?,:K>&6>=>&IA6=&>==&? )CBKA,3IH8?568?(IA,DKG3I;8?568?0GEGHHIJI?)GAJ:@8?-68?(3@CB8?68?)IHKA18?)68?H;I8?768?4GFC;I8? '68?AI3GA1IA8?76568?K@CBIH8?68?)GAJ:@8?-6068?=&>%6?5GJIHAG3?,KG2IJI@?3IG,@?J:? FA"B@K:3:1KCG3?BK1B?3K"K,?GCCF!F3GJK:A?KA?HG22KJ?"HIK!"3GAJGJK:A?I!2H:@6? 'A,:CHKA:3:1?>8?>%>&6?,:K>&6>=>&IA6=&>>&? )CB!K,J8?68?@K;:3KG8?068?0GEGHHIJI?)GAJ:@8?-68?<:BH2GCB8?)68?<G!KA8?068?BKI!I8?<68?K@CBIH8? 68?=&&6?' "HI@@K:A?:#?G,K":;KAI@?KA?"HIK!"3GAJGJK:A?HG22KJ?GA,?!KCI?I!2H:@6? 4K@J:CBI!6?I33?K:36?>=8?>=6?,:K>&6>&&@&&%>&&&%&? )CKGCCG8?L68?(HK@C:8?568?/F8?-68?I3#K:HI8?-68?K1AIHK8?<68?G@IH1G8?<68?=&&6?)K1AG3KA1?,K##IHIACI@? #H:!?JBI?-?GA,??K@:#:H!@?:#?JBI?KA@F3KA?HICI"J:H?<?KA?=$?CI33@?KA?JBI?"HI@IACI?:H? G2@IACI?:#?<?@F2@JHGJI>6?'A,:CHKA:3:1?>%%8?=&=6? )CK#HI@8?6568?BIA8?68?0I3@:A8?$6568?)G,:E@;8?*68?=&>>6?GJJ?GCK,?2KA,KA1?"H:JIKA?%? HI1F3GJI@?KAJHGCI33F3GH?3K"K,?GCCF!F3GJK:A?KA?BF!GA?JH:"B:23G@J@6?76?3KA6?'A,:CHKA:36? 5IJG26?8?'>&>&>6?,:K>&6>=>&C6=&>&=&%? )I33@8?6768?<:2KA@:A8?06568?H:9A8?68?A:""8?<6468?>%6?L:A1JIH!?,IEI3:"!IAJG3?#:33:9F"? :#?KA#GAJ@?:#?,KG2IJKC?!:JBIH@6?76?(I,KGJH6?>=8?)>6? )I338?$6<68?0G1GHG8?<6468?HGA,BII8?)668?,IJJK8?(68?LG":33G8?-68?:1GHJ8?768?5:AAKIH8?6568? >>6?(IAJ:@K,KAI?G?!:3ICF3GH?!GH;IH?#:H?JBI?CF!F3GJKEI?,G!G1I?J:?"H:JIKA@?KA? ,KG2IJI@8?G1KA18?GA,?FHI!KG6?$KG2IJI@6?5IJG26?<IE6?8?==>6? )I!IA;:EKCB8?668?>6?<I1F3GJK:A?:#?#GJJ?GCK,?@AJBG@I?-)6?(H:16?LK"K,?<I@6?8?%6? )I!"3I8?<668?)::@8?56-68?LFGA8?768?5KJCBI338?6)68?/K3@:A8?7668?FHAI338?568?:CBHGA8?'668? :H,IA8?(68?BGJJIHII8?6668?/GHIBG!8?06768?<GBK338?)68?=&&6?'3IEGJI,?"3G@!G? G,K":AICJKA?KA?BF!GA@?9KJB?1IAIJKCG33?,I#ICJKEI?KA@F3KA?HICI"J:H@6?76?3KA6?'A,:CHKA:36? 5IJG26?>8?=>==6?,:K>&6>=>&C6=&&&>? )I:8?768?:HJFA:8?'6)68?H,8?)FB8?76568?)JIAI@IA8?$68?GA18?/68?(GH;@8?'6768?-,G!@8?6568?:9AI@8? 68?HG##8?76568?=&&6?-J#%?HI1F3GJI@?:2I@KJ8?13FC:@I?B:!I:@JG@K@8?GA,?IAIH1? I "IA,KJFHI6?$KG2IJI@?8?==6?,:K>&6=,2&&? >==? ? IHGFEDGCEBFEAFH@?>H=< 8?H7HAC6<54346<21EHGD6<246<0?7H6</46</1.D-H6<846<,+H?DED6<*46<)1>D(H6<'46<*1EH>16<546<3H&H7D6<246< *HE1=F6<*46<)D(D?D=?H6<846<)D(D?D=?H6<546<:%%$4<#D=GH>-<H>"C@F"<C! EF-CDGH1><1< D@GHBDGH>-<GED>=@EH!GH1><D@G1E<<H><71C=F<HBFE4<IHF<8@H4<6<$$%:4< "1H;%4;%;&4=4:%%$4%4%%:< 8HBD 1GF6<346<DE"HFE6<4,46<:%;;4<IHBFE<=H>C=1H"D<F>"1G?FHD<@F=<=C!!1EG<G?F<=CEBHBD<D>"< C>"HFEF>GHDGF"<-E1G?<1<G?F<<71C=F<F7+E.1>H@<=GF7<@F<H>F<!1==H+F<E1F<1< FC(F7HD<H>?H+HG1E.<D@G1E<I3#4<.G1(H>F<6<%;4< "1H;%4;%;&[email protected]:%;;4%4%9< 8HBFE7D>6<4I46<HAA16<)46<EFF>6<0446<?16<4*46<H>GFE6<446<0-DGD6<,4846<H@?DE"=6<4,46< 2FGA-FE6<4,46<;$$;4<I1>- GFE7<!E1=!F@GHBF<FBDCDGH1><1<1=!EH>-<1<"HD+FGH@< 71G?FE=4<'HD+FGF=<%<8C!!<:6<;:;;:4< 8H>@DHE6< 4'46<51C>-6<I4,46<H7CG6<346<2@,B1.6<)446<:%%%4<3> CGFE1<1BFE-E1G?<H><EC7H>D>G=< 11H>-<F7+E.1<@CGCEF<F==1>=<E17<7H@F<D>"<D<DE>H>-<G1<7F>4<*C74<F!E1"4< 04<,>-4<;<8C!!<6<4< 87D=6<4246<8C6<*4846<;$$94<EF ;6<D<!E1GFH><@1>GDH>H>-<,# H(F<EF!FDG=6<H>?H+HG=<D"[email protected]< "HFEF>GHDGH1>4<F<96<:94< 87HG?6<446<H=F6<I4846<FE(1HGA6<46<D>6<46<C+H>6<4846<;$4<3>=CH> H(F<-E1G?<D@G1E 3<H=< D><F==F>GHD<EF-CDG1E<1<G?F<"HFEF>GHDGH1><1<9)9 I;<D"[email protected]=4<4<H14<?F74<:96< $%:$%4< 8!EH>-FE6<24846<2CE!?.6<446<:%%4<2D77DHD><FB1CGH1><D>"<+H17F"H@H>F<>F<BHF=<E17< !?.1-F>.4<H14<FB4<D7+4<?H1=4<81@4<:6<99$:4<"1H;%4;;;;&4;$ ;4:%%4%%%;4< 8GD?6</46<:%%4</<@CEEF>G<EFBHF<1<DGG.<D@H"<GED>=!1EG<!E1GFH>=<8I:4<-4</E@?4<,CE4<4< ?.=H14<6<:::4<"1H;%4;%%=%%: %%9 ;;% A< 8GDH-FE6<*46< DC=@?6<46<CHE-CH=6</46<FH==FE6<246<2DFE(FE6<,46<8GC7B16<246<ID77FE=6<46< 2D@?H@D16<#46<*EH>-6<*4 46<:%%94<3>"C@GH1><1<D"H!1>F@GH><-F>F<F!EF==H1><H><?C7D>< 7.1GC+F=<+.<D><D"H!1>F@GH> @1>GDH>H>-<*, :$9<@F<@CGCEF<=C!FE>DGD>G4< 'HD+FG11-HD<6<$$%4<"1H;%4;%%=%%;: %%9 ;; %< 8GFD>6<46<8GC7B16<246<1ADE1BD6<46<F.FE6<46<#C>D?D=?H6<)46<2DG=CADD6<546<1-DE"C=6<46< )DGDED>>H6<4/46<:%%94<D=7D<D"H!1>F@GH><D>"<F>"1-F>1C=<-C@1=F<!E1"C@GH1><H>< ?C7D>=4<'HD+FGF=<DEF<:6<99;99;$4< 8GF?+F>=6<4/46<D(FE6<4I46< HG@?F6<246<;$4<0CG@17F<DG<D-F=<;6<96<D>"<<.FDE=<1<@?H"EF>< +1E><G1<"HD+FGH@<17F>4</74<4<0+=GFG4<.>F@14<;:6<%;94< 8G1E@?6<46<2@'FE71GG6<I46<:%%$4<8GEC@GCED<D>"<C>@GH1>D<D>D.=H=<1<DGG.<D@H" +H>"H>-< !E1GFH>=4<4<IH!H"<F=4<%<8C!!6<8;:;9;4<"1H;%4;;$&E4%%% I:%%< ;:9< < IHGFEDGCEBFEAFH@?>H=< 8G7E@?6<546<3?C2=FE6<14046<:///4<3?F<.DGG-<D@H,<GED>=+7EG<.C>@GH7><7.<.DGG-<D@H,*)H>,H>(< +E7GFH>=4<'H7@?H24<'H7+?-=4<1@GD<;9&$6<:&"994< 8GC))=6<!4 46<82HG?6<14 46<;&94<3?F<27,H.H@DGH7><7.<2D22DHD><2F2)ED>F<+7-C>=DGCEDGF,< .DGG-<D@H,<@72+7=HGH7><H><EFDGH7><G7<2F2)ED>F<.CH,HG-<D>,<.C>@GH7>4<'H7@?H24< 'H7+?-=4<1@GD<6<&";4< 8GCE2F-6<446<D?FD,6<54146<'DEFE6<04146<IFF=F6<4546<://4< 1<,D2D(F<D>,<2FGD)7H@< D@GHBHG-<H><G?F<+EFH2+D>GDGH7><F2)E-74<C24<F+E7,4<.4<0>(4<:96<&;";4< ,7H;/4;/?C2EF+,F>9$< 8GCE2F-6<446<377F6<4546<IFF=F6<4546<://$4<C7EF=@F>@F<EF=7>D>@F<F>FE(-<GED>=.FE< D>D-=H=<7.<2HG7@?7>,EHDH+H,<D==7@HDGH7><H><G?F<+7E@H>F<77@-GF4<F+E7,4<!D2)4<0>(4< ;:6<&:"&4<,7H;/4;/0*/$*//< 8GCE2F-6<446<FH=6<146<IFF=F6<4546<@0B7-6<3446<://4<7F<7.<.DGG-<D@H,=<H><F>FE(-<+E7BH=H7>< ,CEH>(<77@-GF<2DGCEDGH7><D>,<FDE-<F2)E-7<,FBF7+2F>G4<F+E7,4< 72F=G4<1>H24< C@?G?-(4<99<8C++<6</"&4<,7H;/4;;;;4;9*/;4://4/;9/:4< 8C(DDED<8 2FAC<6;$;8GC,HF=<7><G?F<2FGD)7H=2<7.<G?F<2D22DHD><7BD4<4<-(F>< @7>=C2+GH7><7.<G?F<@FDBF,<7BD<7.<G?F<EDG37?7C<5<1(EH@<F=;:;:& 8C>,DED26<46<3D76<46<-HF6<!46<FD=2D>6<546<://4<3?F<E7F<7.<2DGFE>D<!0'<H><FDE-< F2)E-7(F>F=H=<7.<F>7+C=<DFBH=4< FB4<'H74<:$;6<":4< 3D>(6<46<8?H6< 46<5HD6<'46<!?F>6<546<7>(6<!46<8?F>6< 46<?F>(6<46<D>(6<546<37>(6<46<:/;:4< 0@?D>(F<+E7GFH><D@GHBDGF,<)-<@-@H@<D,F>7=H>F<27>7+?7=+?DGF<EF(CDGF=<G?F<=HG@?< )FGFF><D,H+7(F>F=H=<D>,<7=GF7(F>F=H=<7.<?C2D><2F=F>@?-2D<=GF2<@F=<G?E7C(?< H>@EFD=H>(<G?F<D@GHBDGH7><7.<+?7=+?DGH,-H>7=HG7<*H>D=F4<>G4<54<'H7@?F24<!F<'H74< ,7H;/4;/;$4)H7@F4:/;:4/4/;< 3DEED,F6<146<7C==FDC*DHDE,6< 46<1C)EHEF6<4*!46<F->7G6<46< D?HEF6<46<'FEGED>,*H@?F6< 546<1(CHEEF*IDBH>6<346<7EF6<46<'FDCFD>6<46< CED>G?7>6<46<!?DBDGGF*D2FE6<46< :/;4<8FCD<,H27E+?H=2<7.<G?F<.FG7*+D@F>GD<+?F>7G-+F<H><EF=+7>=F<G7<D<?H(?<.DG< D>,<@7>GE7<2DGFE>D<,HFG=<H><D<ED))HG<27,F4<78<>F<&6<F&9&4< ,7H;/4;;7CE>D4+7>F4//&9&< 3F++DD6<846<8?D>DE6<146<:/;/4<1==7@HDGH7><)FGFF><=FEC2<*;<D>,<,HD)FGF=<D27>(< 484< D,CG=4< HD)FGF=<!DEF<6<::"::4<,7H;/4:,@;/*//< 3?HF2F6<46<8@?H>,FE6<46<D2H>6<46<H=@?FE6<846<?F@6<'46<H=@?FE6<'46<DBDEEFGF<8D>G7=6< 146<:/;:D4<>=CH><(E7G?<.D@G7E<D,C=G2F>G<H><+EFH2+D>GDGH7><ED))HG<)D=G7@-=G=<D>,< CGFEH>F<GH==CF=<H><EF=+7>=F<G7<2DGFE>D<G-+F<;<,HD)FGF=4<74<!F4<0>,7@EH>74< ,7H;/4;/;$42@F4:/;:4/4//< ;:9< < EDCBA@C?A>BA=BD<;:D98 4;DB3B2810281@3D:28/028.D9<;BA28-028,+9<;B)28(028.D9<;BA28(028-@:C'928&0/0286%76$08#@9CA?)@CD':8D:8 A@$$DC8$)@9C'<"9C98!B B:!98':8D:9?)D:8@:!8D:9?)D:)DBA'C;@<C'A8708')08B))08 :!'<AD:')08287767708!'D7%07%703<B06%770%0%8 4;'3 9':280#028,@ACAD!B2810028 '?;C':28.0028'280028EBB9B28 0028708"B:8? C@B8 @:!8<@A$';"!A@CB83BC@$')D938$"8D:8>DCA'8!BAD>B!8$'>D:B8B3$A"'908081B A'!08.BACD)08 7%286%08 4':C':'=28,028 ?28028#A@>B92810&028(?!@>@AD28&0028- DBB)3@:28(00287083,,&18@33@868 CD99?B9 B<DD<8AB?)@C'A8'8@:8@!D '<"CB8B:;@:<BA08#B:B98B>08287667608 49?<;D!@28&028@3@?<;D284028C'28028 @!@28028@D2840284@B@@28-028@3':28028'$@"@9;D28028 -?=?D281028 @A@28028?$'C@28/0284BA@?<;D28028.A'?B)28,028/@@B28028@9?@28028&<<D)D28 0284'$B28028BD28028/@@D281028@!'@D2840286%%08:9?)D:.''78 @C;@"8AB?)@CB98 B AB99D':8)B>B)98'8@!D ':B<CD:8AB<B C'A98@:!8@!D ':B<CD:89B:9DCD>DC"0808(D')08;B308 628%7%6608!'D7%07%$<0%66%%8 49?DD28 028;@:!'BA280&00028 @3@:'280286%%708ED D!8D:8@33@)D@:83$A"'8 B>B)' 3B:C0808@3308>@81B908728%08 ))AD<;28&028#A@"28&0284@328&0028@:.B:28402849?$'@@28028'))D:928028 B:=B)28028EB8(':28 4028@C;?AD@28-028;B:28028708:9?)D:)DB8A'C;8@<C'A88AB<B C'A8 AD3@A"89CA?<C?AB8 <'3 @AD9':8DC;8D:9?)D:8AB<B C'A89?B9C989CA?<C?A@)8!BCBA3D:@:C98C;@C8!BD:B8 ?:<CD':@)89 B<DD<DC"08(80852865%657608 AD$@AAD280284?CC)B28010286%%08&!>@:<B!8)"<@CD':8B:!8 A'!?<C98@:!8:B ;A'C'D<DC"8'8;D; A'CBD:8!DBC908)D:0808&308-'<08/B ;A')08&-/8728767608 !'D7%06675/0%76%%8 @:8!B:8(A@:!B280E028708&8 BA9':@)8>DB8':8C;B8B@A)"8;D9C'A"8'8C;B8D:9?)D:)DB8A'C;8 @<C'A908 'A3081B908578-? )82877508 @:8 'B<28028-C?A3B"2810#028(BA3B'&)>@AB=28,0281D='928028#?CDBAAB=&!@:28&028EBB9B28 0028 (')928,00028EBA'"280E0010286%7708)B>@CB!8:':B9CBADDB!8@CC"8@<D!8<':<B:CA@CD':98 !?AD:8$'>D:B8''<"CB83@C?A@CD':8<'3 A'3D9B8B@A)"8B3$A"'8 ;"9D')'"08,)'-8:B828 B6708!'D7%077'?A:@)0 ':B0%%678 @:':D:9)''28-028B8,@?28&028 '?$D':28&0284BBAD:@28-028B3@="28028!B8E':?B>D))B28.028 (BAC;')BC280281B:@A!28,0281B3@<)B28028 ')>'BC28,0281@B928028&A:'?)!2840286%%081(8 @<CD>@CD':8D:!?<B!8$"83DC'<;':!AD@)8!"9?:<CD':8CADBA98CAD)"<BAD!B8@<<?3?)@CD':8D:8 4E78 AB@!D '<"CB90808B))8-<D0877287676608!'D7%0766<90%68 @:8':C''AC28&0,0&028 @:99B:28E0E0,028!B8-?CCBA28,028D>D))B28-028#BA@B!C9280,0028!B8('BA28,028 6%7608&99D9CB!8AB A'!?<CD':8CAB@C3B:C8@:!8B DB:BCD<8D:;BADC@:<B08 ?3081B A'!08 !@CB872877708!'D7%07%;?3? !!3A%8 @A@92810281B B2804028A@)28-0 0286%7%084" B878!D@$BCB983B))DC?98@:!8 AB:@:<"081B>08$9CBC08 #":B<')082867%%08 7658 8 NMLKJILHJGKJFKMEDCMBA <KJEDKGI;:A98:A7KA6KJL54D:A38:A2I10/KJ:A.8:A<IC-KJDK,-KC:A+8:A9MEDMK;B:A*8:A7KA*KJCIJ-M:A28:A 7KA9K,KJ:A38:A@))(8A'&0KJM1KCLI;A-MI%KLKBAM10IMJBAJILAK1%J,5A-KGK;501KCLA-HJMC4A LDKA0JKM10;ICLILM5CA0KJM5-8A7MI%KL5;54MIA$$:A@#! @)@8A <MKD%IDC:A@))8A95J0D5;54,A5/AMCEM0MKCLA1KB5-KJ1A/5J1ILM5CAMCALDKA888ELIACILA*IBK;8A @))AA2H%9K-A3KBH;LAA75EH1KCL8A3NA DLL08CE%M8C;18CMD845G0H%1K-#!??()5J-MCI;05B>ML55;'CLJKF.,BLK1?8 2'CLJKF82H%1K-82H%1K-3KBH;LB2ICK;82H%1K-7K/IH;L3K05JL2ICK;82H%1K-3<75 E.H1AIEEKBBK-A>8?>8()8A IM;:A.88:A@)#)8AILL,AIEM-AB,CLDIBK:AIA0J5/MEMKCLA1H;LM/HCELM5CI;AKCF,1K8A*M5EDK1MBLJ,A 95BE8A?#:A?$ $(8A I;KB:A388:ADMLLMC4DI1:A788:A6IJ-,:A 8:AJI/L:A+8N8:A@)#!8A9KLI%5;MB1A5/A4;HE5BKA%,ADH1ICA K1%J,5B8A8A3K0J5-8AKJLM;8A!):A?#) ?)!8A I;KJ:A.8 8:A6IJLMED:A 898:A.KI1IJ:A388:A@))>8ADKA0J5-HELM5CA5/AHCHBHI;;,A;IJ4KA 5//B0JMC4A/5;;5MC4AK1%J,5A1ICM0H;ILM5CA5CEK0LBAIC-AEDI;;KC4KB8ADKJM54KC5;54,:A 2J5EKK-MC4BACCHI;A5C/KJKCEKA5/ALDKA+CLKJCILMCI;A'1%J,5AJICB/KJA.5EMKL,A:A@@@ @?(8A-5M@(8@(@>(()$>)@)(($>( A I;MCBDI:A.88:A?((@8A,0KA@A-MI%KLKBAIC-A0JK4CICE,8AHJJ8A%BLKL8A,CIKE5;8A@@:A$?@ $?#8A-5M@(8@(EH548?((@8(?@(A I;MCBDI:A.88:A?((8A2JK4CICE,AMCA51KCAMLDA0JKK&MBLMC4A-MI%KLKBA9ICI4K1KCLA MBBHKB8A.K1MC8AKLI;8AK5CILI;A9K-8:A;HE5BKA5CLJ5;AMCALDKA2KJMCILI;A2KJM5-A;HE5BKA 5CLJ5;AMCALDKA2KJMCILI;A2KJM5-A@(:A$(! $@8A-5M@(8@(@>8BMC,8?((8(8((A IC4:A8:A6HIC4:A8:A7H:A8:ADKC4:A8:ADKC:A.8:AH5:A8:A?(@(8AAJK4H;ILKBA;M0M-A 1KLI%5;MB1AIC-ALDKJ154KCKBMB8AK;;A3KBA?(:A@! @#8A IC4:A8:A9I5:A8:AIC4:AN8:ANMH:A98:AKLFK;:A9878:AHIC:A 8N8:A75C4:AN88:ANMH:A8:A?((!8A -M05CKELMCABKCBMLMFKBAMCBH;MCABM4CI;MC4A%,AJK-HEMC4A0!(A.>AMCIBK1K-MILK-ABKJMCKA 0D5B0D5J,;ILM5CA5/A+3.@8A8A*M5;8ADK18A?#?:A!))@ !))>8A -5M@(8@(!%E89!((()#?((A IC4:AN898:AKC4:A68N8:A9I:A88:AIC4:A98:ANM:A688:AIC:A8:AD5H:A28:AKC:A88:A*5H:A.8:ANMH:A 788:A?(()8A'&0JKBBM5CA5/A+AJKEK0L5JBAIC-AMLBA;M4IC-BAMCA%5GMCKA55E,LKBAIC-A 0JKM10;ICLILM5CAK1%J,5B8ACM18A3K0J5-8A.EM8A@@:A)) @(#8A -5M@(8@(@>8ICMJK0J5BEM8?((#8()8(@)A IC4:A8:A5CKBA<5,:A*8:AJB:A.8:A M1:A.8:A.5;LICM*KC55-:A98:AHM4;K,:A8:A6K5:A838:A .LIC-JM-4K:A98:AC-KJBKC:A*8:A7DIJ:A98:A5BDM:A38:A5JL1IC:A28:AI,;5J:A88:ADHC:A8:A NKHFK:A98:A;I,E51%K:A 8:A.I&L5C:A898:A95HBLIM-95HBBI:A8:A?((8ADKADH1ICA/ILL,A IEM-AB,CLDIBKA4KCKAIC-A-KAC5G5A;M054KCKBMBAIJKAE55J-MCILK;,AJK4H;ILK-AMCADH1ICA I-M05BKALMBBHK8A8AHLJ8A@$:A@($? @($#8A @?>A A DCBA@?B>@=A@<AC;:9C87 3?92170/17.C-17./,+/17.C-17*/,)/17(>'17)/(/175&&%/7#@A",617?7!@A? C!;BA78A;@ABA 7"?;B@7B:?B7 C9:CCB87? C!2A9A8C8/7*/7>B@/76%1755%/7 3?92170/17(>'17)/(/175&&/7#@A",67@A2>'?BA87-A8A9;:-?'7;A''7;--CB-A9B7?9 7 C""A@A9BC?BC97 B:@>2:7(/7A''7AB?/71754&5/7 C6&/6&6%/;-AB/5&&/&6/&67 3?B:A817//17#A@817//17?=C817+/*/17A99C92,.A9 ?''17#/+/176/7A2>'?BC97"7C98>'C9,'CA7 2@B:7"?;B@,7?9 7!@2A8BA@9A789B:A8C877C98>'C97?9 72@B:7:@-9A7C97B:A7 =C9A7=?@/7 C'/7A!@ /7175/7 3?B8917+/*/17)2?917+/17)?:9A'17+/173CA-A@17.//17(;:>'B<17/+/1765/7!@A88C97"72@B:7 "?;B@7'C2?9 7?9 7@A;A!B@72A9A87C97B:A7!@AC-!'?9B?BC97=C9A7A-@/7'/7A!@ /7 A=/76174/7 C6&/6&&5-@ /6&&6&5&57 3?B8917+/*/173?B8917#/)/17+@;A''?9?,#?9'C'C17/173?@9A817/173?'A@17(/./17(;:>'B<17/+/17 +@-8B@9217//17(A?-?@17//176/7+72@B:7"?;B@7!:A9B!A7-?!7"@7=C9A7 !@AC-!'?9B?BC97 A=A'!-A9B/7 C'/7A!@ /7&17454/7 3:CBA:A? 17*/#/17C;:?@ 817+/+/17)C;-?917/*/17?; 9?' 17/+/17#@C9817*/ /175&&%/7+ C!9A;BC9, ,?7A7? C!C9A7C97B:A7-AB?'C;789 @-A/7C?ABA87A8/7AB?/7175%5&/7 C6&/6666/6%,65%/5&&/&&6&/7 3:CBBA9173/./176%/7>'B>@A7"7B>?'7->8A7=?/7?B>@A764417%/7 3:CBBA9173/./1764/7>'B>@A7"7B>?'7=?/7?B>@A764176&66&5/7 3>17/0/17AC88A@B:17./178CA917/3/175&&6/7+;BC=CB, A!A9 A9B7 7!:8!:@'?BC97 ;9=A@2A9;A7"7?7"?8B178A98CBC=A7;?'- >'C97C9?8A7!?B:?7?9 7?78'17'A8878A98CBC=A7 -CB2A9,?;BC=?BA 7!@BAC97C9?8A7!?B:?/7#@;/7?B'/7+;? /7(;C/7/7(/7+/7175& 56/7 C6&/6&4!9?8/&6%67 >17+/173?92170/17>17*/0/17(BA8?'17/17?-17(/17:?9217*/173?B17//(/17392173/./17D?-17./(/D/17 5&&%/7+ C!;BA7?BB7+;C C9 C927#@BAC9787?7#'?8-?7 C-?@A@7'8A'7+88;C?BA 7 CB:7A8CB7?9 7AB?'C;7(9 @-A/7'C9/7:A-/7517&6/7 C6&/64;'C9;:A-/5&&/&%5%7 0?-?>;:C17/17?>17/17? ?,?>17/17.? ?C17/175&6/7+ C!9A;BC97@A;A!B@87?7 @A=CA7"7B:AC@78B@>;B>@A17">9;BC97?9 7:7B:A7@/7 A8B7#@?;B/7A8/7'C9/7 9 ;@C9'/7AB?/751765/7 C6&/6&6%/AA-/5&6/&/&&7 0?-?>;:C17/17.?-917*/173?C17)/17-?C170/17(:C-<??17/17)CC17./17;:C ?17(/17B170/17 ??>?17./17?B8>C17*/17??B?17/17B17./17A@?>;:C170/17.-A ?17./178>9 ?17/17 >@??-C17./17:9C8:C170/17?CB:17/170?-?->@?17./17A?-?170/17@2>A'17#/17.C->@?17 (/17?2?C17/17.? ?C17/175&&/7'>'?@7? C!9A;BC97!@BA;BA 77-C;A7"@-7 C?ABA87?9 7+!, A"C;CA9B7-C;A7"@-7?B:A@8;'A@8C8/7*/7 C'/7:A-/754175%6 5%/7 C6&/6&4;/5&&5&&7 6547 7 RQPONMPLNKONJOQIHGQFE @?FHQJM>M=E<;=E:QG?Q=E9;=E8LG7=E6;@;=E5M4Q3LNM=E6;=E2ONN?G=E1;=E0O?=E8;=E/NM..=E8;1;=E5Q3=E8;5;=E 5MNFOGP-=E/;=EC,,+;E<HOEPNMGFINQ*PQ?GE.MIP?NE)<2(ENO7L'MPOFE7'LI?FOE3OPM&?'QF3EQGE 3QIOEPHN?L7HEQPFEO%*NOFFQ?GEQGE?FPO?&'MFPF;E8;E$'QG;E#GKOFP;EDD+=ECB,"!CBD";E ?QD,;DD"C8$#+E @?LG7=ER;9;=E0QGI'MQN=E5;6;=EQ'3LP=E#;=ED++B;ERMN7OE?..F*NQG7EF-G N?3OEQGEIMPP'OEMG EFHOO*;E OK;EO*N? ;E=ED!D;E MMNQM=EC,,";E6QM&OPOFEM'PONFEPHOE3)EO%*NOFFQ?GE?.EQGFL'QG'Q;;;O*N? EQ?';EC,,"EE L&1O EOFL'PEE6?IL3OGP;ERE HPP*>>>;GI&Q;G'3;GQH;7?K*L&3O PON3MMNQMC,)LPH?N6C,)6 C,C,,"L&'QIMPQ?GC,6MPO6'?7IQPMPQ?GFOGF?NEMIIOFFO E;C;,+;E HMG7=E8;;=E5'O33=E6;8;=EQGF?G=E$;=ERMGO=E1;6;=EC,,(;E?'OE?.E$9EQGEPNMGFINQ*PQ?GM'E NO7L'MPQ?GE?.E$$))<OGHMGION&QG QG7E*N?POQGE&OPME7OGOE LNQG7EM Q*?7OGOFQF;E8;EQ?';E $HO3;EC"+=E(("D!(("B;E ?QD,;D,"(4&I;1DDC"C,,E HMG7=E;=E ?3=E6;<;=E5??=E0;:;=E$?GNQ7HP=E1;6;=E$MGOPPQONQ=E/;=EOFP=E8;=E$HOG=E:;=E8OGGON=E ;=E:ON&?'FHOQ3ON=E9;=E8MI?&FOG=E9;=E5M M3=E0;=E9ION=E8;;=E93ONF?G=E;=E:?7OGOFIH=E 8;;=EGPON3MG=E<;=E@?LG7=E;);=E1?GP3QG-=E1;=EC,,;E/OG?3O>Q OEMGM'-FQFE?.EI)1 NOF*?GFOEO'O3OGPE&QG QG7E*N?POQGE?IIL*MGI-=E*H?F*H?N-'MPQ?G=EMG EPMN7OPE7OGOE MIPQKMPQ?GEQGEHL3MGEPQFFLOF;EN?I;EMP';E)IM ;E0IQ;E;E0;E);ED,C=E((+!(((;E ?QD,;D,"*GMF;,,D,"D,CE HM?=ER;=ERQ=E/;=EH?L=E/;;=EC,,+;E0+E QNOIP'-E&QG FE$9EMFEMEG?KO'EF-GON7QF3E>QPHEPHOE 5)E*MPH>M-EQGE1CQG LIO E?FPO?IH?G N?7OGQIE Q..ONOGPQMPQ?G;E8;E?GOE1QGON;E OF;E..;E8;E)3;E0?I;E?GOE1QGON;EOF;EC(=EBC!B;E ?QD,;D+4&3N;,BDCE HOG7=E;:;=ELQNQ?G=E;=EC,,;E#GFL'QG'QOE7N?>PHE.MIP?NDE#/2DEQG LIOFEPHOE MIPQKMPQ?G*H?F*H?N-'MPQ?GE?.E)PEQGMFOEMG EI)1ENOF*?GFOEO'O3OGP&QG QG7E *N?POQGE$9E&-EMIPQKMPQG7E Q..ONOGPEFQ7GM'QG7E*MPH>M-FEQGE$DCEIO''F;E1$EOLN?FIQ;E "=ED;E ?QD,;DDBD("DCC,C"DE H?L=ER;=ERQ=E@;=EQO=E<;=E2OG7=E0;=E@LMG=E8;=E$HOG=E:;=E@MG7=E;=EC,,";E$'OG&LPON?'EQGHQ&QPFE09 DIEO%*NOFFQ?GE&-EMIPQKMPQG7E$9D;E8;EQ?IHO3;E1?';EQ?';E(,=EC!D;E DCBE E >==<;:; ;>=987654;326/.-,4.54+;*49;)(2,8+'4)5.8+4774+;&.%=4549;$#:&";6+*;#!&" ;6+*;*49; 495%5.8+9*.%=4549;$&" ;.+;&46597%+*;8+;!!;=.9;!:: >==<;!; ;4%5.94;&%(954776+-;*49;*.%=45.94+;%+.+4+8*479 >==<;; ;"8()878-.94;.+54.76+-;*4(;/(4+;4.94.=4+*.//4(4+'.4(6+-;*49;%+.+4+9 >==<;; ;4%5.94;&%(954776+-;*4(;.-%+*4+;6+*;4'4)58(4+;*49;+967.+4'4)58(9549; $ :: >==<;; ;4%5.94;&%(954776+-;*49;45%=87.94+;>*.)8+4,5.+4'4)58(9.-+%7 4-49 : >==<; ;4%5.94;&%(954776+-;*4(;4+95(6,56(;*4(;>#%.7.4 : >==<; ;4%5.94;&%(954776+-;*4(;4(.554754+;4-67%5.8+;8+;>*.)8+4,5.+;.; =(8=7%954+;6+*;#(8)8=7%954+;$%69;.+*74(;45;%7<;!: : >==<; ;47%5.4;"4+-4;7.)8-4+4(;.-+%7874,74;.+;#%-;;7%958'954+;*.%=45.94(;%+.+4+ >==<; ;4%5.94;&%(954776+-;*4(;.+5(%'477672(4+;.).*%,,667%5.8+;.+;7%958'954+;*6(;4.+4; 3)4(-7,2.4;.+;.5(8;6+*;4.+49;&.%=4549;477.569;.+;.8;$%69;.+*74(;45;%7<;!: >==<;: ;4%5.94;&%(954776+-;*4(;'4+5(%74+;8774;8+;;.;=(8 >==<;:: ;4%5.94;&%(954776+-;*49;%*.)8-4+4+;&.//4(4+'.4(6+-9)(858,8779;*4(;4=(8+%74+; 5%'4777.+.4; ! >==<;:! ;47%5.4;"4+-4;(4./4(;>*.)8'54+;$> ;>,5..4(6+-;8+;;$ ;6+*;*.4;4-67%5.8+;8+; .47-4+4+;$ ;+%;>*.)8+4,5.+95.67%5.8+;.+;4774+ >==<;:; >*.)8-4+4;&.//4(4+'.4(6+-;$> ;>,5..4(6+-;8+;;$ ;6+*;*.4;4-67%5.8+;8+; .47-4+4+;$ ;+%;9.>4(.554754;34(6+54((4-67%5.8+;8+;;.+;4774+ =<;:76543210760/.-4/2, (.'=&%,, , (6$;#/2.-02',="04!2/4 !4!-!2-% (.'=,,, , (;! #0 0470',02!$7/<!45;#0/42570, ( '=,, , ($#""! #',/<!45;#0/42570, ('%, , (54//10',010720,742;7/20%!#$ 072000470;/!4%% **+, , , &57/40,54/!040,%7"/!6$04,"07,/4/0,*+)+, ==%+, , , !%# % ! %#" %$%$! ,+, =<<, , , =<</#"543, =, , , =.0$#!=,7<!$#20, ="/!=.7*),, ="/!40./4, ="/!,, , ="/!40./4060!7, =;, , , # !"#%% =&%, , , =&%;/1/070,%7!0/4;/420, =% % % # ##"#$, =, , , 22/2/0704,07!"5;/!42 0"/6/4, =, , , ! ! %! " %!% =, , , #"%#$%$ , &, , , 2#02,$4-0/2.-02,&0"/5 , <%, , , 05./4/07,! 40, %, , , # ! # %# ,, ., , , ./7., *, , , "#%%## ! %*, , , , &57/40,#57/!040,0 <7$!4#0, %+ , , , 74//4%# /!$#7420720,+, , , , , %#" " #%#$# , , , , %#" " #%##$# % %# % &, , , %$!%# , &, , ##""%%$!%# % ", , , 3, +, , , #!#%%$,#/2,#!#%!%,, , , , <7$!<#2, 2, , , 0$%#", 60###/4/0, +*), , 765410/.-,+*10*)('.),& #"!&& & & /1) *.*&*61.*&"0**&& 7&& & & ! 7!"& & & ! && 7"& & & *,/1*".',*& 7& & & & !"& & & ! && %& & & %& & & & /5,*', ',*& & & & *,)., )6**,& & & & /5,*1., 1*1& && & & & /5,*1., 1*1& && '& & & "/. *& 7& & & *1-(*)&. &7 +*1,*&1*-..(&/(*,& '!& & & '/.*,&!'1).-. 1 ).& & & & &) 1*).& !& & & && !"& & & .10 ,),('*&" *1)*.).*5).& & & & & %& & & %*0* 1& & & & *0* 1& "& & & .,/).*0* 1",*& & & & .,/).*0* 1& & & & ! & & & ).,*). /0)*161*&.*& & & & &) 1*).& & & & & 7& & & & && "& & & & & & & *6*1&*0* 1*.& ).& & & )./*& 7& & & & "!&& & & /) *.*&*,*.('*&"0**.& & & & & !"& & 0,),('*,&+1, 1& %$%& & 98763210/.-,32,+*)0+.( $#$"!( ( ( $) .) ,0 31-*38 7+0.,( $#( ( ( .,3+ 3,(.31+ 0.,,0.+ 0( $&!( ( ( $) .) +0 .++&!+0.,( $'( ( ( $,3+++0( $%( ( ( 9+ )++0( $( ( ( ! $$9( ( ( $,3 +. ,0$3 +,3 37+-+,3,3(,2, 3( $#'( ( ( ! ('( 9( ( ( $9( ( ( ( ( ( ,7+-,(1,3. .,2+,.( !( ( ( !+0.,( ($9#( ( 3+1 ,*.1$ *3+/,,,73 ) 3,.,(( 9( ( ( .+9( ( ( . 9( #$'(( ( '( '( ( ( ('(+8,,.(,+1.( %( ( ( (%(+8,,.(,+1.( &( ( ( 3+ )3 0+0( ( ( ( 3 ) 8.( "'%( ( ( ('%( "$( ( ( ( ( ( 3,3,(08 /,0( 0(( ( ( 0'8( ( ('8 '&%( ( E CURRICULUM VITAE 87657432150/.-6 E CBA@?>=<;>@:987?>6EE E 54352310/-E,;++BE*);;+B(EE ';:&+&B%=>;%<6EE +B<&$#E1E"7! >B?E*1E; ?(EE E )>;;>=;%$B ?&$B&>6EEE E <B@>=! EE A&=E55-E C:%;=&@:E&:E&+<@%$=B%>?@:E*,;++B(E ,..+-*-50-4)(21'21&.6-5%-4 E E E 55-EE550EE E E )>@<&@:E<B?E?% ?@%$=&==B%=! ;>B%EE ;?>&%8@> B?8%&B?=&>>E,;++B8&>>B%AB?$E,;++BE*);;+B(EE $5#."4!60 16&0+'5''-0'217%.-6504,'21.&''44 " B:;E<B?E&+7:;?AB&>6E!#6-''5(04/-640'&.504&0/4 35+07.-+-45*4-6&'4/-'4705021-0'4E B>?B@B?6E ?7B==7?EB?%<E'&=! B?E?3E%%BE;;??B>BE);%>7=EE D%=>&>@>E?E%;>7:&BE@%<EB++A&7+7$&BEB<&&%&=! BE';@+>>E ;?>&%8@> B?8%&B?=&>>E,;++B8&>>B%AB?$EE ;AE>7AB?E550EEEE E ?7:7>&7%EE " B:;6E4&0/4,/5#(5071 0+5+-4!,55-6&0+4 16-0/4/-64-*6(07.-04 -../5%%-6-05-6&0+4E B>?B@B?6E ?7B==7?EB?%<E'&=! B?E?3E%%BE;;??B>BE);%>7=EE D%=>&>@>E?E%;>7:&BE@%<EB++A&7+7$&BEB<&&%&=! BE';@+>>E ;?>&%8@> B?8%&B?=&>>E,;++B8&>>B%AB?$EE @=B&! %@%$E:&>E<B:E&+7:89;=>B??B&=E515E<B?4 -'-..'217%4%645(21-*5-4&0/48(.-&.765(.(+5-4-""48E E E E E @=B&! %@%$E13E +;>E)>@<B%>EB=B;?! E7:B>&>&7%E<B?E 0-6075(07.4!*6(4670'%-643(25-4!34514 7=>B??B&=EAB&E<B?E"4716-'7+&0+41'5(.(+5-4&0/44 71(.(+5-4/-64(6#%.70&0+E@%<E$+B&! B&>&$4"4--650 644 )&*70*-/5505'21-4-*-50'217%'7+&0+4514E 4 4 E 4 4 4 4 4 4 E 535/38E1-3503552EE E B@?7+7$&=! BEB ;A&+&>;>&7%=+&%&E+&%&B%EBB+&>E,B&+=>>>B%EE 113538E5/35355/EE E D%=>&>@>E?E%;>7:&BE@%<EB++A&7+7$&BEB<&&%&=! BE';@+>>EE ;?>&%8@> B?8%&B?=&>>E,;++B8&>>B%AB?$EE DE E < :9876<5443< < 210/.-,+*,10/)*7(<'&7*8(0/-%$<#<"*8(-0/(%7*8.-,+*! < 2$*,%<;(%,<,7*8(7%<+66<, 18,< < :- .%5443<< :- 544< *9%(<<- 1,<:,1% <1,+<*66<207*,0*<10-6%<< *+707,*<,7*8(7%<<1,7%1<7,,79* <1,1+1< 8$<545< <181%8<<*+71%870(<,7*8(7%<*+7016<*,%*8<8,7, *,< ,7*8(7%<<8,7, *,<8,7, *,<7*+*861,+*< ;;< < O O O O MLKJIHOGFELDCBOGHDAO?>LHEHCBO=<D9HO8L7K>H6BO5F6LFO=K>LD4IH6BO?>JEF7O=K>EL43BO2H6D4O8L7K>H6BO1DDHO MF0F66H3HO=FD3J7/O.5F3H6DFIO-LF,H3H7ONE+FL67O*F736)IF3LJDOFD4OND7)ILDOFD4ON*8(NOGHKH+3J6O'&+6H77LJDO LDO GF,,L3O 2IF73JK%737/$O O #"#BO !=H+3HE,H6O #O #"(#/O -N#/# #HD/ #( #/O O GHDAO ?>LHEHCBO 5F6LFO =K>LD4IH6CBO MLKJIHO GFELDBO =<D9HO 8L7K>H6BO 26L33FO 5<>IHKBO 2H6D4O 8L7K>H6BO FD4O 1DDHOMF0F66H3HO=FD3J7/OND7)ILDO*6J3>O8FK3J6O149)73EHD3OLDO6HLE+IFD3F3LJDOGF,,L3O2IF73JK%737OFD4O 3H6LDHO ?L77)H7O LDO GH7+JD7HO 3JO 5F3H6DFIO ?%+HO #O -LF,H3H7/$ O !5F6K>OO # /O-N#/##9/EKH/ # ///O O 5F6LFO =K>LD4IH6CBO =<D9HO 8L7K>H6CBO GHDAO ?>LHEHBO 2H6D4O 8L7K>H6O FD4O 1DDHO MF0F66H3HO =FD3J7/O K15O 6H7+JD7L0HO HIHEHD3O ,LD4LDO +6J3HLD(O FO 0L3FIO ILDO LDO HE,6%JDLKO >J6EJDFIO F4F+3F3LJD/O O !)DLO #O-N#/# #HD/ # ( O O 5F6LFO=K>LD4IH6BO5F6HLHOHD4 LFIHBO1IH&FD4H6OMF0F66H3H(=FD3J7BO?J673HDOI7K>BO=3HFDLHO=H%6LDBO FK)HILDHO *<6HBO 'IL7FO F)KHBO )ILFO 5L6LFEO DHIFDHDBO 2H6D4O 8L7K>H6BO 1DDHO MF0F66H3HO =FD3J7O 5F3H6DFIO 4LF,H3H7O IHF47O 3JO )D+>%7LJIJLKFIO >L>O IL+L4O FKK)E)IF3LJDO LDO 6F,,L3O +6HLE+IFD3F3LJDO HE,6%J7/$O !1+6LIO #O-NO#/# #HD/ #(#O O 'IL7FO F)KHBO 1IH&FD4H6O MF0F66H3H(=FD3J7BO 1D46HF7O =LEEBO >6L73LFDO HDDLDBO 5F33>LF7O *IJE,BO FK)HILDHO *<6HBO 5F6LFO =K>LD4IH6BO 2H6D4O 8L7K>H6BO 1DDHO MF0F66H3HO =FD3J7/O 1KK)E)IF3LJDO JO F40FDKH4O I%KF3LJDO HD4O +6J4)K37O LDO 3>HO 6F,,L3O ,IF73JK%737O )D4H6O EF3H6DFIO 4LF,H3H7/O O !1))73O #O-NO#/#"G'(#(#O !COOIHLK>,H6HK>3L3HO'673F)3J6HDO O 5F6LFO =K>LD4IH6BO GHDAO ?>LHEHBO =<D9HO 8L7K>H6BO MLKJIHO GFELDBO 86FDO L6K>HBO 2H6D4O 8L7K>H6O FD4O 1DDHO MF0F66H3HO =FD3J7O O ! #O >FDH7O LDO 3>HO +6HLE+IFD3F3LJDO )3H6LDHO ELILH)O LD4)KH4O ,%O FO EF3H6DFIO 4LF,H3H7O 3%+HO #O LDO 3>HO 6F,,L3/O /O F>6H73F)DO >%7LJIJLHO )/O F3>JIJLHO 4H6O 8J63+IFD )DBO IHLK> HL3LO "/O H3H6LD6()EFDEH4L LDL7K>HO *HEHLD7K>F373F)DBO 5<DK>HDO /O (O /O 8H,6)F6O #BO+),IL7>H4OJDILDHO#"O1MO #/O-NO#/####9/#("#/ /#"/&O O 1DDHOMF0F66H3HO=FD3J7BOGHDAO?>LHEHBOMLKJIHOGFELDBO=<D9HO8L7K>H6BO5F6LFO=K>LD4IH6OFD4O2H6D4O8L7K>H6O ! #O 5H3F,JILKO F4F+3F3LJDO JO 6F,,L3O ,IF73JK%737O 3JO 7>J63O 3LEHO >%+H6I%KFHELFO LDO 0L36J/O /O F>6H73F)DO >%7LJIJLHO )/O F3>JIJLHO 4H6O 8J63+IFD )DBO IHLK> HL3LO "/O H3H6LD6( )EFDEH4L LDL7K>HO *HEHLD7K>F373F)DBO 5<DK>HDO /O (O /O 8H,6)F6O #BO +),IL7>H4O JDILDHO #"O 1MO #/O-NO#/####9/#("#/ /#"/&O O NNNO O K HGFEGK DCBEA@?>F=K D<A9>K 8E7CB>F=K 6>A5K 3BE>2>=K 1GC0/>?EA>K .<F->=K ,>FA@K 8E7CB>F=K +AA>K *G)GFF>(>K DGA('7K&%$#%"K!6 ,)>F2E((>?(>K+@E'A>-(EA>F>77E'AK/A(>FK@EG>(E7CB>AK A(EC-?/A7>@EA/A>AK EAK GAEACB>A?G7('7(>AK K 1GBF>7(G/AK @>FK >/(7CB>AK EG>(>7K .>7>??7CBG(=K D(/((GF(K # #HGEK%$#%KJK#$#$ 7$$%##K K HGFEGK DCBEA@?>F=K HGF>E->K >A@EG?>-=K 3'F7(>AK ?7CB=K 1G0/>?EA>K .<F->=K ?E7GK G/->=K 1/?EGK HEFEG2K A>?GA>A=K,>FA@K8E7CB>FKGA@K+AA>K*G)GFF>(>KDGA('7KJA?/>AC>K'KGK2G(>FAG?K@EG>(>7K2>??E(/7K(>K #K'AK?EE@KGA@KCB'?>7(>F'?K2>(G'?E72KEAKFGE(KF>E2?GA(G(E'AK>2F'7K%$#"! !$" $$!#$KJK#$#$# 6)%A#+K K K1G0/>?EA>K .<F->=K ?E7GK G/->=K 6>A5K 3BE>2>=K 8FGA-K EFCB>=K HGFEGK DCBEA@?>F=K ,>FA@K 8E7CB>F=K +AA>K *G)GFF>(>K DGA('7K +?(>F>@K F'(>EAK GA@K G2EA'GCE@K 2>(G'?E72K EAK F>E2?GA(G(E'AK >2F'7K F'2K @EG>(ECKFGE(7K%$#"! !$" $$!#$KJK#$#$# 6)%A#+K HGFEGKDCBEA@?>F=KHGF>E->K>AEG?>-=K3'F7(>AK?7CB=K+?>GA@>FK*G)GFF>(>KDGA('7=K,>FA@K8E7CB>FKGA@K +AA>K *G)GFF>(>K DGA('7K HG(>FAG?K @EG>(>7K 2>??E(/7K EA?/>AC>7K G((K GCE@K 2>(G'?E72K EAK FGE(K F>E2?GA(G(E'AK >2F'7K #$K +AA/G?K H>>(EAK 'K (B>K +AG('2E7CB>K .>7>??7CBG(=K HG@>/FK %% %KHFK%$#%$#"! !$" $$!#$K%&#"K##KJ'F #$#$# 6)%A#+K K HGFEGK DCBEA@?>F=K HGF>E->K >AEG?>-=K 1GC0/>?EA>K .<F->=K ,>FA@K 8E7CB>FK GA@K +AA>K *G)GFF>(>K DGA('7K +@E'A>C(EAK F>/?G(>7K +6K >F>77E'AK EAK FGE(K ?G7('C7(7 "$ !!$ !!$ $" !"#K /A@K ?>ECB>E(E $$"" $ $ $$###$%%$#K6>F'@/C(E'AKEAK'2>7(ECK+AE2G?7KJK#$#### F@G#%K K K K HGFEGK DCBEA@?>F=K D<A9>K 8E7CB>F=K 6>A>K 3BE>2>=K ,>FA@K 8E7CB>FK GA@K +AA>K *G)GFF>(>K DGA('7K &%$##"K JA7/[email protected]#K@>>A@>A(KG@E'A>C(EAK>F>77E'AKE7K2>@EG(>@KK!6 ,KEAKFGE(K?G7('C7(7KK D2'7E'AK@>FK>/(7CB>AK.>7>??7CBG(K<FK A@'-FEA'?'E>K&. "=KG2/FK$HF#+FE?K%$##K K HGFEGK DCBEA@?>F=K D<A9>K 8E7CB>F=K +?>GA@>FK *G)GFF>(>K DGA('7=K 6>A5K 3BE>2>=K ,>FA@K 8E7CB>FK GA@K +AA>K *G)GFF>(>KDGA('7K&%$#%"K+@E'A>C(EAK7(E2/?G(>7KG@E'>AECK@E>F>A(EG(E'AKEAK>2F'AECK7(>2KC>??7K K E77>A7CBG(?ECB>FK 'AF>77K @>FK >/(7CB>AK .>7>??7CBG(K <FK FABF/AK >I=K 8F>E7EA >EB>A7(>BGAK##KHFK%$#%K K HGFEGK DCBEA@?>F=K D<A9>K 8E7CB>F=K 6>A>K 3BE>2>=K ,>FA@K 8E7CB>FK GA@K +AA>K *G)GFF>(>K DGA('7K &%$#%"K !6 ,2>@EG(>@K >2F'2G(>FAG?K CF'77(G?-K EAK FGE(K ?G7('C7(7K 6.,*>(K 2>>(EA=K ,'?'AGK % $HFK%$#%KK K HGFEGK DCBEA@?>F=K HGF>E->K >A@EG?>-=K 3'F7(>AK ?7CB=K 1G0/>?EA>K .<F->=K ?E7GK G/->=K 1/?EGK HEFEG2K A>?GA>A=K,>FA@K8E7CB>FKGA@K+AA>K*G)GFF>(>KDGA('7KJA?/>AC>K'KGK2G(>FAG?K@EG>(>7K2>??E(/7K(>K #K'AK?EE@KGA@KCB'?>7(>F'?K2>(G'?E72KEAKFGE(KF>E2?GA(G(E'AK>2F'7K%$#"! !$" $$!#$KJK#$#$# 6)%A#+K#%#K1GA/GFK%$#K JIK K I I GFEDFICBAD@?>=E<I;=@:I8AD=7=<I6DB5>=I;F7D@<IC4@1=I0D/BA=E<I.=E@?I0D/BA=EIF@?I-@@=I6F,FEE=+=ICF@+5/I *)(('&I %$@#>"=@B=I 5#I 7F+=E@F>I ?DF!=+=/I 5@I +A=I "+=E"/I F@?I +A=I =7!E 5I ?"ED@I +A=I E=D7>F@+F+D5@I =ED5?%I$$$I.D>F+=EF>=/IC 75/D"7IF>>=5@F@<5@F@<IGFDI)(('I GFEDFI CBAD@?>=E<I ;=@:I 8AD=7=<I C4@1=I 0D/BA=E<I 6DB5>=I ;F7D@<I 0EF@I DEBA=<I .=E@?I 0D/BA=EI F@?I -@@=I 6F,FEE=+=I CF@+5/I *)((&I %$@#>"=@B=I 5#I 7F+=E@F>I ?DF!=+=/I + =I I 5@I +A=I "+=E"/I ?"ED@I +A=I E=D7>F@+F+D5@I=ED5?ID@I+A=IEF!!D+%IIC 75/D5@I?=EI="+/BA=@I=/=>>/BAF#+I#4EI@?5ED@5>5D=I *&<I=DDIGEI)((I I GFEDFICBAD@?>=E<I;=@:I8AD=7=<IC4@1=I0D/BA=E<I.=E@?I0D/BA=EIF@?I-@@=I6F,FEE=+=ICF@+5/I*)(&I% ;.I =E=//D5@I F@?I FB+D,F+D5@I D/I E=">F+=?I ! I D@/">D@I F@?I $0I D@I EF!!D+I !>F/+5B /+/%I +AI $@+=E@F+D5@F>I 5@#=E=@B=I5@I+A=I0=7F>=I;=E5?"B+D,=I8EFB+<I0EF"=@E+AI)()IGFDI)(I I GFEDFICBAD@?>=E<IC4@1=I0D/BA=E<I;=@:I8AD=7=<I.=E@?I0D/BA=EIF@?I-@@=I6F,FEE=+=ICF@+5/I*)(&I% ;. 7=?DF+=?I =7!E 57F+=E@F>I BE5//+F>I D@I EF!!D+I !>F/+5B /+/%I .F+/A=,FI ?=I ;5+A/BAD>?I C=7D@FEI 5@I =EDB5@B=+D5@F>I=,=>57=@+F>IE5EF77D@<I=E"/F>=7IGFDII"@DI)(I I GFEDFI CBAD@?>=E<I C4@1=I 0D/BA=E<I ;=@:I 8AD=7=<I .=E@?I 0D/BA=EI F@?I -@@=I 6F,FEE=+=I CF@+5/I *)(&I %DF!=+DBI E=@F@B I ->+=E=?I =7!E 5@DBI ;.I /D@F>>D@I D@I !>F/+5B /+/I #E57I ?DF!=+DBI EF!!D+/%I $@+=E@F+D5@F>I / 75/D"7I E=,=@+D5@I F@?I $@+=E,=@+D5@I #E57I G5>=B">FEI .D5>5 I +5I >D@DBF>I =E/=B+D,=/<IF>>=IC=+=7!=EI)(IIII GFEDFI CBAD@?>=E<I C4@1=I 0D/BA=E<I ->=F@?=EI 6F,FEE=+=I CF@+5/<I ;=@:I 8AD=7=<I .=E@?I 0D/BA=EI F@?I -@@=I 6F,FEE=+=ICF@+5/I*)(&I%-?D5=@=/D/ID/IE575+=?I! IF@I=>=,F+=?IF?D5@=B+D@I>=,=>%IE5B==?D@I5#I +A=I +AI =@=EF>I G==+D@I 5#I G$6$I GF+=E@F>I 577"@DBF+D5@I D+AI F7=+=/I F@?I 7!E 5<I D15@I )'C=+=7!=E)+5!=EI)(III HI I ' ' %$#'"! !"''"'''$#'"'!"'"''#"'!""'"'"!' ""' "!"' ' "' ' !' """' ""' ' "' "' ' "' "' ""'"! "'!$#''#$#'""'""''$#"' "$#'"$#' #"'' ' ' ' ' ' ''' ' ' ' ' ' "!$#!'"'!""!''' ' &%' ' " " " " " " " " " " " " " " " """"" " " " " " """ " " " " " """" " " ! " " 98765843742 3210/2.-1., 2 /72 .-,5,+2 *),((,2 '&#"),2 -#"2 '-#"2 !,-2 8((2 ,7,72 !,.876,72 .-,2 3'2 ,(-74,72 .-,5,+2 9-55,+)8)-72 !,-4,)+84,72"8!,722 2 /(52 +5),52 '&#"),2 -#"2 '-#"2 !,-2 +*))1, ()'&%, 3)%, 3)%, $*)1#, "!/ *)2 +2 .-,2 ,+,-)5),((3742 .-,5,52 -7),+,5587),72 ",'852 !,.876,72 37.2 +2 .-,2 &4(-#"6,-)2 ',-7,2 96)+8+!,-)2 8'2 075)-)3)2 +2 /78)'-,2 37.2 ,((!-(4-,2 873,+)-4,72 93+#"2 5),)-4,2 7),+5))3742 37.2 +-)-62 872 .,+2 +-#")-4,72 *),((,2 "8)2 ,+2 '-#"2 3'2 5,(!5)5)7.-4,72 37.2 6+-)-5#",72 /+!,-),72 874,+,4)2 *,-7,+2 -(,5),((3742 ,+.876,2-#"2.-,2,-(78"',28728"(+,-#",7274+,55,7237.2.-,2,-2/3,7)"8(),2-'2/35(87.22 2 ,-72 !,57.,+,+2 98762 4-()2 ")2-, (3, 3)%, 11*, 22))**, 21'/2 93+#"2 -"+,2 -,(()-4,72 -55,75#"8)(-#",728)5#"(4,237.2-'',+"+,7.,29-56355-75+,3.,2"8)25-,2'-#"24,(,"+)29-74,232 "-7),++84,7237.27-#")273+28352,-7,+2,+5,,6)-,232!,)+8#"),720"+,2(-,!,237.25),)52"-(5!,+,-),237.2 +,37.5#"8)(-#",2/+)2!,4(,-),),2'-#"2!,5)7.-42.3+#"2.-,5,2/+!,-)237.2"8(2'-+25"(2!,-28#"(-#",72 8(5283#"2+-8),72*+4,7222222 2 ,-2.,7243),72*,,(,72.,52 8!+522!1*, )*)2! 2*2,!)/*!1237.2")21!/02,1&*2.876,2-#"2 +2-,(,2+86)-5#",2-5237.2+-#652+2-"+,25),),2-(5!,+,-)5#"8)2!,-2 8!+8+!,-),7237.2!,57.,+52 +2.-,2-,(,72",-),+,72*)37.,72-'2 8!+2 +2 .-,2 874,7,"',2 +,37.5#"8)(-#",2 37.2 6((,4-8(,2 /)'5"+,2 .852 87"8(),7.,2 07),+,55,2 872 ',-7,+2 /+!,-)2 37.2 .-,2 )2 5,"+2 (874,72 37.2 675)+36)-,72 ,5+#",2 '&#"),2 -#"2 '-#"2 !,-2 2)*!0*, (*1#!2*0,!/2,+2- 0*,2-*!1*,)0*,*1,!**,-!2,1*21.*1,'12#,$!*211,1*, "!/ *),)!/!12, #! ,-!21*-/211*, !#,37.,2!2/,-1.,!,.876,722 2 ,++723)%,*21#*),22))**,21'/24-()2',-7298762+2.-,2-,(,2,-)2.-,2,+2-7,5)-,+)2"8)23'2'-)2 '-+2.-,2/*/78(5,2.,+2(85)5),7237.2,((,72.3+#"3"+,72 +2.-,2&4(-#"6,-)2.-,2"(,5),+(237.2+-4(#,+-.,553742-725,-7,'2 8!+2.3+#"3"+,72'&#"),2 -#"2'-#"2!,-2+*))1,3)%,')/*1,(/ 28352+7-74,72-,.,+(87.,2!,.876,72222,,,, , 9876,72 '&#"),2 -#"2 83#"2 ',-7,+2 "2!!*2 37.2 ")*-1#*12 .-,2 '-#"2 "+,7.2 ',-7,+2 9-55,+)8)-72 !,4(,-),)2 37.2 37),+5)))2 "8!,72 37.2 -'',+2 .-,2 +-#")-4,72 +),2 4,37.,72 "8!,72 3'2 '-#"2 833'37),+72-724872!,57.,+,+2987624-()2',-7,'2+,37.2*21#*)237.2375,+,+2#"),+2)*22 .-,2'-+2-,(2+8)237.2)-8)-724,5#",76)2"8!,729876,2 2 9-,2+(-,4,7.,2/+!,-)23+.,2.3+#"2.852'-()'.)2,#*),*#!!1!/ *1,"20-2.-,23*-/ *, "')/ -1./.*/*/ 2&23"237.2.-,22-787-,((237),+5)))222222 2 10002 2