Herbert Rübben (Hrsg.) Uroonkologie 4., vollständig überarbeitete Auflage Herbert Rübben (Hrsg.) Uroonkologie 4., vollständig überarbeitete Auflage Mit 115 Abbildungen und 273 Tabellen 123 Prof. Dr. med. Herbert Rübben Direktor der Klinik und Poliklinik für Urologie Universitätsklinikum Essen Hufelandstraße 55 45122 Essen ISBN 978-3-540-33847-5 Springer Medizin Verlag Heidelberg Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar. Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, des Vortrags, der Entnahme von Abbildungen und Tabellen, der Funksendung, der Mikroverfilmung oder der Vervielfältigung auf anderen Wegen und der Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Vervielfältigung dieses Werkes oder von Teilen dieses Werkes ist auch im Einzelfall nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik Deutschland vom 9. September 1965 in der jeweils geltenden Fassung zulässig. Sie ist grundsätzlich vergütungspflichtig. Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechtsgesetzes. Springer Medizin Verlag springer.de © Springer Medizin Verlag Heidelberg 1994, 1997, 2001, 2007 Die Wiedergabe von Gebrauchsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutzgesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften. Produkthaftung: Für Angaben über Dosierungsanweisungen und Applikationsformen kann vom Verlag keine Gewähr übernommen werden. Derartige Angaben müssen vom jeweiligen Anwender im Einzelfall anhand anderer Literaturstellen auf ihre Richtigkeit überprüft werden. Planung: Dr. med. Lars Rüttinger, Heidelberg Projektmanagement: Ina Conrad, Heidelberg Einbandgestaltung: deblik Berlin SPIN: 10818463 Satz: TypoStudio Tobias Schaedla, Heidelberg Gedruckt auf säurefreiem Papier 2111 – 5 4 3 2 1 0 V Inhaltsverzeichnis I Grundlagen 1 Molekularbiologie und Genetik . . . . . . . . . . . . . . . . 3 1.1 1.2 Molekulare Grundlagen der Karzinogenese . . . . . . . . . . 3 Molekularbiologische Untersuchungsmethoden . . . . . 8 2 Hinweise zur Studienplanung, Biometrie und klinischen Epidemiologie . . . . . . . . . . . . . . . . 13 2.1 2.2 2.3 2.4 Typen und Ziele klinischer Studien . . . . . . . . . . . . . . . . . 13 Studienplanung und -organisation . . . . . . . . . . . . . . . . . 17 Dokumentation und biometrische Auswertung . . . . . 21 Hinweise zur statistischen Beurteilung von Mittelwerten und Prozentangaben anhand von Vertrauensbereichen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 Lebensqualität in der Uroonkologie . . . . . . . . . . 29 3.1 3.2 3.3 Einleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Das Lebensqualitätskonzept . . . . . . . . . . . . . . . . . . . . . . . 29 Ausblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 II Allgemeiner Teil 4 Grundlagen der Prävention . . . . . . . . . . . . . . . . . . 39 4.1 4.2 4.3 4.4 4.5 4.6 Einleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Bedeutung der Prävention . . . . . . . . . . . . . . . . . . . . . . . . . 39 Ernährung und Nahrungsergänzung . . . . . . . . . . . . . . . 40 Lifestyle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Chemoprävention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Diskussion und Schlussfolgerung . . . . . . . . . . . . . . . . . . 45 5 Grundlagen der Tumorchirurgie . . . . . . . . . . . . . . 49 5.1 5.2 5.3 Geschichte der Chirurgie . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Die Rolle der Anästhesie . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Die Rolle der Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6 Grundlagen der systemischen Therapie . . . . . . 55 6.1 6.2 Neue Konzepte der systemischen Therapie . . . . . . . . . 55 Hinweise zur Prophylaxe und Therapie von Komplikationen der Chemotherapie . . . . . . . . . . . . . . . 58 Nebenwirkungen bei Immuntherapie und deren Behandlung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3 7 Grundlagen der Radioonkologie . . . . . . . . . . . . . . 97 7.1 7.2 Therapietechniken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Planung und Durchführung der konformalen Strahlentherapie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Technische Hilfsmittel bei der 3-D-Planung . . . . . . . . . 99 7.3 7.4 7.5 7.6 Akkurate Zielvolumendefinition . . . . . . . . . . . . . . . . . . . . 99 Präzision der Lagerung und Positionierung . . . . . . . . 100 Bewertung von Dosisverteilungen . . . . . . . . . . . . . . . .100 8 Supportive Maßnahmen und Psychoonkologie . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 8.1 8.2 Supportive Maßnahmen . . . . . . . . . . . . . . . . . . . . . . . . . .103 Psychoonkologie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 9 Komplementäre Therapieverfahren . . . . . . . . . . 123 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 Einleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 Ernährung und Nahrungsergänzung . . . . . . . . . . . . . .124 Mind-Body-Medizin (MBM) . . . . . . . . . . . . . . . . . . . . . . . .133 Immunmodulatoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136 Enzyme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138 Phytotherapie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138 Homöopathie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140 Neuraltherapie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141 Akupunktur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141 Diverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142 10 Harnableitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 10.1 10.2 10.3 10.4 10.5 10.6 10.7 Einleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151 Allgemeine Aspekte der Harnableitung. . . . . . . . . . . .151 Orthotoper Blasenersatz (Neoblase) . . . . . . . . . . . . . . .155 Kontinente kutane Harnableitung (Pouch) . . . . . . . . .165 Inkontinente Harnableitung. . . . . . . . . . . . . . . . . . . . . . .168 Analsphinkterkontrollierte Harnableitungen . . . . . . .169 Palliative Harnableitung. . . . . . . . . . . . . . . . . . . . . . . . . . .172 11 Notfälle in der Uroonkologie . . . . . . . . . . . . . . . . 177 11.1 11.2 11.3 11.4 11.5 11.6 Harnverhalt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177 Harnblasentamponade . . . . . . . . . . . . . . . . . . . . . . . . . . .177 Postrenales Nierenversagen . . . . . . . . . . . . . . . . . . . . . .178 Urosepsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178 Fournier-Gangrän . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178 Notfälle durch lokal destruierendes Tumorwachstum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178 Komplikationen im Rahmen der Chemotherapie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180 11.7 12 Grundlagen der Palliativmedizin. . . . . . . . . . . . . 183 12.1 12.2 12.3 12.4 12.5 Definition und Inhalte der Palliativmedizin . . . . . . . .183 Diagnose und Therapie von Tumorschmerzen . . . . .183 Diagnose und Therapie von Symptomen des Gastrointestinaltraktes . . . . . . . . . . . . . . . . . . . . . . . . . . .188 Symptome des Respirationstraktes . . . . . . . . . . . . . . . .191 Palliative Sedierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 13 Uroonkologie beim älteren Patienten . . . . . . . . 195 13.1 13.2 Einleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195 Komorbidität . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195 VI Inhaltsverzeichnis 19 Harnblasenkarzinom . . . . . . . . . . . . . . . . . . . . . . . . 301 19.1 19.2 Epidemiologie und Risikofaktoren . . . . . . . . . . . . . . . . .301 Onkologische Kennzeichen (Definition von Tumorentitäten) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .306 Diagnostik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .310 Therapie des oberflächlichen Urothelkarzinoms der Harnblase (Ta/T1 N0 M0) . . . . . . . . . . . . . . . . . . . . . .315 Therapie des Carcinoma in situ der Harnblase . . . . .326 Therapie des muskelinvasiven Urothelkarzinoms der Harnblase (T2–4 NX M0) . . . . . . . . . . . . . . . . . . . . . .334 Therapie des metastasierten Urothelkarzinoms der Harnblase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346 Seltene Tumoren der Harnblase . . . . . . . . . . . . . . . . . . .352 Nachsorge des muskelinvasiven Urothelkarzinoms der Harnblase . . . . . . . . . . . . . . . . . . . . . . . . . .357 13.3 13.4 13.5 13.6 Funktionelle Kapazität . . . . . . . . . . . . . . . . . . . . . . . . . . . .197 Operatives Vorgehen im Alter . . . . . . . . . . . . . . . . . . . . .199 Chemotherapie im Alter . . . . . . . . . . . . . . . . . . . . . . . . . .199 Strahlentherapie im Alter . . . . . . . . . . . . . . . . . . . . . . . . .200 14 Rehabilitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 19.3 19.4 14.1 14.2 14.3 Allgemeine Grundlagen. . . . . . . . . . . . . . . . . . . . . . . . . . .203 Inkontinenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218 Rehabilitation der sexuellen Dysfunktion . . . . . . . . . .222 19.5 19.6 19.7 III Tumoren des Erwachsenenalters 15 Nebennierenrindenkarzinom . . . . . . . . . . . . . . . . 231 15.1 15.2 15.3 15.4 15.6 Epidemiologie, Ätiologie . . . . . . . . . . . . . . . . . . . . . . . . . .231 Onkologische Kennzeichen . . . . . . . . . . . . . . . . . . . . . . .231 Diagnostik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232 Therapie des lokal begrenzten Nebennierenrindenkarzinoms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233 Therapie des fortgeschrittenen Nebennierenrindenkarzinoms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234 Nachsorge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236 16 Malignes Phäochromozytom . . . . . . . . . . . . . . . . 239 16.1 16.2 16.3 16.4 16.5 Epidemiologie, Ätiologie . . . . . . . . . . . . . . . . . . . . . . . . . .239 Onkologische Kennzeichen . . . . . . . . . . . . . . . . . . . . . . .240 Diagnostik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240 Therapie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241 Nachsorge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243 15.5 17 Nierenzellkarzinom . . . . . . . . . . . . . . . . . . . . . . . . . 245 17.1 17.2 17.3 17.4 17.5 Epidemiologie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245 Pathologie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248 Diagnostik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250 Therapie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252 Lokales Tumorrezidiv nach radikaler Tumornephrektomie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259 Metastasiertes Nierenzellkarzinom . . . . . . . . . . . . . . . .259 Nachsorge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265 17.6 17.7 19.8 19.9 20 Harnröhrenkarzinom. . . . . . . . . . . . . . . . . . . . . . . . 373 20.1 20.2 20.3 20.4 20.6 20.7 Epidemiologie, Ätiologie . . . . . . . . . . . . . . . . . . . . . . . . . .373 Onkologische Kennzeichen . . . . . . . . . . . . . . . . . . . . . . .373 Diagnostik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376 Therapie des lokal begrenzten Harnröhrenkarzinoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376 Therapie des fortgeschrittenen Harnröhrenkarzinoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .378 Nachsorge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .378 Palliativtherapie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .378 21 Prostatakarzinom . . . . . . . . . . . . . . . . . . . . . . . . . . . 381 20.5 21.1 21.2 21.3 21.4 21.5 21.6 21.7 Epidemiologie, Ätiologie . . . . . . . . . . . . . . . . . . . . . . . . . .381 Onkologische Kennzeichen . . . . . . . . . . . . . . . . . . . . . . .396 Screening und Früherkennung . . . . . . . . . . . . . . . . . . . .406 Diagnostik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .414 Therapie des lokal begrenzten Prostatakarzinoms . .429 Therapie bei isoliertem PSA-Anstieg . . . . . . . . . . . . . . .445 Therapie des virginell metastasierten Prostatakarzinoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .452 21.8 Therapie des hormonrefraktären metastasierten Prostatakarzinoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .468 21.9 Behandlung prostatakarzinom-spezifischer Komplikationen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .485 21.10 Nachsorge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .488 18 Nierenbecken- und Harnleiterkarzinom . . . . . . 277 22 Maligne Hodentumoren . . . . . . . . . . . . . . . . . . . . . 521 18.1 18.2 18.3 18.4 18.5 18.6 18.7 18.8 18.9 18.10 18.11 18.12 Epidemiologie, Ätiologie . . . . . . . . . . . . . . . . . . . . . . . . . .277 Onkologische Kennzeichen . . . . . . . . . . . . . . . . . . . . . . .279 Diagnostik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .282 Therapieoptionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285 Therapie des Nierenbeckentumors . . . . . . . . . . . . . . . .287 Therapie des Harnleitertumors . . . . . . . . . . . . . . . . . . . .288 Therapie bei Einzelniere/Restniere . . . . . . . . . . . . . . . .290 Therapie bilateraler Tumoren . . . . . . . . . . . . . . . . . . . . . .290 Therapie des In-situ-Karzinoms . . . . . . . . . . . . . . . . . . . .290 Therapie seltener Harnleitertumoren . . . . . . . . . . . . . .290 Prognose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291 Nachsorge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292 22.1 22.2 22.3 22.4 22.5 Epidemiologie, Ätiologie . . . . . . . . . . . . . . . . . . . . . . . . . .521 Onkologische Kennzeichen . . . . . . . . . . . . . . . . . . . . . . .524 Diagnostik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .531 Therapie des Primärtumors . . . . . . . . . . . . . . . . . . . . . . .534 Therapie der testikulären intraepithelialen Neoplasie (TIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .539 Adjuvante Therapie beim Seminom CS I . . . . . . . . . .540 Adjuvante Therapie beim Nichtseminom CS I . . . . .549 Therapie des gering retroperitoneal metastasierten Seminoms CS IIA/B . . . . . . . . . . . . . . . .554 Therapie des markernegativen Nichtseminoms CS IIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .559 22.6 22.7 22.8 22.9 VII Inhaltsverzeichnis 22.10 22.11 22.12 22.13 Therapie der fortgeschrittenen Hodentumoren . . . .561 Therapie bei refraktären Tumoren und Rezidiven . .573 Nachsorge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .578 Seltene Hodentumoren . . . . . . . . . . . . . . . . . . . . . . . . . . .584 23 Peniskarzinom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611 23.1 23.2 23.3 23.4 23.5 23.6 Epidemiologie, Ätiologie . . . . . . . . . . . . . . . . . . . . . . . . .611 Onkologische Kennzeichen . . . . . . . . . . . . . . . . . . . . . . .612 Diagnostik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .613 Therapie des lokal begrenzten Peniskarzinoms . . . .614 Therapie des fortgeschrittenen Peniskarzinoms . . .614 Nachsorge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .615 24 Retroperitoneale Weichteiltumoren . . . . . . . . . 619 24.1 24.2 24.3 24.4 24.5 24.6 Epidemiologie, Ätiologie . . . . . . . . . . . . . . . . . . . . . . . . .619 Onkologische Kennzeichen . . . . . . . . . . . . . . . . . . . . . . .620 Diagnostik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .623 Therapie des lokal begrenzten Tumors . . . . . . . . . . . .625 Therapie bei fortgeschrittenen Tumoren. . . . . . . . . . .629 Nachsorge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .629 IV Tumoren des Kindes- und Jugendalters 25 Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635 25.1 25.2 25.3 Prognose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .636 Lokalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .636 Kooperative Therapieoptimierungsstudien . . . . . . . .637 26 Neuroblastom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639 26.1 26.2 26.3 26.4 26.5 26.6 Epidemiologie, Ätiologie . . . . . . . . . . . . . . . . . . . . . . . . .639 Onkologische Kennzeichen . . . . . . . . . . . . . . . . . . . . . . .640 Diagnostik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .641 Therapie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .642 Nachsorge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .645 Palliativtherapie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .645 27 Nephroblastom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647 27.1 27.2 27.3 27.4 27.5 27.6 Epidemiologie, Ätiologie . . . . . . . . . . . . . . . . . . . . . . . . . .647 Onkologische Kennzeichen . . . . . . . . . . . . . . . . . . . . . . .648 Diagnostik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .651 Therapie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .653 Therapiefolgen und Nachsorge . . . . . . . . . . . . . . . . . . .655 Histologisch ungewöhnliche Nierentumoren bei Kindern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .655 28 Weichteilsarkome . . . . . . . . . . . . . . . . . . . . . . . . . . . 657 28.1 28.2 28.3 28.4 28.5 Einleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .657 Epidemiologie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .657 Biologie und Pathologie . . . . . . . . . . . . . . . . . . . . . . . . . .657 Diagnostik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .658 Therapie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .660 28.6 28.7 28.8 28.9 Verlaufskontrollen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .662 Prognose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .662 Rezidiv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .662 Spätfolgen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .663 V Betreuung und Beratung des onkologischen Patienten 29 Diagnose-, Prognose- und Therapieaufklärung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667 29.1 29.2 Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .667 Aufklärung über Therapiestudien . . . . . . . . . . . . . . . . .669 30 Betreuung des unheilbar kranken und sterbenden Patienten und seiner Angehörigen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671 30.1 30.2 30.3 30.4 Was erlebt der sterbende Patient? . . . . . . . . . . . . . . . . .671 Aufgaben des medizinischen Personals. . . . . . . . . . . .671 Betreuung der Angehörigen . . . . . . . . . . . . . . . . . . . . . .672 Soziale Hilfen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .673 31 Selbsthilfegruppen und überregionale Verbände und Organisationen. . . . . . . . . . . . . . . 675 Stichwortverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . 677 IX Mitarbeiterverzeichnis Prof. Dr. med. Rolf Ackermann Dr. med. Felix Chun Dr. med. Frank vom Dorp Direktor der Urologischen Klinik Universitätsklinikum Düsseldorf Moorenstraße 5 40225 Düsseldorf Klinik und Poliklinik für Urologie Universitätsklinikum HamburgEppendorf Martinistraße 52 20246 Hamburg Klinik und Poliklinik für Urologie Universitätsklinikum Essen Hufelandstraße 55 45122 Essen Prof. Dr. med. Peter Albers Direktor der Klinik für Urologie Klinikum Kassel gGmbH Mönchebergstraße 41–43 34125 Kassel Dr. phil. Nils Altner Kliniken Essen-Mitte Knappschafts-Krankenhaus Am Deimelsberg 34a 45276 Essen Dr. biol. hum. Beate Bestmann Referenzzentrum Lebensqualität an der Klinik für Allgemeine Chirurgie und Thoraxchirurgie Universitätsklinikum SchleswigHolstein, Campus Kiel Arnold-Heller-Straße 5 24105 Kiel Prof. Dr. med. Jörg Beyer Direktor der Klinik für Innere Medizin – Hämatologie und Onkologie Vivantes Klinikum Am Urban Dieffenbachstraße 1 10967 Berlin Prof. Dr. med. Dr. rer. nat. Andreas Bockisch Direktor der Klinik für Nuklearmedizin Universitätsklinikum Essen Hufelandstraße 55 45122 Essen Dr. med. Christof Börgermann Klinik und Poliklinik für Urologie Universitätsklinikum Essen Hufelandstraße 55 45122 Essen Prof. Dr. med. Angelika Eggert Priv.-Doz. Dr. med. Johannes Claßen Direktor der Klinik für Strahlentherapie und Radiologische Onkologie St. Vincentius-Kliniken Karlsruhe Steinhäuserstraße 18 76135 Karlsruhe Dr. med. Maria De Santis 3. Medizinische Abteilung Zentrum für Onkologie und Hämatologie Kaiser-Franz-Josef-Spital Kundratstraße 3 A–1100 Wien Prof. Dr. med. Klaus-Peter Dieckmann Chefarzt der Urologischen Abteilung Albertinen-Krankenhaus Süntelstraße 11 22457 Hamburg Prof. Dr. med. Gustav Dobos Chefarzt der Klinik für Innere Medizin V Naturheilkunde u. Integrative Medizin Kliniken Essen-Mitte Knappschafts-Krankenhaus Am Deimelsberg 34a 45276 Essen Priv.-Doz. Dr. med. Christian Doehn Klinik und Poliklinik für Urologie Universitätsklinikum SchleswigHolstein, Campus Lübeck Ratzeburger Allee 160 23538 Lübeck Dr. med. O. Dombo Rehabilitationsabteilung Urologie/ Onkologie Klinik Quellental Wiesenweg 6 34537 Bad Wildungen Klinik für Pädiatrische Hämatologie/ Onkologie u. Endokrinologie Universitätsklinkum Essen Hufelandstraße 55 45122 Essen Dr. med. Andreas Eisenhardt Urologische Klinik Kliniken Maria Hilf GmbH Krankenhaus St. Franziskus Viersener Straße 450 41063 Mönchengladbach Prof. Dr. med. Paolo Fornara Direktor der Universitätsklinik und Poliklinik für Urologie Universitätsklinikum Halle Ernst-Grube-Straße 40 06120 Halle Dr. med. Christoph Friedrich Klinik für Altersmedizin und Frührehabilitation Marienhospital Herne Klinikum der Ruhr-Universität Bochum Widumer Straße 8 44627 Herne Dr. med. Michael Fröhner Klinik und Poliklinik für Urologie Universitätsklinikum Carl Gustav Carus der Technischen Universität Dresden Fetscherstraße 74 01317 Dresden Dr. med. Peter-Jürgen Goebell Klinik und Poliklinik für Urologie Universitätsklinikum Essen Hufelandstraße 55 45122 Essen X Mitarbeiterverzeichnis Prof. Dr. med. Mark Goepel Prof. Dr. med. Jörg T. Hartmann Prof. Dr. med. Hartwig Huland Chefarzt der Klinik für Urologie, Kinderurologie und Urologische Onkologie Klinikum Niederberg Robert-Koch-Straße 2 42549 Velbert Medizinische Klinik und Poliklinik II Universitätsklinikum Tübingen Otfried-Müller-Straße 10 72076 Tübingen Direktor der Klinik und Poliklinik für Urologie Universitätsklinikum HamburgEppendorf Martinistraße 52 20246 Hamburg Priv.-Doz. Dr. med. Markus Graefen Klinik und Poliklinik für Urologie Universitätsklinikum HamburgEppendorf Martinistraße 52 20246 Hamburg Priv.-Doz. Dr. med. Marc-Oliver Grimm Klinik und Poliklinik für Urologie Universitätsklinikum Carl Gustav Carus der Technischen Universität Dresden Fetscherstraße 74 01317 Dresden Prof. Dr. med. Jürgen Gschwend Direktor der Urologischen Klinik und Poliklinik Klinikum rechts der Isar der Technischen Universität München Ismaninger Straße 22 81675 München Prof. Dr. med. Richard Hautmann Direktor der Klinik für Urologie und Kinderurologie Universitätsklinikum Ulm Prittwitzstraße 43 89075 Ulm Priv.-Doz. Dr. med. Alexander Haese Klinik und Poliklinik für Urologie Universitätsklinikum HamburgEppendorf Martinistraße 52 20246 Hamburg Prof. Dr. med. P. Hammerer Chefarzt der Urologischen Klinik Städtisches Klinikum Braunschweig Salzdahlumer Straße 90 38126 Braunschweig Dr. med. Michael Hartmann Horstweg 2a 22391 Hamburg Klinik und Poliklinik für Urologie Universitätsklinikum Essen Hufelandstraße 55 45122 Essen Prof. Dr. med. Axel Heidenreich Klinik und Poliklinik für Urologie Klinikum der Universität zu Köln Kerpener Straße 62 50937 Köln Prof. Dr. med. Gerhard Jakse Direktor der Klinik für Urologie Universitätsklinikum Aachen Pauwelsstraße 30 52074 Aachen Dr. med. Karsten Heine Urologische Klinik Caritas-Krankenhaus Bad Mergentheim Uhlandstraße 7 97980 Bad Mergentheim Dr. med. Jörg Hense Innere Klinik und Poliklinik (Tumorforschung) Universitätsklinikum Essen Hufelandstraße 55 45122 Essen Prof. Dr. med. Dieter Jocham Direktor der Klinik und Poliklinik für Urologie Universitätsklinikum SchleswigHolstein, Campus Lübeck Ratzeburger Allee 160 23538 Lübeck Prof. Dr. rer. nat. Karl-Heinz Jöckel Viehauser Berg 147 45239 Essen Direktor des Instituts für Medizinische Informatik, Biometrie und Epidemiologie Universitätsklinikum Essen Hufelandstraße 55 45122 Essen Univ.-Prof. Dr. med. Wolfgang Höltl Priv.-Doz. Dr. med. Ingo Kausch Direktor der Urologischen Abteilung Kaiser-Franz-Josef-Spital Kundratstraße 3 A–1100 Wien Klinik und Poliklinik für Urologie Universitätsklinikum SchleswigHolstein, Campus Lübeck Ratzeburger Allee 160 23538 Lübeck Prof. Dr. med. Oliver Hakenberg Direktor der Urologischen Klinik und Poliklinik Universitätsklinikum Rostock Ernst-Heydemann-Straße 6 18055 Rostock Tobias Jäger Herbert Hirche Prof. Dr. med. Markus Hohenfellner Direktor der Urologischen Universitätsklinik Universitätsklinikum Heidelberg Im Neuenheimer Feld 110 69120 Heidelberg Prof. Dr. med. Edith Huland Klinik und Poliklinik für Urologie Universitätsklinikum HamburgEppendorf Martinistraße 52 20246 Hamburg Prof. Dr. med. Thomas Klingebiel Direktor der Klinik für Pädiatrische Hämatologie, Onkologie und Hämostaseologie Klinikum der Johann Wolfgang Goethe-Universtität Theodor-Stern-Kai 7 60590 Frankfurt am Main XI Mitarbeiterverzeichnis Dr. med. Marianne Kloke Priv.-Doz. Dr. med. Gerd Lümmen Prof. Dr. med. Thomas Otto Kliniken Essen-Mitte Evang. Huyssens-Stiftung Klinik für Innere Medizin IV Internistische Onkologie/Hämatologie Henricistraße 92 45136 Essen Chefarzt der Abteilung für Urologie, Uroonkologie und Kinderurologie St. Josef-Hospital Hospitalstraße 45 53840 Troisdorf Chefarzt der Urologischen Klinik Städtische Kliniken Neuss Lukaskrankenhaus GmbH Preußenstraße 84 41464 Neuss Priv.-Doz. Dr. med. Hans-Joachim Luboldt Prof. Dr. med. U. Otto Prof. Dr. med. Ewa Koscielniak Olgahospital Klinik für Kinderheilkunde und Jugendmedizin Pädiatrie 5 Bismarckstraße 8 70176 Stuttgart Priv.-Doz. Dr. med. Susanne Krege Klinik und Poliklinik für Urologie Universitätsklinikum Essen Hufelandstraße 55 45122 Essen Prof. Dr. med. Bernhard Kremens Komm. Direktor der Klinik für Pädiatrische Hämatologie/Onkologie und Endokrinologie Universitätsklinkum Essen Hufelandstraße 55 45122 Essen Prof. Dr. med. Marcus A. Kuczyk Klinik für Urologie Universitätsklinikum Tübingen Hoppe-Seyler-Straße 3 72076 Tübingen Prof. Dr. phil. Thomas Küchler Referenzzentrum Lebensqualität an der Klinik für Allgemeine Chirurgie und Thoraxchirurgie Universitätsklinikum SchleswigHolstein, Campus Kiel Arnold-Heller-Straße 5 24105 Kiel Dr. med. Hagen Loertzer Universitätsklinik und Poliklinik für Urologie Universitätsklinikum Halle Ernst-Grube-Straße 40 06120 Halle Wallstraße 34 46535 Dinslaken Univ.-Doz. Dr. med. Stephan Madersbacher Chefarzt der Rehabilitationsabteilung Urologie/Onkologie Klinik Quellental Wiesenweg 6 34537 Bad Wildungen Abteilung für Urologie und Andrologie Sozialmedizinisches Zentrum Ost – Donauspital Langobardenstraße 122 A–1220 Wien Priv.-Doz. Dr. med. S. Petersenn Prof. Dr. med. Klaus Mann Prof. Dr. med. Ludger Pientka Direktor der Klinik für Endokrinologie Universitätsklinikum Essen Hufelandstraße 55 45122 Essen Chefarzt der Klinik für Altersmedizin und Frührehabilitation Marienhospital Herne Klinikum der Ruhr-Universität Bochum Widumer Straße 8 44627 Herne Dr. med. Martin Marszalek Abteilung für Urologie und Andrologie Sozialmedizinisches Zentrum Ost – Donauspital Langobardenstraße 122 A–1220 Wien Priv.-Doz. Dr. med. Frank Mayer Medizinische Klinik und Poliklinik II Universitätsklinikum Tübingen Otfried-Müller-Straße 10 72076 Tübingen Prof. Dr. med. Kurt Miller Direktor der Urologischen Klinik Charité - Campus Benjamin Franklin Freie- und Humboldt-Universität zu Berlin Hindenburgdamm 30 12200 Berlin Klinik für Endokrinologie Universitätsklinikum Essen Hufelandstraße 55 45122 Essen Prof. Dr. med Albert Rettenmeier Direktor des Instituts für Hygiene und Arbeitsmedizin Universitätsklinikum Essen Hufelandstraße 55 45122 Essen Prof. Dr. med. Claus Rödel Direktor der Klinik für Strahlentherapie Klinikum der Johann Wolfgang Goethe-Universtität Theodor-Stern-Kai 7 60590 Frankfurt am Main Achim Rose Klinik und Poliklinik für Urologie Universitätsklinikum Essen Hufelandstraße 55 45122 Essen Priv.-Doz. Dr. rer. nat. Markus Neuhäuser Prof. Dr. med. Herbert Rübben Institut für Medizinische Informatik, Biometrie und Epidemiologie Universitätsklinikum Essen Hufelandstraße 55 45122 Essen Direktor der Klinik und Poliklinik für Urologie Universitätsklinikum Essen Hufelandstraße 55 45122 Essen XII Mitarbeiterverzeichnis Dr. med. Felix Saha Priv.-Doz. Dr. med. Mark Schrader Priv.-Doz. Dr. med. Herbert Sperling Urologische Klinik Charité - Campus Benjamin Franklin Freie- und Humboldt-Universität zu Berlin Hindenburgdamm 30 12200 Berlin Chefarzt der Urologischen Klinik Kliniken Maria Hilf GmbH Krankenhaus St. Franziskus Viersener Straße 450 41063 Mönchengladbach Direktor der Klinik für Strahlentherapie Universitätsklinikum Erlangen Universitätsstraße 27 91054 Erlangen Prof. Dr. med. F.H. Schröder Priv.-Doz. Dr. med. Michael Stahl Erasmus Universität P.O. Box 2040 NL–3000 CA Rotterdam Dr. med. Marcus Schenck Prof. Dr. med. H.-J. Schütte Klinik und Poliklinik für Urologie Universitätsklinikum Essen Hufelandstraße 55 45122 Essen Chefarzt der Abteilung für Onkologie und Hämatologie Marien-Hospital Düsseldorf Rochusstraße 2 40479 Düsseldorf Kliniken Essen-Mitte Evang. Huyssens-Stiftung Klinik für Innere Medizin IV Internistische Onkologie/ Hämatologie Henricistraße 92 45136 Essen Klinik für Innere Medizin V Naturheilkunde u. Integrative Medizin Kliniken Essen-Mitte Knappschafts-Krankenhaus Am Deimelsberg 34a 45276 Essen Prof. Dr. med. Rolf Sauer Dr. med. N. Schleucher Marienkrankenhaus Zentrum Innere Medizin Hämatologie und Internistische Onkologie Alfredstraße 9 22087 Hamburg Prof. Dr. rer. nat. Wolfgang Schulz Urologische Klinik Universitätsklinikum Düsseldorf Moorenstraße 5 40225 Düsseldorf Dr. med. Rudolf Schwarz Dr. med. Thorsten Schlomm Klinik und Poliklinik für Urologie Universitätsklinikum HamburgEppendorf Martinistraße 52 20246 Hamburg Dr. med. Martin Schostak Urologische Klinik Charité - Campus Benjamin Franklin Freie- und Humboldt-Universität zu Berlin Hindenburgdamm 30 12200 Berlin Prof. Dr. med. Kurt Werner Schmid Direktor des Instituts für Pathologie und Neuropathologie Universitätsklinikum Essen Hufelandstraße 55 45122 Essen Prof. Dr. med. Bernd Schmitz-Dräger Urologische Gemeinschaftspraxis EuromedClinic Europa-Allee 1 90763 Fürth Bereich Strahlentherapie Ambulanzzentrum des UKE Martinistraße 52 20246 Hamburg Dr. med. Igor Stancik Abteilung für Urologie Krankenhaus Hietzing Wolkersbergenstraße 1 A–1130 Wien Prof. Dr. med. Christian Stief Direktor der Urologischen Klinik und Poliklinik Klinikum der Universität München – Großhadern Marchioninistraße 15 81377 München Prof. Dr. med. Michael Stöckle Prof. Dr. med. Siegfried Seeber Direktor der Inneren Klinik und Poliklinik (Tumorforschung) Universitätsklinikum Essen Hufelandstraße 55 45122 Essen Direktor der Klinik für Urologie und Kinderurologie Universitätsklinikum des Saarlandes Kirrberger Straße 1 66421 Homburg/Saar Prof. Dr. med. Urs Studer Priv.-Doz. Dr. med. Rainer Souchon Chefarzt der Strahlenklinik Allgemeines Krankenhaus Hagen Grünstraße 35 58095 Hagen Dr. med. G. Spahn Klinik Susenberg Schreberweg 9 CH–8044 Zürich Direktor der Klinik und Poliklinik für Urologie Inselspital CH–3010 Bern Prof. Dr. med. Martin Stuschke Direktor der Klinik und Poliklinik für Strahlentherapie Universitätsklinikum Essen Hufelandstraße 55 45122 Essen XIII Mitarbeiterverzeichnis Priv.-Doz. Dr. med. Udo Vanhoefer Marienkrankenhaus Zentrum Innere Medizin Chefarzt der Abteilung Hämatologie und Internistische Onkologie Alfredstraße 9 22087 Hamburg Dr. med. Ulrich Wedding Klinik und Poliklinik für Innere Medizin II Universitätsklinikum Jena Erlanger Allee 101 07747 Jena Prof. Dr. med. Manfred Wirth Direktor der Klinik und Poliklinik für Urologie Universitätsklinikum Carl Gustav Carus der Technischen Universität Dresden Fetscherstraße 74 01317 Dresden Prof. Dr. med. J.M. Wolff Chefarzt der Urologischen Klinik Caritas-Krankenhaus Bad Mergentheim Uhlandstraße 7 97980 Bad Mergentheim Prof. Dr. med. Bernd Wullich Klinik für Urologie und Kinderurologie Universitätsklinikum des Saarlandes Kirrberger Straße 1 66421 Homburg/Saar Priv.-Doz. Dr. med. D. Zaak Urologische Klinik und Poliklinik Klinikum der Universität München – Großhadern Marchioninistraße 15 81377 München I I Grundlagen 1 Molekularbiologie und Genetik – 3 2 Hinweise zur Studienplanung, Biometrie und klinischen Epidemiologie – 13 3 Lebensqualität in der Uroonkologie – 29 1 Molekularbiologie und Genetik M.-O. Grimm, W. A. Schulz, B. Wullich, R. Ackermann 1.1 Molekulare Grundlagen der Karzinogenese 1.2 Molekularbiologische Untersuchungsmethoden – 8 Durch die Entwicklung von »targetted drugs«, deren Wirksamkeit auf der Inhibition bedeutsamer biologischer Prozesse der Tumorzelle beruht, hat die Kenntnis molekularer Veränderungen solider Tumoren einen neuen Stellenwert im klinischen Alltag erhalten. Es ist erkennbar geworden, dass sich die »molekulare Diagnostik« nicht nur zum Nachweis von Tumoren eignet, sondern uns darüber hinaus in die Lage versetzen wird, über den Genotyp das klinische Verhalten eines Tumors vorherzusagen. Dies kann z. B. für die Einschätzung der Prognose nach operativer Therapie, die Wahl einer Therapie (z. B. adjuvant) oder die Auswahl von »targetted drugs« genutzt werden. Die folgenden Abschnitte geben eine Übersicht über die molekularen Grundlagen von Krebserkrankungen. Darüber hinaus werden relevante molekularbiologische Techniken dargestellt. Spezifische molekulare Veränderungen und deren klinische Bedeutung sind den einzelnen Organkapiteln zugeordnet. 1.1 Molekulare Grundlagen der Karzinogenese Für die neoplastische Transformation einer normalen Zelle sind zahlreiche genetische und epigenetische Veränderungen erforderlich. Die Zahl an Veränderungen ist nicht genau bekannt und variiert von Tumor zu Tumor. Systematische Sequenzanalysen von Tumor-DNA haben Schätzungen von 100–1000 Punktmutationen in einigen – 3 Karzinomen ergeben; in anderen finden sich überwiegend chromosomale Aberrationen, Verluste, Zugewinne und Rearrangements. Dabei sind Tumorzellen aus molekularbiologischer Sicht durch folgende Charakteristika gekennzeichnet (Hanahan u. Weinberg 2000): ▬ Selbstversorgung mit Wachstumssignalen, ▬ Unempfindlichkeit gegenüber wachstumsinhibitorischen Signalen, ▬ Umgehung der Apoptose, ▬ unbegrenztes replikatives Potenzial, ▬ fortwährende Angiogenese, ▬ Gewebsinvasion und Metastasierung. Diese Eigenschaften werden durch Veränderungen in bestimmten Genen hervorgebracht. Dazu zählen die positiv regulierenden, d. h. proliferationsfördernden Protoonkogene, und die negativ regulierenden, proliferationshemmenden Tumorsuppressorgene. Bei beiden Gruppen handelt es sich um zelleigene Gene. Sie wirken als Bestandteile bestimmter zellulärer Regulationssysteme, besonders der Zellzyklusregulation. 1.1.1 Onkogene Die sog. Protoonkogene wirken physiologisch positiv regulierend auf Wachstum, Proliferation und Differenzierung. Sie können für eine Reihe verschiedener Proteine, 4 1 Kapitel 1 · Molekularbiologie und Genetik z. B. Wachstumsfaktoren, Wachstumsfaktorrezeptoren, Signaltransduktoren (G-Proteine), Proteinkinasen oder Transkriptionsfaktoren kodieren. Somatische Mutationen der Protonkogene führen zu ihrer Aktivierung zum Onkogen und zur unkontrollierten Proliferation. Die Mutationen können Proteine mit veränderten Eigenschaften erzeugen oder zur Überproduktion eines unveränderten Onkoproteins führen. Eine nach Funktion der zugehörigen Proteine gegliederte Auswahl von Protoonkogenen findet sich in ⊡ Tab. 1.1. Aktivierungen bestimmter Onkogene sind für manche Tumorentitäten charakteristisch und korrelieren mit dem klinischen Verlauf (z. B. NMYC beim Neuroblastom, BCR-ABL bei CML). 1.1.2 Tumorsuppressorgene Eine Inaktivierung von Tumorsuppressorgenen erfordert in der Regel Veränderungen beider Allele. Dies kann durch eine Kombination von Punktmutationen, Genverlusten durch Chromosomenaberrationen oder einen epigenetischen Mechanismus, die DNA-Hypermethylierung, erfolgen (Jones u. Baylin 2002). Dabei treten bei sporadischen Tumoren die Veränderungen beider Allele voneinander unabhängig auf. Bei familiären Formen wird ein mutiertes Allel von einem Elternteil ererbt. Das mutierte Allel ist dabei auf der Ebene der einzelnen Zelle in der Regel rezessiv: Erst wenn das verbleibende intakte Allel durch eine zweite – somatische – Mutation inaktiviert wird, kommt es zur Tumorentstehung. Eine Übersicht familiärer Krebssyndrome und zugehöriger Tumorsuppressorgene gibt ⊡ Tab. 1.2. Eine charakteristische Eigenschaft der Tumorzelle ist die ungehemmte Proliferation. An der Kontrolle der Proliferation ist eine Reihe von Faktoren beteiligt. Dazu gehören extrinsische, z. B. diffundierende Wachstumsinhibitoren und Signale von anliegenden Zellen (Zell-ZellKontakt) sowie intrinsische Faktoren: Diese Signale müssen entlang einer Signalkette zum Zellkern übertragen werden, wo die Replikationskontrolle stattfindet. ⊡ Tab. 1.1. Beispiele für Onkogene und deren Funktion Onkogen Tumor Aktivierungsmechanismus Zelluläre Lokalisation Biochemische Funktion FGF1 Diverse solide Karzinome Überexpression Extrazellulär Wachstumsfaktor IGF2 Diverse Karzinome Überexpression Extrazellulär Wachstumsfaktor ERBB1 Diverse Karzinome Überexpression, Mutation Zellmembran Tyrosinkinase ERBB2 Bestimmte Karzinome Überexpression Zellmembran Tyrosinkinase KIT Hodentumoren, Gastrointestinale Stromatumoren Mutation Zellmembran Tyrosinkinase RET Schilddrüsen- und andere endokrine Karzinome Mutation, Inversion Zellmembran Tyrosinkinase MET Niere und andere Karzinome Mutation, Überexpression Zellmembran Tyrosinkinase IGFRI Leberzell- und andere Karzinome Überexpression, Mutation (?) Zellmembran Tyrosinkinase HRAS Diverse Karzinome Mutation Innere Zellmembran GTP-bindendes Protein NRAS Diverse Karzinome Mutation Innere Zellmembran GTP-bindendes Protein KRAS Diverse Karzinome Mutation Innere Zellmembran GTP-bindendes Protein BRAF Melanom, Kolon- und bestimmte andere Karzinome Mutation Innere Zellmembran, Zytoplasma Tyrosinkinase CTNNB1 Kolon- und Leberzellkarzinome, andere Mutation Innere Zellmembran, Zytoplasma, Zellkern Zytoskelett, Transkriptionsaktivierung MYC Diverse Karzinome Translokation, Überexpression, Mutation Zellkern Transkriptionsfaktor CDK4 Bestimmte Karzinome Überexpression, Mutation Zellkern Zellzyklus Regulation BCL2 Follikuläres Lymphom und diverse Karzinome Translokation, Überexpression Mitochondrien Apoptose Regulation 5 1.1 · Molekulare Grundlagen der Karzinogenese In vielen dieser Kaskaden (⊡ Tab. 1.3) sind Onkogene als positive, Tumorsuppressorproteine dagegen als negative Regulatoren (»gatekeeper«) zu finden. Zu den Tumorsuppressorproteinen gehören entsprechend Zelladhäsionsmoleküle, Signaltransduktionsproteine und solche, die im Zellkern Transkription und Replikation kontrollieren. Eine zweite große Gruppe umfasst Tumorsuppressorgene (»caretaker«), die an der DNA-Reparatur beteiligt sind oder »Checkpoints« und Apoptose (s. unten) nach Schädigungen des Genoms auslösen (Kinzler u. Vogelstein 1997). 1.1.3 Modell der »Mehrschrittkarzinogenese« Die Entwicklung eines Tumors beruht auf der Störung des komplexen Gleichgewichts von proliferationsfördernden und -hemmenden Signalen. Aktivierung von Onkogenen oder die Inaktivierung von Tumorsuppressorgenen verschiebt das Gleichgewicht in Richtung Proliferation. Da die Zellproliferation und Zelldifferenzierung durch das Zusammenwirken mehrerer Signalwege reguliert werden, ist das Ungleichgewicht in Tumorzellen in der Regel das ⊡ Tab. 1.2. Einige vererbte Krebssyndrome beim Menschen Syndrom Gen Genlokus Tumorlokalisation Funktion Retinoblastom RB1 13q14 Auge, Knochen Gatekeeper-Tumorsuppressor Li-Fraumeni TP53 17p13.1 Viele Organe Caretaker-Tumorsuppressor Hereditäres Melanom und Pankreaskarzinom CDKN2A 9p21 Haut, Pankreas, andere Gatekeeper-Tumorsuppressor Familäre Adenomatosis Polyposis Coli APC 5q21 Kolon, Rektum, andere Gatekeeper-Tumorsuppressor Cowden PTEN 10q23.3 Viele Organe Gatekeeper-Tumor Sppressor Von Hippel-Lindau VHL 3p25 Niere, Nebenniere, andere Gatekeeper-Tumorsuppressor Hereditäres Mamma- und Ovarialkarzinom BRCA1, BRCA2 17q21, 13q12 Brust, Ovar Caretaker-Tumorsuppressor HNPCC MLH1, MSH2, andere 3p21, 2p15-16 Kolon, Endometrium, Magen, andere Caretaker-Tumorsuppressor ⊡ Tab. 1.3. Übersicht über Signalkaskaden bei Krebs Signalweg oder Netzwerk Krebsarten Onkogenproteine im Signalweg MAPK-Signalweg (kanonisch) Viele RAS, BRAF, (MYC) PI3K-Signalweg Viele PI3K, AKT TGFβ-Signalweg Karzinome, bestimmte Sarkome und Leukämien JAK/STATSignalweg Bestimmte Karzinome, viele Leukämien und Lymphome NFκB-Signalweg Tumorsuppressorgene im Signalweg Anmerkungen Vermittelt die Wirkung vieler Tyrosinkinaserezeptoren PTEN, CTMP Vermittelt die Wirkung vieler Tyrosinkinaserezeptoren TGFβRII, SMAD2, SMAD4, RUNX z. T. hemmend, z. T. fördernd bei der Tumorbildung STAT3, STAT5(?) STAT1(?), SOCS1 Vermittelt die Wirkung besonders von Cytokinrezeptoren Bestimmte Leukämien, viele Karzinome REL Proteine CYLD Wirkung stark abhängig vom zellulären Kontext WNT-Signalweg Besonders Karzinome im Gastrointestinaltrakt WNT1, β-Catenin APC, AXIN, SFRP Beeinflusst auch durch E-Cadherin SHH-Signalweg Bestimmte Haut-, Gehirn und Lungentumoren SHH(?), SMO, GLI1(?) PTCH1, PTCH2, SUFU Stimuliert Gewebevorläuferzellen NOTCHSignalweg T-Zelllymphome, Karzinome NOTCH1; JAG1(?) NOTCH1 Wirkung extrem stark abhängig vom Zelltyp 1 6 1 Kapitel 1 · Molekularbiologie und Genetik Ergebnis zahlreicher genetischer Veränderungen, die sich nacheinander entwickeln. Beim kolorektalen Karzinom lassen sich genetische und morphologische Veränderungen bei der Entwicklung von normalem Epithel über benigne Vorstufen bis hin zum metastasierenden Karzinom einander zuordnen (⊡ Abb. 1.1; Vogelstein et al. 1988). Entsprechende Modelle sind auch für die Tumoren des Urogenitaltraktes vorgeschlagen worden. 1.1.4 Zellzyklusregulation Die physiologische Abfolge der Zellzyklusphasen wird im Wesentlichen durch Phosphorylierung von Proteinen gesteuert. Eine Gruppe von Proteinkinasen bildet den Kern der Zellzyklusmaschinerie. Diese sog. CDK (»cyclin dependent kinases«, zyklinabhängige Proteinkinasen) stellen Heterodimere aus einer katalytischen Kinase- und einer regulatorischen Zyklinuntereinheit dar. Für die Aktivierung WNT Signalweg Aktivierung Normales Epithel Dysplastische Krypte der Proteinkinaseeigenschaft müssen die CDK darüber hinaus selber phosphoryliert werden. Spezifische Kombinationen zwischen verschiedenen Zyklinen und Kinasen sind charakteristisch für jede Phase des Zellzyklus. Wenn die Zellen die G0-Phase verlassen, um in die G1-Phase des Zellzyklus einzutreten, werden D-Typzykline (D1, D2 und D3) und etwas später Zyklin E synthetisiert. Dagegen sind die Zykline A und B für die Regulation der DNA-SynthesePhase, der G2-Phase und der Mitose verantwortlich. Die D-Zykline komplexieren mit den katalytischen Kinaseuntereinheiten CDK4 und CDK6, Zyklin E mit der CDK2. Die Zyklin A-mRNA-Expression steigt, nachdem sich die Zyklin E-CDK2-Komplexe gebildet haben, und die Aktivierung von CDK1 durch Zyklin A und B erlaubt schließlich den Übergang in die Mitose (⊡ Abb. 1.2). Die CDKs unterliegen einer negativen Regulation durch Inhibitorproteine von Zyklin-abhängige Kinasen (CKI). Es können zwei Klassen von CKIs unterschieden werden: Die KIP/CIP Familie ist eine Gruppe strukturell KRAS Mutation Frühes Adenom Verlust der TP53 Funktion TGF-b-Antwort Inaktivierung Intermediäres Adenom Spätes Adenom Metastase Karzinom ⊡ Abb. 1.1. Hypothetischer Ablauf der Karzinogenese beim kolorektalen Karzinom. (Nach Schulz 2005) p15 p16 CDK4,6 p21 Cyclin D 1,2,3 CDK2 E2F Cyclin E RB ⊡ Abb. 1.2. 3 Ebenen der Zellzyklusregulation: Die Abbildung zeigt den Übergang G1/S Die innere Schicht besteht aus dem RB1-Phophorylierungszyklus,der die E2F-Aktivität bestimmt. Der RB1Zyklus ist von der zweiten Ebene, dem CDK/Cyklin-Zyklus, abhängig. Dieser wird seinerseits durch Phosphorylierung und Dephosphorylierung der CDK sowie die CDK-Inhibitoren reguliert (3. Ebene) (nach W.A. Schulz, Molecular Biology of Human Cancers 2005) Cyclin-AZerstörung E2F G1 Cyclin-BZerstörung Cyclin A+B M P S RB CDK2 G2 CDC2 Cyclin A CDC2 Cyclin B Cyclin B CDC2 P P p27 1 7 1.1 · Molekulare Grundlagen der Karzinogenese verwandter Proteine (p21, p27, p57), die alle in der Lage sind, verschiedene Zyklin-CDK Komplexe zu binden und zu inhibieren. In der Zelle ist ihr hauptsächliches Ziel wohl der Zyklin E-CDK2 Komplex. Die Rolle der verschiedenen Proteine in vivo liegt daher in der Vermittlung der Zellantwort auf charakteristische mitogene und antimitogene Signale. Während zum Beispiel p21 den durch p53 regulierten Zellzyklus-Arrest nach DNA-Schädigung vermittelt, löst p27 einen Zellzyklusarrest als Folge von Serumentzug, Kontaktinhibition oder Einwirkung von TGF-β aus. Die zweite Klasse von CKIs, die vier verwandten Moleküle p15, p16, p18 und p19, werden als INK4 Proteine bezeichnet. Im Gegensatz zu den Proteinen der Kip/Cip Familie sind die INK4 Proteine spezifische Inhibitoren der Zyklin-CDK-Komplexe Cyclin D-CDK4 und Cyclin D-CDK6. Die INK4 Proteine kompetieren im Gegensatz zur Kip/Cip-Familie in vivo mit den Zyklinen um CDKMonomere (⊡ Abb. 1.3). Das p15INK4B Protein spielt eine wichtige Rolle bei der Vermittlung der antimitogenen Wirkung von TGF-ß. Das p16INK4A Protein besitzt eine sehr lange Lebensdauer und akkumuliert daher allmählich über viele Zellzyklen hinweg. Diese Akkumulation wird als eine Ursache der mit der Seneszenz von Zellen einhergehenden verminderten Proliferationsfähigkeit angesehen (Evan u. Vousden 2001). Der Übergang von der G1- in die S-Phase des Zellzyklus ist derzeit am besten charakterisiert: Das RB1 Protein bindet in seiner aktiven, d. h. hypophosphorylierten Form Transkriptionsfaktoren der E2F-Familie. Diese Transkriptionsfaktoren aktivieren Gene, die für die DNA-Replikation notwendig sind (wie DNA-Polymerase α, PCNA, Dihydrofolatreduktase u. a.). Während der G1-Phase wird RB1 sukzessive durch die Zyklin D-CDK4 oder Zyklin DCDK6- und Zyklin E-CDK2-Komplexe phosphoryliert. Die Phosphorylierung von RB1 führt zur Freisetzung des P RB Corepressor HDAC Cyclin D CDK4 Transkriptionsfaktors, was wiederum die Transkription von E2F-abhängigen Genen und den Übergang in die SPhase ermöglicht (⊡ Abb. 1.3; Sherr u. McCormick 2002). Defekte in der Regulation des Zellzyklus in Tumorzellen können unmittelbar durch Aktivierung von beteiligten Protoonkogenen wie Cyclin D1, Cyclin D2 oder CDK4 ( Kap. 1.1) oder durch Verluste der Funktion von beteiligten Tumorsuppressoren wie RB1 oder p16INK4A (⊡ Tab. 1.2) entstehen. In manchen Tumoren sind sie Folge von Veränderungen in Signalkaskaden, die auf den Zellzyklus einwirken (⊡ Tab. 1.3). 1.1.5 Zellzyklus-Checkpoints und Apoptose Im Zellzyklus werden nicht nur Proliferationssignale integriert, sondern es wird auch sichergestellt, dass das genetische Material möglichst intakt weitergegeben wird. Um eine Anhäufung genomischer Fehler während der Zellteilung zu vermeiden, existieren sog »Checkpoints« innerhalb des Zellzyklus, aus denen heraus ggf. Reparaturmechanismen aktiviert werden können. Als Beispiel sei hier der p53-abhängige G1/S-Checkpoint genannt, der nach DNA-Schädigungen durch Bestrahlung oder Zytostatika die Zellen vermittelt durch p21CIP1 am Eintritt in die S-Phase hindert. Ein zweiter wichtiger Checkpoint verhindert den Eintritt von Zellen mit unvollständig replizierter DNA in die Mitose. In Tumorzellen führen Defekte in der Regulation des Zellzyklus nicht nur zu einer übersteigerten Zellproliferation, sondern beeinträchtigen auch die Funktion der Checkpoints. Darüber hinaus sind Proteine, die speziell an Checkpoints wirken wie z. B. p53, inaktiviert. Dies verursacht eine Anhäufung nicht reparierter Fehler im Genom. Der Verlust von Checkpoints bietet damit eine Cyclin E CDK2 P P P RB P HAT Koaktivator E2F E2F DP1 DP1 G0/G S ⊡ Abb. 1.3. Funktion von RB1 in der Zellzyklusregulation. Das hypophosphorylierte RB1 Protein bindet Transkriptionsfaktoren der E2F Familie. Während der G1-Phase wird RB1 sukzessive durch die Zyklin D-CDK4 und Zyklin E-CDK2 Komplexe phosphoryliert, was zur Freiset- zung von E2F führt und damit durch Transkription von E2F-abhängigen Genen den Übergang in die S-Phase ermöglicht. DP1 ist ein Heterodimer-Partner von E2F. HDAC: Histone Deacetylase; HAT: Histone Acetyl Transferase. (Nach Schulz 2005) 8 1 Kapitel 1 · Molekularbiologie und Genetik Erklärung dafür, wie es in Tumorzellen zur Anhäufung einer Vielzahl von genetischen Veränderungen wie Punktmutationen oder Chromosomenaberrationen kommen kann. Bei der Entstehung mancher Tumoren kann diese Anhäufung jedoch auch unmittelbar durch defekte Mechanismen der DNA-Reparatur kommen. Mutationen in Genen für Enzyme, welche nach der DNA-Replikation fehlgepaarte Basen erkennen und den Defekt reparieren, sind besonders gut charakterisiert. Sie machen sich durch eine Veränderung der Länge von DNASequenzen mit wiederholten einfachen Basenabfolgen, die als Mikrosatelliten bezeichnet werden, bemerkbar (Leach et al. 1993; Peltomaki et al. 1993). Störungen der Regulation der DNA-Methylierung, eines wichtigen epigenetischen Mechanismus der Genregulation, können ebenfalls die fehlerhafte Aktivierung oder Inaktivierung einer Vielzahl von Genen bewirken (Jones und Baylin 2002; Schulz 1998). Neben Zellzyklusarrest kann an Checkpoints auch Apoptose induziert werden. Die Apoptose, eine Form des programmierten Zelltods, ist ein weiterer wichtiger Mechanismus, um die Entstehung fehlerhafter und schließlich maligner Zellen zu verhindern. Sie unterscheidet sich von der pathologischen Nekrose und findet sich physiologisch bei verschiedenen Entwicklungsprozessen in mehrzelligen Organismen wie z. B. der Entwicklung, Differenzierung und Reifung hämatopoetischer und immunkompetenter Zellen. Eine Apoptose kann über einen extrinsischen oder einen intrinsischen Signalweg initiiert werden; beide münden in eine gemeinsame Exekutionskaskade. Der intrinsische Signalweg, der z. B. durch DNA-Schäden aktiviert wird, erhöht die Permeabilität von Mitochondrien. Dies führt zur Bildung eines »Apoptosom«-Protein-Komplexes, der seinerseits Exekutionscaspasen aktiviert. Caspasen sind spezifische Proteasen. Der extrinsische Signalweg wird durch Membranrezeptoren, sog »Todesrezeptoren«, initiiert. Diese werden durch Zytokine oder Oberflächenproteine von zytotoxischen Immunzellen aktiviert. Die intrazellulären »Death-Domänen« des aktivierten Rezeptors lagern FADD-Adaptor-Proteine in einem sog »DISC«-Komplex an, der wiederum verschiedene Initiatorcaspasen aktiviert. Letztere initiieren proteolytisch die Exekutionskaskade. In dieser spalten die Effektorcaspasen eine Vielfalt von Proteinen, sodass die morphologischen Kennzeichen der Apoptose eine Chromatinkondensation, Ausstülpungen der Zellmembran, eine internukleosomale DNA-Fragmentierung und eine Absonderung des Zellinhalts in Membranabschnürungen, sog. apoptotischen Körpern (»apoptotic bodies«) sind. Speziell spalten Caspasen Inhibitoren von intrazellulären DNasen, sodass auch die DNA fragmentiert wird. Nach dem Auftreten der apoptotischen Körper wird die sterbende Zelle schnell von ihren Nachbarzellen phagozytiert (Los et al. 2001; Castedo et al. 2004). Die Apoptose wird in beiden Signalwegen in mehreren Stufen reguliert. BCL-2 verhindert die Wirkung der verwandten proapoptotischen Proteine BAX oder BAK an den Mitochondrien. Weiterhin erfolgt eine Regulation durch andere Mitglieder der BCL-2 Familie, die auf unterschiedliche Stresssignale ansprechen. FLIP inhibiert den extrinsischen Signalweg an den Todesrezeptoren, während Inhibitoren der Apoptose (IAP) wie z. B. Survivin Caspasen am »Apoptosom« inhibiert. IAP werden dagegen durch SMAC/Diablo antagonisiert, das bei der Permeabilitätsänderung der Mitochondrien freigesetzt wird. In Tumoren können sowohl der intrinsische als auch der extrinsische Apoptosesignalweg beeinträchtigt sein. Zu den häufigen Veränderungen zählen Verlust der Expression des Todesrezeptors TNFRSF6 (auch FAS oder Apo-1), Überexpression von BCL-2 oder Verlust der Expression von BAX sowie Überexpression von Survivin (Cory et al. 2003). 1.2 Molekularbiologische Untersuchungsmethoden Molekularbiologische Untersuchungsmethoden werden im klinischen Alltag bereits in vielfältiger Weise vor allem für die Diagnostik von Infektionserkrankungen und von Erbkrankheiten genutzt. Bei Krebserkrankungen wird molekulare Diagnostik bisher überwiegend bei hämatologischen Krebserkrankungen eingesetzt, doch erweitert sich der Anwendungsbereich laufend. In den folgenden Abschnitten sollen deshalb wichtige Untersuchungsmethoden anhand klinisch-onkologischer Beispiele dargestellt werden. 1.2.1 PCR basierte Techniken Für die Untersuchung von Nukleinsäuren (DNA und RNA) war die Entwicklung der Polymerasekettenreaktion (PCR) durch Mullis 1985 von zentraler Bedeutung. Die PCR erlaubt die millionenfache Vervielfältigung eines bestimmten Genabschnittes in wenigen Stunden und ist damit Ausgangspunkt für zahlreiche qualitative und quantitative Untersuchungsverfahren (⊡ Abb. 1.4). Dabei sind im Gegensatz zu den früher zumeist eingesetzten BlotTechniken (Northern/Southern Blot) minimale Nukleinsäuremengen der zu untersuchenden Probe ausreichend. Bei DNA-Untersuchungen ist die PCR Voraussetzung für genetische Fingerprints, den Nachweis von Allelverlusten (»loss of heterozygosity«), Analysen genetischer Polymorphismen und die Detektion bekannter Mutationen. Dazu stehen zunehmend weitgehend automatisierte Hochdurchsatzverfahren zur Verfügung. So bedarf die Sequenzierung mittels PCR amplifizierter DNA-Ab- 1 9 1.2 · Molekularbiologische Untersuchungsmethoden Primer-Annealing 5 3 Extension 5 3 3 5 Denaturierung 2. Zyklus 3 3 3 Extension 5 5 5 Annealing 5 5 3 3 3 5 Denaturierung 3. Zyklus 5 3 5 3 Annealing 5 3 3 5 = Primer (Oligonukleotide komplementär zu Anfang bzw. Ende der Zielsequenz) ⊡ Abb. 1.4. Prinzip der Polymerasekettenreaktion (PCR). Die Abbildung zeigt die ersten Runden einer Polymerasekettenreaktion ausgehend von einem DNA-Einzelstrang, welcher durch Denaturierung entsteht. Ausgehend von den Primern synthetisiert die Polymerase einen komplementären DNA-Strang. Bei wiederholten Zyklen von Denaturierung, Primeranlagerung (»annealing«) und Synthese (»extension«) dienen die neu synthetisierten Stänge selbst als Ausgangsprodukt (»template«). Es kommt zu einer exponentiellen Vervielfältigung des zwischen den Primern liegenden DNA-Abschnitts. Bei einer doppelsträngigen DNA als Original-Template finden die gleichen Reaktionen noch einmal für den zweiten Strang statt schnitte heute nur noch eines relativ geringen Aufwandes. Klinisch kann die Sequenzierung z. B. für den Nachweis von FGF-Rezeptor-3-Mutationen, die Blasenkarzinome mit geringer Progressionstendenz kennzeichnen, genutzt werden. Sequenzierungen helfen auch beim Nachweis hereditärer Nierenzellkarzinome: Beim von-Hippel-LindauSyndrom, welches mit klarzelligen Nierenzellkarzinomen, Angiomen und Hämangioblastomen der Retina und des Zerebellums sowie Phäochromozytomen ein- 10 1 Kapitel 1 · Molekularbiologie und Genetik hergehen kann, finden sich Keimbahnmutationen des auf Chromosom 3p25 lokalisierten VHL-Gens; dabei beeinflusst die Art der Mutation das Tumorspektrum. Beim hereditären papillären Nierenzellkarzinom können Mutationen des MET-Onkogens bei betroffenen Familienmitgliedern nachgewiesen werden (Linehan et al. 2003). PCR- und Sequenzierungstechniken erlauben auch einen Nachweis von DNA-Methylierungsveränderungen. Auf diese Weise wird die Methylierung des Gens GSTP1 nachgewiesen, die für Prostatakarzinome mehr oder minder pathognomonisch ist. Dieses Verfahren kann für den Nachweis eines Prostatakarzinoms aus Biopsien, Exprimaturin oder Blut verwendet werden. Die Ergebnisse klinischer Studien stehen allerdings aus (Cottrell 2004; Harden et al. 2003; Li et al. 2005). Für die Bestimmung der mRNA-Konzentration bestimmter Gentranskripte wird heute überwiegend die Real-time-PCR eingesetzt. Dieses Verfahren erlaubt eine Quantifizierung der zu untersuchenden Probe anhand eines entsprechenden Standards und zeichnet sich durch eine hohe Präzision und Reproduzierbarkeit aus. Durch quantitative Bestimmung des BCR-ABL-Transkripts kann beispielsweise der Anteil residualer Tumorzellen während der Behandlung einer CML abgeschätzt werden. 1.2.2 Proteinnachweisverfahren Die aus Onkogenen oder Tumorsuppressorgenen durch Translation entstehenden Proteine können in Tumoren strukturelle (z. B. bei Punktmutationen) oder quantitative Veränderungen (z. B. Genamplifikationen oder Genverluste) aufweisen. Strukturelle Veränderungen können zu einer veränderten Metabolisierung und damit auch zu Veränderungen der Proteinmenge führen. Beispielsweise wird bei Punktmutationen im p53-Gen häufig eine verlängerte Halbwertszeit mit der Folge einer Proteinakkumulation beobachtet. Zur Untersuchung der Proteinexpression werden der Western-Blot, ELISA-Techniken und die Immunhistochemie eingesetzt. Mit dem Western-Blot sind eine Quantifizierung, die Detektion von Veränderungen des Molekulargewichtes oder von posttranslationalen Modifikationen möglich. Mit ELISA-Techniken kann die Proteinmenge sehr präzise und sensitiv bestimmt werden, z. B. die Konzentration verschiedener Formen des PSA im Serum. Viele Proteine agieren in der Zelle als Bestandteile größerer Komplexe; Protein-Protein-Interaktionen lassen sich u. a. durch Immunpräzipitationen nachweisen. Die Fähigkeit isolierter Proteine, an DNA zu binden, wird am einfachsten im Elektrophoretic Mobility Shift Assay (EMSA, »Band-Shift-Verfahren«) getestet. Zum Nachweis der Bindung in vivo wird die komplizierte Methodik der Chromatin-Immunopräzipation verwendet. Mit der Immunhistochemie kann eine Zuordnung zu bestimmten Zelltypen und intrazellulären Kompartimenten getroffen werden. In der histopathologischen Routine wird die Immunhistochemie vor allem für die Bestimmung von Proliferationsmarkern (Ki67, PCNA) für die Prognostik oder die Abklärung unklarer histologischer Befunde verwendet. Beim Prostatakarzinom dient hierzu eine Antikörpermischung gegen Proteine der normalen Basalzellen. Beim Mammakarzinom wird ein standardisiertes immunhistochemisches Verfahren zum Nachweis des HER-2-Proteins zur Therapiewahl eingesetzt. HER-2 kodiert für einen Wachstumsfaktorreptor aus der ERBBFamilie (daher auch ERBB2). Eine Überexpression korreliert beim Mammakrzinom mit einer ungünstigen Prognose und dem Ansprechen auf eine Kombinationstherapie, die den HER-2-Antikörper Herceptin und Zytostatika (z. B. Taxol und Carboplatin), beeinhaltet. Die Immunhistochemie wird durch eine DNA-in-situ-Hybridisierung (s. unten) gesichert, welche die für die Überexpression verantwortliche Amplifikation des HER-2-Gens nachweist (Hamilton u. Hortobagyi 2005). 1.2.3 In-situ-Hybridisierungsverfahren In-situ-Hybridisierungsverfahren (ISH) ermöglichen den Nachweis von Chromosomenaberrationen, Genveränderungen und RNA-Expression auf Einzelzellniveau. Durch den Einsatz von Fluoreszenzfarbstoffen (FISH) konnte die Empfindlichkeit und Auflösung dieser Methode deutlich erhöht werden. Das Prinzip besteht in der Hybridisierung markierter komplementärer Nukleinsäurestränge auf objektträgerfixierte Zellen (z. B. histologische Schnitte, Urinzytologie). Auf DNA-Ebene eignet sich die FISH besonders zum Nachweis von Genamplifikationen, numerischen Chromosomenveränderungen und Translokationen. Für den Nachweis von Translokationen wird dabei neben der Zielgensonde eine Zentromerprobe des entsprechenden Chromosoms verwendet. Auf RNA-Ebene liegt der Vorteil der ISH in der Möglichkeit, Zellen, die eine bestimmte mRNA-Expression aufweisen, in einem Gewebeverband zu identifizieren. Neben der klassischen Zytogenetik und der FISHMethode bietet die comparative genomische Hybridisierung (CGH) eine weitere Möglichkeit zum Nachweis von numerischen chromosomalen Veränderungen. Bei dieser Methode werden z. B. normale und Tumor-DNA farblich unterschiedlich markiert und simultan auf normale Metasphasenchromosomen hybridisiert. Eine automatisierte Detektion der verschiedenen (Fluoreszenz-) Signale erlaubt dann den Vergleich des gesamten Genoms von Tumor und Normalgewebe, d. h. also die Detektion von Genmaterialzugewinnen bzw. -verlusten. Auf RNA-Ebene 11 Literatur erlauben »differential display« und die subtraktive Hybridisierung eine direkte Identifizierung unterschiedlich exprimierter Gene. 1.2.4 Hochdurchsatzverfahren Chip-Technologien ermöglichen parallel die Untersuchung einer großen Anzahl von Genen. Ein Chip besteht aus einem Träger, auf den in einem geordneten Raster bekannte DNA- bzw. RNA-Moleküle aufgebracht werden (DNA- oder RNA-Arrays). Die Hybridisierung mit einer entsprechenden markierten Probe (z. B. Tumor-RNA) führt zur Bindung komplementärer Nukleinsäuren; anhand der Bindungsposition im Raster kann dann eine Aussage über die in der Tumorprobe vorhandenen Gene, anhand der Signalintensität sogar eine Quantifizierung vorgenommen werden. Der Vorteil dieser Technik ist offensichtlich: Es kann z. B. die Expression tausender Gene in einem einzelnen Experiment untersucht werden. In Anlehnung an die Chip-Technologie stellten Kononen et al. (1998) sog. Gewebe-Mikroarrays vor. Dabei werden Gewebeblöcke von bis zu 1000 Tumorproben zu einem neuen gemeinsamen Block verarbeitet. Dieser Block erlaubt also parallel die Untersuchung aller dieser Proben, z. B. durch Immunhistochemie oder In-situ Hybridisierung. Auch in der Proteinanalytik hat eine Entwicklung zur gleichzeitigen Analytik vieler Proteine und Proteinmodifikationen eingesetzt (»proteomics«). Dazu werden hauptsächlich massenspektrometrische Methoden wie MALDI und SELDI eingesetzt (Kolch et al. 2005; Rodland 2004). Literatur Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R, Kroemer G (2004) Cell death by mitotic catastrophe: a molecular definition. Oncogene 23: 2825–2837 Cory S, Huang DC, Adams JM (2003) The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22: 8590–8607 Cottrell SE (2004) Molecular diagnostic applications of DNA methylation technology. Clin Biochem 37: 595–604 Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411: 342–348 Hamilton A, Hortobagyi G (2005) Chemotherapy: what progress in the last 5 years? J Clin Oncol 23: 1760–1775 Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100: 57–70 Harden SV, Sanderson H, Goodman SN, Partin AA, Walsh PC, Epstein JI, Sidransky D (2003) Quantitative GSTP1 methylation and the detection of prostate adenocarcinoma in sextant biopsies. J Natl Cancer Inst 95: 1634–1637 Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3: 415–428 Kinzler KW, Vogelstein B (1997) Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 386: 761, 763 Kolch W, Mischak H, Pitt AR (2005) The molecular make-up of a tumour: proteomics in cancer research. Clin Sci (London) 108: 369–383 Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4: 844–847 Leach FS, Nicolaides NC, Papadopoulos N, Liu B, Jen J, Parsons R, Peltomaki P, Sistonen P, Aaltonen LA, Nystrom-Lahti M (1993) Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75: 1215–1225 Li LC, Carroll PR, Dahiya R (2005) Epigenetic changes in prostate cancer: implication for diagnosis and treatment. J Natl Cancer Inst 97: 103–115 Linehan WM, Walther MM, Zbar B (2003) The genetic basis of cancer of the kidney. J Urol 170: 2163–2172 Los M, Stroh C, Janicke RU, Engels IH, Schulze-Osthoff K (2001) Caspases: more than just killers? Trends Immunol 22: 31–34 Peltomaki P, Aaltonen LA, Sistonen P, Pylkkanen L, Mecklin JP, Jarvinen H, Green JS, Jass JR, Weber JL, Leach FS (1993) Genetic mapping of a locus predisposing to human colorectal cancer. Science 260: 810–812 Rodland KD (2004) Proteomics and cancer diagnosis: the potential of mass spectrometry. Clin Biochem 37: 579–583 Schulz WA (1998) DNA methylation in urological malignancies. Int J Oncol 13: 151–167 Schulz WA (2005) Molecular biology of human cancers: An advanced student’s textbook. Springer, Berlin Heidelberg New York Sherr CJ, McCormick F (2002) The RB and p53 pathways in cancer. Cancer Cell 2: 103–112 Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319: 525–532 1 2 Hinweise zur Studienplanung, Biometrie und klinischen Epidemiologie K.-H. Jöckel, H. Hirche, M. Neuhäuser 2.1 Typen und Ziele klinischer Studien – 13 2.2 Studienplanung und -organisation – 17 2.3 Dokumentation und biometrische Auswertung 2.4 Hinweise zur statistischen Beurteilung von Mittelwerten und Prozentangaben anhand von Vertrauensbereichen – 23 2.1 Typen und Ziele klinischer Studien Klinische Forschung und Grundlagenforschung sind in den letzten Jahren näher aneinander gerückt. Während moderne klinische Therapiestudien ohne Begleit- und Grundlagenforschung nicht mehr auskommen, richtet sich Letztere vermehrt auf menschenrelevante Ergebnisse aus. So lässt sich durch Therapiestudien der wechselseitige Nutzen von klinischer und experimenteller Krebsforschung belegen. Aus diesen Gründen ist es nur allzugut zu verstehen, dass sich kontrollierte klinische Studien als das wichtigste Instrument der klinischen Forschung durchgesetzt haben, um eine Behandlung auf ihre Effektivität und Unbedenklichkeit zu prüfen. Das Ziel solcher Studien ist die Erfassung von ▬ prognostischen Faktoren, ▬ Pharmakokinetik, ▬ Verträglichkeit, ▬ Wirksamkeit, ▬ Nutzen-Risiko-Relation bzw. therapeutischem Index, ▬ Lebensqualität. Daneben etablieren sich zunehmend Studienansätze aus der klinischen Epidemiologie, die epidemiologische Prinzipien und Methoden auf die Praxis der klinischen Medizin anwenden. Zu den Hauptaufgaben der klinischen Epidemiologie zählen (Beaglehole et al. 1993): ▬ Definition von Normal- und pathologischen Werten, ▬ Bestimmung der Genauigkeit diagnostischer Tests, – 21 ▬ Charakterisierung der »natürlichen« Entwicklung von Krankheitsverläufen (»natural history«) und der Bedeutung prognostischer Faktoren, ▬ Bestimmung der Effizienz etablierter Behandlungen, ▬ Integration präventiver Ansätze in die klinische Praxis. Da sich dieses Buch primär an die in der Praxis tätigen onkologischen Urologen wendet, kann auf Fragen der Methodik der Epidemiologie nicht weiter eingegangen werden. Erwähnt werden soll aber, dass die moderne Epidemiologie, die sich als die Wissenschaft von der Verteilung der Erkrankungen und deren Determinanten in der Bevölkerung versteht, inzwischen über Methoden zur Deskription und Analytik verfügt, die einen wesentlichen Beitrag zum Verständnis der Entstehung urologischer Tumoren und deren Prävention leisten. Ein wesentliches Instrument hierfür sind Krebsregister, in der alle bösartigen Neubildungen einer definierten Region vollständig erfasst werden, um einerseits umfassend über das Krebsgeschehen zu informieren und andererseits analytische, an ätiologischen Fragen orientierte Studien zu ermöglichen. Grundsätzlich unterscheidet man zwischen experimentellen (meist randomisierten) und Beobachtungsstudien. Während bei einer experimentellen randomisierten Studie die Studiensubjekte (Patienten, Probanden) zufällig einem Behandlungsregime zugewiesen werden können, geht die Beobachtungsstudie von den auf das Studiensubjekt wirkenden Einflüssen aus, sei es eine bestimmte Therapie oder eine stattgefundene Exposition (z. B. die historische Arzneimitteleinnahme). 14 2 Kapitel 2 · Hinweise zur Studienplanung, Biometrie und klinischen Epidemiologie Grundsätzlich ist die randomisierte Studie der Beobachtungsstudie überlegen (Pocock 1983): Durch die zufällige Zuteilung der Studiensubjekte zur Art der Behandlung (z. B. Placebo vs. Verum) wird sichergestellt, dass innerhalb der Grenzen des statistischen Zufalls beobachtete Unterschiede ausschließlich den Behandlungsarten, nicht aber konstituierenden Gruppenunterschieden (z. B. Prävalenz prognostischer Faktoren) zugeschrieben werden können. Andererseits sind Beobachtungsstudien vielfach kostengünstiger und stellen u. U. die einzig ethisch vertretbare Alternative dar: Interessiert man sich beispielsweise für die Auswirkung phenacetinhaltiger Medikamente auf die Entstehung von Blasen- und/oder Nierenzellkarzinomen, so verbietet sich ein prospektiv randomisierter Ansatz von vornherein. Darüber hinaus unterscheidet man zwischen einer retrospektiven und einer prospektiven Studienführung. Beide Studienkonzepte haben ihre Vorzüge und können wertvolle Informationen liefern, wenn man ihre Aussagemöglichkeiten kennt und vor diesem Hintergrund die Ergebnisse interpretiert. Retrospektive Studien sind ihrer Natur nach Beobachtungsstudien, während prospektive Studien sowohl randomisiert als auch als Beobachtungsstudien durchgeführt werden können. Wo immer möglich, sollten klinische Studien als randomisierte Studien durchgeführt werden. Eine Rolle zwischen randomisierten Studien und Beobachtungsstudien spielen nichtrandomisierte Studien, bei denen die Therapiewahl auf wenige Regimes eingeschränkt wird, die Wahl aber nicht dem Zufall überlassen ist. Sie werden in einigen Fällen verwendet, in denen die Randomisierung schwer durchsetzbar oder unmöglich ist, die äußeren Bedingungen aber kontrolliert dokumentiert werden sollen. Fälle, in denen die Randomisierung schwer durchsetzbar ist, sind z. B. Organtransplantationen, bei denen ein Spenderorgan nicht per Zufall zugeteilt werden kann. Ergebnisse aus diesen Studien sind vorsichtiger zu betrachten als randomisierte Studien, da unbekannte oder fehlerhaft beobachtete Einflüsse den Therapieeffekt systematisch verzerren können. Solche Fehlbeobachtungen und deren Auswirkungen müssen im Zusammenhang mit den Ergebnissen kritisch diskutiert werden. Da diese Störgrößen im Gegensatz zu historischen Vergleichen auf standardisierte Weise erhoben werden können, sind die Fehlerquellen deutlich eingeengt, und Ergebnisse können offensiver vorgetragen werden als Ergebnisse aus Studien mit historischen Kontrollen. 2.1.1 Retrospektive Studien Retrospektive Studien gliedern sich in nichtvergleichende (Fallberichte, Fallserien) und vergleichende Untersuchungen. Vergleichende retrospektive Studien untersuchen Per- sonengruppen, die sich z. B. im Erkrankungsstadium oder in der Behandlung unterscheiden; in der einfachsten Studiensituation wird nur dichotom nach Erkrankten (den Fällen) und Nichterkrankten (den Kontrollen) differenziert. Retrospektiv, d. h. zurückschauend, wird dann festgestellt, inwieweit sich der Krankheitsverlauf beider Gruppen unterscheidet und ob sich durch gewisse (prognostische) Faktoren der beobachtete unterschiedliche Krankheitsverlauf beschreiben lässt. So kann z. B. beim Blasenkarzinom der Einfluss von Infiltrationstiefe, Differenzierungsgrad und begleitendem Carcinoma in situ, aber auch Alter und Geschlecht des Patienten untersucht werden. Da diese Faktoren jedoch untereinander in der Regel in enger Wechselbeziehung stehen (z. B. sind schlecht differenzierte Blasenkarzinome in der Regel infiltrativ, gut differenzierte wachsen meist oberflächlich), bedarf es einer biometrischen Betreuung, um mit statistischen Verfahren diese Korrelationen herauszuarbeiten. In der Regel sind hohe Fallzahlen notwendig, um zu validen Aussagen zu gelangen. Ein weiterer Nachteil retrospektiver Studien liegt in der Unvollständigkeit der Daten: Nicht bei allen Patienten werden sämtliche – nachträglich als erforderlich erkannten – Untersuchungen in dem vereinbarten Zeitraster durchgeführt und dokumentiert (eingeschränkte Beobachtungsqualität). Ebenfalls ein Nachteil ist die Tatsache, dass Patienten für eine bestimmte Behandlung ausgesucht wurden (Selektion) und die Kriterien sich mit der Zeit und von Klinik zu Klinik ändern. Auch ändern sich die diagnostischen Möglichkeiten (Carter 1985), sodass z. B. ein T2Prostatakarzinom 1935 ein anderes ist als 2005 zu einer Zeit, in der mittels Sonographie, PSA und evtl. CT und MRT das Stadium besser festgelegt werden konnte. Rückschlüsse auf die Effizienz unterschiedlicher therapeutischer Verfahren sind nur in Ausnahmefällen möglich. Die Schlüsse gehen immer von beobachteten Wirkungen aus und zielen dann auf deren mögliche Ursachen (z. B. die therapeutischen Maßnahmen). Die Bedeutung vergleichender retrospektiver Analysen liegt in der Generierung von Hypothesen im Vorfeld kontrollierter Studien und in der Abschätzung der zu erwartenden Therapieeffekte (Rezidivhäufigkeit, Progressionsrate, Überlebensrate), aufgrund derer eine Stichprobenplanung erfolgen kann. 2.1.2 Prospektive Studien Wesentlich für eine prospektive klinische Studie sind die wissenschaftliche Qualität und die praktische Durchführbarkeit. Für die Praktikabilität sind nicht nur organisatorische, sondern auch ethische Erwägungen entscheidend. Die heute dafür geltenden Normen beruhen auf den Nürnberger Militärgerichtsurteilen von 1949, der Dekla- 15 2.1 · Typen und Ziele klinischer Studien ration von Helsinki 1962 und deren aktueller revidierter Fassung von Edinburgh 2000. Das Wohl des Patienten und die Achtung vor dem Menschen sind oberste Prinzipien. Jedoch werden neben dem Abwägen von Bedeutung, Nutzen und Risiko ausdrücklich auch das Vorgehen nach anerkannten wissenschaftlichen Grundsätzen und die wissenschaftliche Kompetenz des Ausführenden als ethische Norm postuliert (⊡ Tab. 2.1). Methodisch unzureichende Untersuchungen sind nicht nur wissenschaftlich wertlos, sondern auch unethisch. Eine Ethikkommission ist vor Studienbeginn einzuschalten. Die klinische Prüfung ist in Deutschland in § 4 Abs. 23 des Arzneimittelgesetzes (AMG) definiert. Der methodisch-wissenschaftliche Standard wurde in Deutschland seit 1987 durch die »Grundsätze zur ordnungsgemäßen Durchführung klinischer Prüfungen« definiert. Umfassendere Richtlinien zur Good Clinical Practice (GCP) wurden durch die Europäische Union (Richtlinie 2001/20/ EG) und die Internationale Harmonisierungskonferenz (ICH) zur Abstimmung der Regulatorien zwischen Japan, den USA und der EU (ICH Guideline for Good Clinical Practice, 1997) erlassen. Diese Richtlinien der GCP beinhalten auch die Forderung nach Standardarbeitsanweisungen (SOP), die den Ablauf einer klinischen Studie regeln, nachvollziehbar machen sowie die Umsetzung von GCP im Einzelnen sicherstellen sollen. ⊡ Tab. 2.1. Ethische Forderungen für den klinischen Versuch Prinzipien Normen ▬ Wohl des Patienten ▬ Achtung vor dem Menschen ▬ Gerechtigkeit/ Billigkeit ▬ Anerkannte wissenschaftliche Grundsätze ▬ Kompetenz des Ausführenden ▬ Abwägung von Bedeutung, Nutzen und Risiko ▬ Abbruch bei Schadensverdacht ▬ Wahrung der Persönlichkeitsrechte ▬ Aufklärung und Einwilligung ▬ Genehmigtes Stundenprotokoll Prospektive Studien werden üblicherweise in 4 Klassen unterteilt, die den 4 zeitlich aufeinander folgenden Phasen bei der klinischen Prüfung von Arzneimitteln entsprechen: Phase-I-Studien Mit Phase-I-Studien sollten für ein neues Medikament Fragen zur Pharmakokinetik, Bioverfügbarkeit, Toxizität und nach einem akzeptablen Dosisbereich beantwortet werden (⊡ Tab. 2.2). Die Untersuchungen werden an gesunden Freiwilligen oder im Rahmen der Onkologie auch bei Patienten mit weit fortgeschrittener Erkrankung durchgeführt, die mit bekannten Therapiemaßnahmen nicht mehr behandelbar sind (Leventhal et al. 1988). Phase-II-Studien Sie dienen der Bestimmung der Ansprechraten bei einer therapeutischen Dosis im angestrebten Indikationsgebiet (⊡ Tab. 2.2). Wirksamkeit und Verträglichkeit werden an einer kleinen Patientengruppe untersucht. Der Vergleich mit einer Kontrollgruppe (Standardtherapie oder Placebo) ist in onkologischen Phase-II-Studien selten (Leventhal et al. 1988). Das bloße Überschreiten einer minimal relevanten oder aus historischen Vergleichen bekannten Response-Rate wird als Indiz für Wirksamkeit gewertet. Randomisierte Vergleichsgruppen sind jedoch wünschenswert, da aufgrund einer Patientenselektion (z. B.: Es werden nur Patienten mit insgesamt guter Prognose in die Phase-II-Studie aufgenommen) eine falsche Einschätzung der Wirksamkeit nicht auszuschließen ist. Phase-III-Studien Hier wird ein mit neuen Therapieverfahren behandeltes Kollektiv (oder mehrere Kollektive) einer Kontrollgruppe gegenübergestellt, die eine Standardtherapie (oder ein Placebo bzw. keine Therapie) erhält. Ziel ist, Unterschiede in der Zielgröße zwischen den Vergleichsgruppen auf eine unterschiedliche Wirkung der Therapien zurückzuführen ⊡ Tab. 2.2. Studienphasen I–IV Phase I Phase II Phase III Phase IV Design ▬ einarmig ▬ geringe Fallzahlen ▬ oft noch einarmig ▬ geringe Fallzahlen ▬ Standard ist Randomisation in Vergleichsgruppen ▬ repräsentative Fallzahlen ▬ breite Anwendung nach der Zulassung ▬ große Fallzahlen Zielgruppe ▬ gesunde Probanden ▬ Krebspatienten im Endstadium ▬ Patienten mit vorgesehener Indikation (eng umrissene E/A-Kriterien) ▬ Patienten mit vorgesehener Indikation, E/A-Kriterien nahe an späterer Therapiepraxis ▬ unselektiertes Kollektiv der Patienten, an denen die Therapie angewandt wird Zielgrößen ▬ ▬ ▬ ▬ ▬ Ansprechraten bei Patienten ▬ Verträglichkeit ▬ Nachweis der Wirksamkeit ▬ Aussagen zur Arzneimittelsicherheit ▬ Nutzen/Risiko-Betrachtung ▬ Sicherheit von Arzneimitteln und Thearapie ▬ Effektivität Toxizität Bioverfügbarkeit Pharmakokinetik Dosierungsbereich 2 16 2 Kapitel 2 · Hinweise zur Studienplanung, Biometrie und klinischen Epidemiologie (⊡ Tab. 2.2). Diese Schlussweise ist aber nur gerechtfertigt, wenn die Patientengruppen bis auf den Behandlungsfaktor in allen übrigen bekannten und unbekannten Einflussgrößen vergleichbar sind. Eine Vergleichbarkeit lässt sich durch drei Forderungen sicherstellen (Harms 1992): 1. Strukturgleichheit ist die Forderung nach einer ausgewogenen Verteilung aller bekannten und unkontrollierbaren Einflussgrößen auf die Therapiegruppen. Bei den unbekannten Größen ist dies nur über eine streng zufällige Patientenzuteilung (Randomisation) auf die Studienarme zu erzielen. Bekannte Faktoren sollten vor der Randomisation dokumentiert sein und Patienten mit ausgewiesenen Risikofaktoren gleichmäßig auf die randomisierten Gruppen verteilt werden (Stratifikation). Eine Sonderform der Randomisation sind Doppelblindstrategien, die jedoch in der Onkologie nur selten Anwendung finden. Dies liegt zum einen an dem technischen Problem, die oft komplizierten (oder sogar multimodalen) Therapieschemata zu verblinden, zum anderen an der raschen »De-facto-Entblindung« aufgrund der oftmals erheblichen und charakteristischen Nebenwirkungen. Auch bei der häufigen Anlage onkologischer Studien als Langzeitprojekte mit Überleben als Endpunkt erscheint eine dauerhafte Ungewissheit über die Therapie bedenklich. 2. Behandlungsgleichheit bedeutet die gleiche therapeutische Versorgung beider Gruppen, abgesehen von dem Zielkriterium, das untersucht werden soll. Jede systematische Abweichung von der Behandlungsgleichheit muss im Voraus festgelegt werden und wird damit Teil des zu untersuchenden Therapieeffekts. Eine im Nachhinein festgestellte ungleich häufige Anwendung erlaubter Begleittherapien in beiden Therapiegruppen hat Auswirkungen auf die Interpretation der Studienergebnisse, vor allem wenn anzunehmen ist, dass diese Begleittherapien das Zielkriterium beeinflussen können. 3. Beobachtungsgleichheit schließlich zielt auf die gleiche Untersuchung beider Therapiegruppen und standardisierte Beurteilung der Ergebnisse. Bei einem »harten Endpunkt« wie der Überlebensrate oder einem im Labor feststellbaren Zielkriterium wie der PSA-Erhöhung ist die Beobachtungsgleichheit leicht zu verwirklichen. Aber auch bei Laborbefunden droht eine Verzerrungsgefahr, wenn z. B. eine einmalige Resektion mit einer langwährenden chemotherapeutischen Behandlung anhand der entsprechenden labortechnischen Überwachung des Verlaufs verglichen wird. Bei der Messung der Tumorresponse ist die Diagnostik so weit wie möglich zu standardisieren und idealerweise eine externe Beurteilung durch einen gegenüber der Therapie verblindeten Experten zu treffen. Da ein positives Ergebnis einer Phase-III-Studie meist zur Zulassung des betreffenden Arzneimittels bzw. der entsprechenden Therapie führen soll, ist bei der Auswahl des Studienkollektivs bereits auf die Repräsentationsgleichheit zu achten: Sie zielt auf die prinzipielle Generalisierbarkeit des Studienergebnisses ab, d. h. dass die Gesamtheit der Studienpatienten einen repräsentativen Querschnitt (Zufallsstichprobe aus der Zielpopulation) darstellt, auf die das Studienergebnis verallgemeinernd übertragen werden soll. Phase-IV-Studien Phase-IV-Studien entsprechen den Kriterien von PhaseIII-Studien und unterscheiden sich hiervon zunächst durch den Zulassungsstatus des jeweils verwendeten Arzneimittels. Während bislang vor allem vom Gesetzgeber der Zweck von Phase-IV-Studien hauptsächlich in der Erfassung auch seltener Nebenwirkungen und einer genaueren Abgrenzung des Anwendungsbereichs gesehen wurde, gehen die eigentlichen Forschungsmöglichkeiten im Rahmen der Phase IV darüber hinaus (Victor et al. 1991). Die Ergebnisse der Phase-I–III-Studien leiden noch weitgehend unter einer Einschränkung durch unvollständige Risikobeschreibung, durch mangelnde Repräsentativität und beschränkte Beobachtungsdauer, da sie in der Regel nur an einer relativ kleinen Anzahl von Patienten sowie zeitlich stark limitiert und ohne den umfassenden Vergleich mit evtl. vorhandenen Alternativtherapien durchgeführt werden. Dieser eingeschränkte Kenntnisstand zum Zeitpunkt der Zulassung kann durch den Einsatz kontrollierter klinischer Prüfungen unter erweiterten Bedingungen und die Ergänzung durch weitergehende Verfahren bedeutsam verbessert werden. Hierbei findet das Methodenspektrum der klinischen Phase-I–III-Studien unter praktisch orientierten Aspekten Anwendung und wird durch die Hinzunahme von epidemiologischen Studienformen, wie der Kohortenstudie, der Fallkontrollstudie und der Anwendungsbeobachtung sinnvoll ergänzt. Ein besonderes Interesse haben in letzter Zeit die sog. Anwendungsbeobachtungen erfahren. Man versteht unter einer Anwendungbeobachtung (AWB) eine Beobachtungsstudie, die bei weitestgehender Nichtbeeinflussung des Arzt-Patienten-Verhältnisses dazu geeignet ist, Erkenntnisse über zugelassene und registrierte Arzneimittel zu sammeln. Eine Präsidiumskommission der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS) hat hierzu Empfehlungen erarbeitet (Victor et al. 1997), die die AWB als ein Instrument zum wissenschaftlichen Erkenntnisgewinn etabliert. Ziele von AWB sind das Gewinnen von Erkenntnissen über 17 2.2 · Studienplanung und -organisation den Einsatz bereits zugelassener Arzneimittel oder anderer therapeutischer oder diagnostischer Ansätze, das Aufspüren seltener unerwünschter Ereignisse sowie die Erweiterung der Erkenntnisse zur Wirksamkeit (z. B. im Routineeinsatz). Anwendungsbeobachtungen können Wirksamkeitsnachweise durch kontrollierte Studien nicht ersetzen, aber Hinweise auf die Wirksamkeit im Einsatz außerhalb eines kontrollierten Studienplans liefern. Entscheidend ist, dass nach einem vorher definierten Studienplan vorgegangen wird, der dem aktuellen wissenschaftlichen Kenntnisstand entspricht (Victor et al. 1997). Hierbei wird in ähnlicher Weise wie bei einer kontrollierten klinischen Studie vorgegangen, wobei Elemente wie genauer Dosierungsplan, Randomisierung und Aufklärung wegfallen. Wichtig hingegen ist eine Formulierung von Einschlusskriterien, die am Bestreben orientiert ist, eine größtmögliche Repräsentativität zu erreichen, sowie eine klare und eindeutige A-priori-Definition der biometrischen Auswertung der Studie. Die oben genannten Empfehlungen der GMDS wurden durch das Bundesamt für Arzneimittel und Medizinprodukte weitestgehend übernommen und sind im Bundesanzeiger veröffentlicht. Klinische Studien zur Überprüfung z. B. neuer Indikationen, neuer Darreichungswege oder Kombinationen werden wie Studien für neue Arzneimittel angesehen. 2.1.3 Therapieoptimierungsstudien in der Onkologie Die Einordnung onkologischer Therapiestudien in das vorstehend beschriebene, von der Arzneimittelentwicklung geprägte Schema der Phasen I–IV ist mitunter schwierig. Sie werden häufig mit zugelassenen Medikamenten durchgeführt, die miteinander (oder mit anderen Therapiemodalitäten) kombiniert werden, und/oder zielen auf neue bzw. erweiterte Anwendungsbereiche für die Therapie. Derartige Studien befinden sich aus klinischwissenschaftlicher Sicht, aber nicht immer im Sinne des Gesetzes, wieder in der experimentellen Phase (I–III). Besonders problematisch aus rechtlicher Sicht ist der Umgang mit Studien, bei denen primär operative oder strahlentherapeutische Maßnahmen erprobt werden sollen, da diese naturgemäß weder unter das Arzneimittelgesetz noch unter die GCP-Richtlinien fallen. Aus den genannten Gründen hat sich die Deutsche Krebsgesellschaft darum bemüht, Therapieoptimierungsstudien, die der Weiterentwicklung von Therapieverfahren dienen, von Studien zur reinen Arzneimittelprüfung gemäß Arzneimittelgesetz zu differenzieren (Enghofer 1994). Bei der Therapieoptimierungsstudie ist das primäre Ziel die Behandlung des Erkrankten bei gleichzeitiger Erprobung und Weiterentwicklung eines Behandlungsschemas bzw. der Behandlungsstrategie. Sie ist somit als Teil der Regelversorgung onkologischer Patienten anzusehen. Sie dient nicht der zulassungsbezogenen Wirksamkeits- oder Verträglichkeitsprüfung eines bestimmten Arzneimittels. Diese Abgrenzung ist unter rechtlichen Gesichtspunkten (z. B. Kostenerstattung, Versicherungspflicht etc.) erforderlich, da ansonsten die Durchführung nicht unmittelbar von der Pharmaindustrie beauftragter Therapiestudien in Deutschland nahezu unmöglich wäre. 2.2 Studienplanung und -organisation Die wesentlichen Bestandteile des Protokolls (Prüfplans) einer kontrollierten klinischen Studie sind in ⊡ Tab. 2.3 am Beispiel der innerhalb der AUO empfohlenen Standardstruktur aufgeführt und werden nachfolgend erläutert. Prüfplan Ein Prüfplan soll einem Gutachtergremium als Grundlage dienen, um über die Zulässigkeit und Förderungswürdigkeit eines Prüfplans zu befinden, aber auch, um Informationsgrundlage beim täglichen Vorgehen in der Praxis der klinischen Prüfung zu sein. Ein Prüfplan ist unter Berücksichtigung beider Zielgruppen zu schreiben. Er muss einerseits Menschen verständlich sein, die nicht unmittelbar mit der Fragestellung vertraut sind, andererseits »ohne viel suchen zu müssen« Hilfestellung in der klinischen Routine und zum Vorgehen bei überraschenden Ereignissen geben. Titelseite Die Titelseite sollte zumindest die vollständige Bezeichnung des Projektes, Namen und Anschrift des Studienleiters, des Sponsors sowie weiterer mit wichtigen Funktionen betrauter Personen bzw. Institutionen sowie ggf. kooperierender Studiengruppen enthalten. Darüber hinaus ist das Datum der Erstellung sowie ggf. eine Versionsnummer anzugeben. Benennung der Verantwortlichen Der Titelseite folgt die Benennung von Verantwortlichen für die Studienleitung, der Leitung der klinischen Prüfung, der Biometrie und des Monitorings. Alle Personen sind mit Name, Telefonnummer, Adresse und Unterschrift aufgeführt. Einführung und Begründung In diesem Protokollteil ist die klinische bzw. therapeutische Situation und Problematik gemäß dem aktuellen Stand des Wissens unter Nennung der relevanten Publikationen darzustellen. Die Notwendigkeit der Studie muss im Sinne einer Nutzen-Risiko-Abschätzung überzeugend nachgewiesen werden. 2 18 2 Kapitel 2 · Hinweise zur Studienplanung, Biometrie und klinischen Epidemiologie ⊡ Tab. 2.3. Checkliste zum Studienprotokoll ⊡ Tab. 2.3. Fortsetzung Studienprotokoll Studienprotokoll Inhalt Titelseite 9.3 Patienteninformation und Datenschutz Abstrakt/ Zusammenfassung 9.4 Behördliche Meldung/Hinterlegung 9.5 Qualifikation des Studienleiters/ Prüferinformation Inhalt Inhaltsverzeichnis Einführung und Begründung 9.6 Versicherung 2 Benennung der Verantwortlichen 9.7 Überwachung/Abbruch der Studie 3 Studienziele 9.8 Datendokumentation/Referenzmaterial 4 Studiendesign 1 4.1 Art der Studie 4.2 Patientenzahl 4.3 Zeitplan 5 Patientenauswahl 5.1 Einschlusskriterien 5.2 Ausschlusskriterien 6 Prüfmedikationen, Behandlungszuordnung und -plan 6.1 Prüfmedikation bzw. -therapie 6.2 Vergleichsmedikation bzw. -therapie 6.3 Randomisation/Stratifikation/Blindung 6.4 Begleit-/Supportivmedikation 6.5 Notfallmaßnahmen 6.6 Ausscheiden eines Patienten aus der Studie 7 Untersuchungsmethoden und Beurteilungskriterien 7.1 Untersuchungszeitplan 7.2 Basisdokumentation 7.3 Erfassung der therapeutischen Effektivität 7.4 Erfassung und Meldung der Toxizität 7.5 Erfassung und Gewährleistung der Compliance 8 Datenmanagement und statistische Aspekte 8.1 Datenmanagement 8.2 Statistik/Fallzahlkalkulation/ Zwischenauswertungen 9 Ethische, gesetzliche und administrative Regelungen 9.1 Deklaration von Helsinki/§ 40, § 41 AMG/GCP-Richtlinien 9.2 Ethikvotum ▼ 9.9 Monitoring 9.10 Verwaltung der Prüfmedikationen/ Kodierung bei Blindstudien 9.11 Referenzinstitutionen/»extramural review« 9.12 Audits/Inspektionen 9.13 Archivierung 9.14 Protokolländerungen (»amendments«) 9.15 Publikation/Vertraulichkeitsbestimmung 9.16 Qualitätssicherung 10 Literaturverzeichnis 11 Beteiligte Zentren/Unterschriften Studienziel Das Studienziel bzw. die Studienziele sind kurz und prägnant, aber exakt definiert darzustellen. Wird das Ziel zunächst allgemein formuliert (z. B. »Überlegenheit einer Therapie A gegenüber Therapie B in der Behandlung des Tumors X«), so ist im Folgenden eine quantifizierbare Zielgröße (»Endpunkt«) festzulegen und deren Relevanz für das allgemein formulierte Ziel zu begründen. Dieser Zielparameter muss zum einen bei allen Patienten messbar, zum anderen von entscheidender Bedeutung für den klinischen Krankheitsverlauf (Phase III) bzw. für die weitere Entwicklung der Therapieform (Phase I/II) sein. Es ist grundsätzlich zwischen primären (konfirmatorischen) und sekundären (exploratorischen) Zielkriterien zu unterscheiden. In der Regel sollte nur ein primäres Zielkriterium definiert werden. Die Formulierung mehrerer primärer Zielkriterien führt zum statistischen Problem des multiplen Testens, dem in der Regel durch eine erhöhte Fallzahl Rechnung getragen werden muss. Studiendesign Hier sollten Angaben zur Positionierung der Studie im Rahmen der Therapieentwicklung (Phase), zur Art der Kontrollgruppe, zur Art der Therapiezuordnung, zur Anzahl der Zentren und Patienten sowie zum zeitlichen Ablauf der Studie gemacht werden. 19 2.2 · Studienplanung und -organisation Patientenauswahl Ausscheiden eines Patienten aus der Studie Durch Festlegung von Ein- und Ausschlusskriterien wird die Zielpopulation charakterisiert, für die das Studienergebnis Gültigkeit hat. Mit ihnen werden Art, Stadium und ggf. histologischer Typ der zu behandelnden Tumorerkrankung festgelegt. Klinisch relevante Parameter, die berücksichtigt werden müssen, sowie wichtige Patientenmerkmale (z. B. Alter, Geschlecht) werden spezifiziert. Die Gruppe der geeigneten Patienten wird dadurch eingeschränkt, dass sich die Patienten nach der Aufkärung über Ziele, Methode und Therapieangebot der Studie sowie über alternative Behandlungsmöglichkeiten und eine eventuelle Randomisierung zur Teilnahme bereiterklären müssen. Bei der Auswahl der Selektionskriterien sollte der Gesichtspunkt der Repräsentativität beachtet werden. Je enger das zu rekrutierende Patientengut eingegrenzt wird, desto weniger ist das konkret in der Studie erhaltene Ergebnis verallgemeinerbar. Die Bedingungen, unter denen ein Patient aus der Studie bzw. dem protokollgemäßen Ablauf ausscheidet, sind auszuführen. Neben der genauen Dokumentation der Umstände des Abbruchs sind geeignete Maßnahmen festzulegen, die auch nach Ausscheiden aus der protokollgemäßen Behandlung gewährleisten, dass möglichst vollständige Daten zum weiteren Verlauf des Patienten erfasst werden, soweit die wichtigsten Zielkriterien der Studie tangiert sind. Prüf- und Vergleichsmedikationen bzw. -therapien Alle vorliegenden Erkenntnisse zu den Therapien sind zu beschreiben, soweit sie für die Studie relevant sind. Die Durchführung der Behandlung (Dauer, Dosierung und deren Anpassung, Applikationshinweise usw.) ist darzustellen, möglichst auch in Form eines Übersichtsschemas. Randomisation/Stratifikation/Blindung Die Methode der Zuordnung der Patienten zu den Therapiearmen ist anzugeben. Bei randomisierten Studien sind Angaben zur Randomisationstechnik zu machen. Bekannte Faktoren (Stratifikationskriterien) können zur Festlegung von Patientengruppen unterschiedlicher Prognose, die dann getrennt randomisiert werden, herangezogen werden. Hierdurch werden die Ausprägungen dieser Faktoren gleichmäßig auf die Therapiearme verteilt. Bei nicht verblindeter Medikation stellt eine zentrale Randomisation per Telefon (oder ein ähnliches Kommunikationsmedium) die Standardmethode dar, von der nur in begründeten Ausnahmefällen abgewichen werden sollte. Begleit-/Supportivmedikation Erlaubte bzw. empfohlene oder ggf. nicht zulässige Begleitmedikationen sind mit Beschreibung ihrer Anwendung und den Bedingungen für ihren Einsatz aufzuführen. Auf die Verpflichtung zur Dokumentation der Begleitmedikation ist hinzuweisen, insbesondere, wenn sie unmittelbaren Einfluss auf Zielgrößen der Studien (z. B. Toxizitäten) haben kann. Notfallmaßnahmen Informationen zum Verhalten beim Auftreten bekannter oder vorhersehbarer Notfallprobleme sollten in möglichst detaillierter Form angegeben werden. In der Regel sollte eine Kontaktperson benannt werden, bei der in Notfällen rasch eine bestmögliche Beratung zu erhalten ist. Untersuchungsmethoden und Beurteilungskriterien Das Protokoll sollte einen Ablaufplan (möglichst in tabellarischer oder graphischer Form) enthalten, aus dem die Folge von Untersuchungsmaßnahmen in übersichtlicher Weise hervorgeht. Die zur Erfassung der therapeutischen Wirksamkeit dienenden Kriterien (insbesondere, soweit sie sich auf primäre Studienendpunkte beziehen) sind exakt zu definieren. Hierbei kann auf bestehende Bewertungsrichtlinien (z. B. Response-Kriterien der WHO) Bezug genommen werden. Alle erforderlichen Untersuchungen, Routinen, Befragungen und Prozeduren sind mit Art, Häufigkeit und Zeitpunkten zu beschreiben. Zentrale Dienstleistungen bzw. Qualitätskontrollen (Referenzlabor, -pathologie, »extramural review« von Befunden etc.) sind ggf. zu spezifizieren. Standards für die Einteilung und Graduierung von Nebenwirkungen stellen die WHO-Kriterien dar bzw. die neueren »common toxicity criteria« des NCI/CALGB, die Letztere spezifizieren und erheblich erweitern. Die Erfassung der vermuteten Kausalität zwischen Behandlung und unerwünschtem Ereignis ist sinnvoll. Datenmanagement und statistische Aspekte Es ist festzuhalten, von wem und in welcher Form die Datenerfassung und -verarbeitung vorgenommen und welche Qualitätssicherungsmaßnahmen ergriffen werden. Die für die biometrische Betreuung verantwortliche Person bzw. Einrichtung sollte ebenfalls benannt werden. Sie muss über eine ausreichende Erfahrung in der Planung und Auswertung klinischer Studien verfügen. Die biometrische Planung ist ausführlich und nachvollziehbar darzustellen. Hierzu gehört zunächst die Formulierung der Studienhypothese(n). Anschließend ist die Fallzahlkalkulation unter Angabe zumindest der folgenden Parameter (ggf. mit Quellen) zu beschreiben: ▬ Zielkriterium mit Definition, ▬ zugrundegelegter klinisch relevanter (bzw. zu erwartender) therapeutischer Unterschied, ▬ ggf. Streuung, ▬ Fehler erster Art (α-Fehler), ▬ Fehler zweiter Art (β-Fehler) bzw. »Power« der Studie, ▬ errechnete Fallzahl. 2 20 2 Kapitel 2 · Hinweise zur Studienplanung, Biometrie und klinischen Epidemiologie Die bei der Analyse zur Anwendung vorgesehenen Berechnungen und Testverfahren müssen spezifiziert werden (für den konfirmatorischen Teil auch mit Signifikanzniveau, einseitig oder zweiseitig), ebenso die Auswertbarkeitskategorien der Patienten und der Umgang damit. Konfirmatorischer und deskriptiver Teil der Auswertung sind festzulegen und abzugrenzen sowie die Strategie der Auswertung (»intention-to-treat«, »perprotocol« etc.). Insbesondere bei Langzeitstudien können ethische Aspekte die Durchführung von Zwischenauswertungen erforderlich machen. Zwischenauswertungen dürfen nur vorgenommen werden, wenn sie im Studienprotokoll vorgegeben sind. In diesen Fällen ist von einem erfahrenen Biometriker ein Studienplan zu erarbeiten, der die Kautelen einer solchen Zwischenauswertung prospektiv genau festlegt (biometrisches Design mit Adjustierung des α-Fehlers, Anzahl und Zeitpunkt der Interimsanalysen, Abbruchgrenzen; Fleming u. DeMets 1993) In adaptiven Designs können die Ergebnisse von Zwischenauswertungen genutzt werden, um Änderungen z. B. am Design der folgenden Studienphase(n) vorzunehmen (Bauer u. Köhne 1994; Bauer et al. 2001). In jedem Fall muss aber bei einer notwendigen Modifikation des ursprüglichen Studienprotokolls dieses vor der ersten Analyse durch ein sog. »amendment« entsprechend erweitert werden Ethische, gesetzliche und administrative Regelungen Der Protokolltext sollte die allgemeine Zusicherung enthalten, dass die Prüfung in Übereinstimmung mit den Richtlinien zur biomedizinischen Forschung am Menschen durchgeführt wird, d. h. unter Beachtung der Deklaration von Helsinki in ihrer aktuellsten Revision sowie der AMG-, GCP- und ICH-Richtlinien. Es ist anzugeben, welcher/n Ethikkommission(en) der Prüfplan zur Genehmigung vorgelegt werden soll. Jeder Patient muss vor Aufnahme in die Studie umfassend über die Prüfung informiert werden. Die rechtlichen Grundsätze über Aufklärung und Einwilligung können jedoch nicht ohne Modifizierung auf eine kontrollierte klinische Studie übertragen werden. Hier hat sich die Aufklärung unter Darlegung objektiver Inhalte auf die Chancen und Risiken der vorgeschlagenen Therapieverfahren (der neu zu prüfenden und der etablierten) zu erstrecken, wobei die Vorstellungen der medizinischen Wissenschaft über Nutzen und Risiko der neuen Behandlung ebenso darzulegen sind wie die Unsicherheiten, mit denen diese Vorstellungen belastet sind. Es sind auch solche Erkenntnisse mitzuteilen, die mit einem geringen Gewissheitsgrad ausgestattet sind. Die Notwendigkeiten ergeben sich aus dem generellen Umstand, dass jetzt der Arzt dem Patienten nicht nur als Therapeut, sondern auch als Forscher gegenübertritt. Der Aufklärungsinhalt sollte im Rahmen einer Studie standardisiert sein. Die zur Dokumentation der Patienteninformation verwendeten Schriftstücke sind kurz zu beschreiben und im Anhang des Protokolls beizufügen. Hierbei sollte es sich in der Regel um ein Informationsblatt handeln, das in einer für den Patienten verständlichen Sprache abgefasst ist und diesem ausgehändigt wird, sowie um eine vorgefertigte Aktennotiz mit Unterschrift von Arzt und Patient (in Ausnahmefällen ersatzweise einem Zeugen), die in der Krankenakte verbleibt. Rückhaltlos sind die Patienten über eine Randomisation aufzuklären, d. h. es ist ausdrücklich darauf hinzuweisen, dass die Wahl zwischen den erläuterten Therapieverfahren nicht vom Arzt, sondern aus gutem Grund ausschließlich vom Zufall bestimmt wird. Darüber hinaus sind auch die Einwilligung zu den regelmäßigen Kontrolluntersuchungen, zur Weitergabe der dokumentierten Daten in anonymisierter Form zum Zwecke der wissenschaftlichen Auswertung sowie zur Einsichtnahme in die Krankenakte durch die Studie wissenschaftlich betreuende Monitoren bzw. Behörden erforderlich. Laut Arzneimittelgesetz muss der Leiter einer klinischen Prüfung über eine mindestens 2-jährige Erfahrung in der klinischen Forschung mit Arzneimitteln verfügen. Studien im Sinne des AMG sind für alle beteiligten Zentren bzw. Ärzte bei der jeweils zuständigen Aufsichtsbehörde anzumelden. Ab August 1995 sind zudem das Studienprotokoll und das Votum der Ethikkommission bei der Bundesoberbehörde einzureichen. Der Abschluss einer Patienten- bzw. Probandenversicherung ist bei Studien im Sinne des Arzneimittelgesetzes obligatorisch. Auch bei klinischen Prüfungen außerhalb des Geltungsbereichs des AMG wird der Abschluss einer analogen Versicherung empfohlen oder aber von den Ethikkommissionen gefordert. Es ist im Prüfprotokoll zu erörtern, unter welchen Umständen ein Abbruch der gesamten Studie in Erwägung gezogen werden sollte (z. B. ungenügende Patientenrekrutierung, unerwartet schwere Toxizität, Ergebnisse von Zwischenauswertungen oder neue Erkenntnisse von anderen Arbeitsgruppen). Bei großen Studienprojekten kann ein eigens hierfür geschaffenes Überwachungskomitee mit der Entscheidung über Abbruch oder Weiterführung der Studie betraut werden. Der protokollgemäße Ablauf der klinischen Prüfung sowie die Vollständigkeit, Korrektheit und Plausibilität der ausgefüllten Dokumentationsbogen sind durch ein Monitoring sicherzustellen. Der Monitor soll die beteiligten Zentren in allen Belangen der Studiendurchführung unterstützen. Seine Tätigkeit umfasst auch die komplette bis stichprobenartige Kontrolle von Daten in den Dokumentationsbögen und den Patientenakten auf Übereinstimmung (»source data verification«). 21 2.3 · Dokumentation und biometrische Auswertung Zusätzlich zu den im Rahmen des Monitorings ergriffenen Maßnahmen kann bei einer GCP-konformen Studie eine umfangreichere Qualitätskontrolle in Form eines Auditings veranlasst werden. Ein Audit kann durch den Sponsor der Studie oder durch eine Überwachungsbzw. Zulassungsbehörde veranlasst werden. Falls alle oder ein Teil der bei der klinischen Prüfung verwendeten Medikamente vom Hersteller als Prüfmuster zur Verfügung gestellt werden (insbesondere bei noch nicht auf dem Markt befindlichen Medikamenten), sind Ausgabe, Verwendung und Verbleib der Prüfmedikation exakt zu dokumentieren. Dokumentation und biometrische Auswertung 2.3 2.3.1 Dokumentation Die zur Sammlung aller protollgemäß zu erhebenden Daten verwendeten Formulare (Dokumentationsbogen, »case report form«, CRF) müssen so beschaffen sein, dass sie eine zweifelsfreie Datenerfassung sowie die Durchführung der im Protokoll beschriebenen Analysen ermöglichen. Es ist grundsätzlich zu beachten, dass Daten, die für diese Zwecke irrelevant sind, nicht in die Dokumentationsbogen aufgenommen werden sollten, selbst wenn sie für den einzelnen Patienten und dessen weiteren Verlauf durchaus relevant sind. Solche Informationen gehören selbstverständlich ins Krankenblatt, aber nicht notwendigerweise in die Studiendokumentation. Die Erfassung von studienrelevanten Daten außerhalb der Papierform ist unter GCP nicht ausgeschlossen. Allerdings wird die Existenz eines vom Prüfarzt unterschriebenen Bogens gefordert, in den jede nachträgliche Änderung unter Angabe von Namenskürzel, Datum und Änderungsgrund so eingetragen wird, dass der originale Eintrag leserlich bleibt. Dieses Vorgehen muss in einem elektronischen Prüfbogen nachgebildet sein. Derzeit ist die Verwirklichung der papierfreien Studie noch dadurch behindert, dass eine elektronische Unterschrift zwar gesetzlich ermöglicht wurde, sich aber noch keine Stelle zur Anerkennung elektronischer Signaturen etabliert hat. Dies kann sich jedoch in Kürze ändern. Im Folgenden soll die Anlage von Bögen zur ▬ Patientenregistrierung, ▬ Patientenaufnahme, ▬ Therapie, ▬ Nachsorge, ▬ Abschlussdokumentation und ▬ spezieller Dokumentation in knapper Form und anhand von 2 Beispielen (⊡ Tab. 2.4 und 2.5) erläutert werden. ⊡ Tab. 2.4. Aufnahmebogen Patienten-Nr. Alter Geschlecht Größe (cm) Gewicht (kg) Allgemeinzustand Risikogruppe für Narkose männlich ■ cm kg WHO-Grad ASA-Kriterien Primärtumor Lokalisation: größter Durchmesser: bidimensional messbar cT: Ta ■ LK-Meastasen Biopsie Staging Op. andere größter Durchmesser N: mm ja nein Zahl: T2 ■ T3 ■ T4 ■ ■ ■ ■ ________________________ mm N0 ■ Organmetastasen Biopsie Staging-Op. andere größter Durchmesser: M: T1 ■ weiblich ■ N1 ■ N2 ■ ■ ■ ■ ________________________ mm M0 ■ M1 ■ MX ■ Lokalisation: N3 ■ 2