1.1.2: (a) 125 (b) 60 1.1.3: (a) 13983816 (b) 10000000 (c) 177147 1.1.4: (a) 1 (b) 246820 (c) 2600624 1.1.5: 529000 bzw. 528471 1.1.6: n ≥ 4 bzw. n ≥ 5 1.3.1: P (A ∩ B) = 0,05, P (A ∩ B) = 0,5, P (A ∩ B) ∪ (A ∩ B) = 0,3 1.3.2: (a) P (B) = P (A ∩ B) + P (A ∩ B) ≥ P (A ∩ B) = P (A) (b) P (C) ≥ P (A ∩ B) = P (A) + P (B) − P (A ∪ B) ≥ P (A) + P (B) − 1 1.3.3: 0,488 1.3.4: 1 6 1.3.5: (a) 0,5177 (b) 0,4914 · N −M (M m ) ( n−m ) (Nn ) (b) 0,3484 1.3.6: (a) 1.3.7: n ≥ 4 1.3.8: 0,9684 1.3.9: 1.3.10: 1 6 (a−2rs −2rk )·(b−2rs −2rk ) ab 1.4.1: 0,1 1.4.2: p 8−7p 1.4.3: (a) 0,845 (b) 0,0968 1.4.4: (a) 0,0317 (b) 0,4940 1.4.5: (a) 0,35 (b) 0,6154 1.4.6: 0,75 1 1.4.7: 0,9947 1.5.1: Ja 1.5.2: (a) (1 − p) · p (b) p (c) p + (1 − p) · p 1.5.3: (a) (b) (c) (d) 1 24 1 4 1 4 17 24 1.5.4: (a) 1 − (1 − q)m (b) 0,001 1.5.5: (a) 0,168 (b) 0,24 und 0,3293 1.5.6: (a) 0,8928 (b) 0,93 (c) 0,9746 (d) 0,9165 1.5.7: (a) 0,1072 (b) 0,8064 1.5.8: (a) 0,1593 (b) 0,6431 1.5.9: 2 Druck- und 2 Temperatursensoren mit Wahrscheinlichkeit 0,9009 2.1.1: (a) c = 1 6 (b) P (X < 2) = 12 , P (X ≤ 2) = 1, P (0 < X < 2) = (c) E(X) = 34 , Var(X) = 5 9 (d) x = 2 2.1.2: (a) c = 0,2 0 , falls x < 0, 0,5 , falls 0 ≤ x < 1, (b) FX (x) = P (X ≤ x) = 0,7 , falls 1 ≤ x < 2, 0,8 , falls 2 ≤ x < 3, 1 , falls x ≥ 3, E(X) = 1, Var(X) = 1,4, σ(X) = 1,183 2.1.3: k 0 1 2 P (X = k) 0,009 0,208 0,707 E(X) = 1,85, Var(X) = 0,2975 3 0,076 2 1 3 2.1.4: (a) k 0 1 2 3 P (X = k) 0,5 0,25 0,125 0,0625 E(X) = 0,96875, Var(X) = 1,655 4 0,03125 (b) 0,03125 2.1.5: (a) P (X = k) = (1 − p)k−1 · p (k = 1,2, . . .) (b) 0,0961 (c) 0,9044 (d) E(X) = 1 p 2.1.6: (a) 0,2364 (b) 0,0980 2.1.7: (a) 0,0966 (b) 0,0365 2.1.8: 0,7443 2.1.9: 0,8322 2.1.10: (a) 0,2275 (b) 0,6472 2.1.11: 0,1808 2.1.12: (a) E(X) = 2,5 (b) 0,0980 (c) n = 25 2.1.13: n = 10 2.1.14: 0,4493 2.1.15: (a) 0,5034 (b) 0,0498 2.1.16: (a) 0,6321 (b) 0,0183 2.2.1: (a) c = 2 3 0 , falls x < 1, (b) F (x) = − 1) , falls 1 ≤ x < 2, 1 , falls x ≥ 2, 14 E(X) = 9 , Var(X) = 0,0802, σ(X) = 0,2833 0 , falls x < 0, √ 2.2.2: (a) f (x) = x , falls 0 < x < 2, 0 , falls x > 2 1 2 (x 3 (b) E(X) = 0,9428, Var(X) = 0,1111 3 5 0,03125 2.2.3: (a) 0,3935 (b) 0,3834 (c) x = 2,773 2.2.4: E(X) = 1738,03, x = 1204,71 2.2.5: (a) 0,4031 (b) 0,3563 (c) 0,3842 2.2.6: (a) 0,6321 (b) 0,2650 und 0,3217 2.2.7: (a) 0,8664, 0,8228, 0,8413 (b) 0,8186, 0,1359, 0,6306 (c) σ 2 = 4 (d) µ = 8,798 2.2.8: 0,0441 2.2.9: (a) 0,9759 (b) 0,9876 (c) σ = 6,06 2.2.10: (a) 65 (b) µ = 150,36 2.2.11: (a) 0,0228 (b) 122,775 (c) µ = 75,165 2.2.12: (a) 0,095 (b) c = 0,0588 2.3.1: (a) E(Y1 ) = 320, Var(Y1 ) = 17, E(Y2 ) = 320, Var(Y2 ) = 25 (b) Y1 ∼ N (320,17), Y2 ∼ N (320,25) (c) P (|Y1 − 320| < 12) = 0,9964, P (|Y2 − 320| < 12) = 0,9836 2.3.2: (a) Y1 ∼ N (0,4) (b) Y2 ∼ N (µ,σ 2 ) 2.3.3: F (x) = 1 − e−λx 2.3.4: 0,971 2.3.6: (a) 0,2112 (b) n ≥ 3 2.3.7: (a) 0,0023 4 (b) n ≤ 36 2.3.9: (a) 0,2277 (b) 0,9244 2.3.10: (a) 0,0968 (b) 0,2078 2.4.1: (a) 0,9207 (b) 0,9216 2.4.2: (a) 0,0287 (b) n ≥ 58 2.4.3: n ≥ 120 2.4.4: n ≥ 72 2.4.5: (a) 0,352 (b) 0,648 2.4.6: (a) p = 0,03 (b) 0,3528 2.4.7: (a) 0,0166 (b) 0,9608 2.4.8: (a) 0,9642 (b) n ≥ 167 (c) 0,75 und n ≥ 2500 5