Zur Frage des parallel-unabhaengigen Flugbetriebes

Werbung
Mit der Bitte um Korrekturen, Anmerkungen, Diskussion…
P.Muggelberg@web.de
Peter Muggelberg,
(Mitglied der Bürgerinitiative Teltow; B.I.T. e.V.)
Entwurf: 22.10.2010
Zur Frage des parallel-unabhängigen Flugbetriebes
auf dem zukünftigen Flughafen BBI
- Eine erste Einschätzung auf der Basis von Berechnungen und Vorannahmen -
Zusammenfassung:
Ziel der Untersuchung:
Die vorliegende Untersuchung soll eine erste Einschätzung zu der Frage ermöglichen, ob eine
Forderung nach Verzicht auf den unabhängig-parallelen Flugbetrieb auf dem zukünftigen Flughafen BBI für uns als Bürgerinitiativen realistisch ist.
Grundlage:
Eine viel zitierte ICAO-Richtlinie1) sieht für den parallel-unabhängigen Flugbetrieb zweier Startbahnen vor, dass der Abflugwinkel zwischen den beiden (meist parallel gesetzten) Startbahnen
einen Mindestwinkel von 15 Grad einschließen muss.
1. Schritt: Präzise Berechnungen und Messungen in der Computersimulation
Auf der Basis unserer Messungen in Computerflugsimulationen und physikalischen Berechnungen wurde zunächst versucht, die Forderung dieses Mindestwinkels von 15 Grad zwischen den
beiden Abflugrichtungen nach zu vollziehen und auf deren Grundlagen hin zu untersuchen. Aus
diesen Grundlagen wurde danach der Sicherheitsabstand zweier (fast) gleichzeitig startender
Flugzeuge berechnet, der der gesamten Richtlinie zu Grunde liegt. Dieser Sicherheitsabstand, der
notwendig ist, den Piloten der beiden Flugzeuge im Falle der gegenseitigen unplanmäßigen gefährlichen Annäherung eine ausreichend lange Reaktionszeit zur Verfügung zu stellen, um eine
drohende Kollision zu verhindern, wurde sowohl als Zeit (ts) dargestellt, als auch als Wegstrecke
(a+z bzw. as), welche allerdings von den jeweiligen Fluggeschwindigkeiten abhängt. Anschließend wurde daraus die durchschnittliche Verzögerungszeit für Flugzeuge einer Startbahn unter
der Bedingung eines parallel-abhängigem Flugbetriebes berechnet: Danach wurde die notwendige Mindestverzögerung eines Fluges bei parallelem Startzeitpunkt auf ca. 9 Sekunden bestimmt.
2. Schritt: Schlussfolgerungen
Im zweiten Abschnitt wurde versucht, die Konsequenzen aus den Berechnungen des Sicherheitszeitabstandes zweier Flugzeuge im parallel-abhängigen Startbetrieb abzuschätzen.
Danach wird vermutet, dass die zu erwartenden zusätzlichen Folgeverzögerungen von u. U.
10-20 Sekunden pro eintretender Startplanabweichung ein Flugausfallvolumen von ca. 1% verursachen könnten. Damit würden aus diesem Ansatz sowohl wirtschaftliche Nachteile (für Fluggesellschaften und BBI-Betreiber) als auch Flugplan-Nachteile für die Passagiere erwachsen.
Um hier nicht unnötig gegen Mauern anzurennen, muss unseres Erachtens deutlicher gemacht werden, dass ein parallel-unabhängiger Betrieb der beiden Startbahnen ohne jegliche Schwierigkeiten – auch unter Einhaltung der zitierten ICAO-Richtlinie – realisierbar
ist, ohne die Flugrouten auch nur annähernd über dicht besiedeltes Gebiet zu führen:
• Die Abflugrichtung von der südlichen Startbahn nach Westen kann wie geplant (Sept.
2010) mit einem Winkel von ca. 20 Grad zur Startbahnrichtung nach Süden abknicken.
• Von der nördlichen Startbahn können die Flugzeuge nach Westen geradeaus fliegen.
• Alle Flugrouten werden im weiteren Verlauf um dicht besiedelte Gebiete herum geführt.
1)
vgl. International Civil Aviation Organization (2004): ICAO-Doc 9643 - Manual on Simultaneous Operations on Parallel or Near-Parallel Instrument Runways (SOIR)
-2-
1
1.1
Berechnungen und Messungen in der Computersimulation
Vorannahmen und Grundlagen
(Alle Zahlenangaben sind ungefähre Werte.)
Angabe
Größe
Bemerkung
Abstand der beiden parallelen Startbahnen
2 km
Divergenz der Flugbahnen bei parallel-unabhängigem Start
von zwei Startbahnen
15 Grad
lt. Richtlinie
ICAO
Messung der Höhenangaben in der Einheit „Fuß“
1 ft (Feet)
1 ft = 0,304 m
Geschwindigkeit beim Abheben des Flugzeugs (v1)
300 km/h
(auf 0 ft)
IAS ≈ 160 kn
Maximal zulässige Fluggeschwindigkeit unter 10000 ft (v2)
≈ 500 km/h
(auf 4100ft)
IAS = 250 kn
1.2
Messungen in der Computerflugsimulation (Airbus A330-200 PW)
Angabe
Größe Bemerkung
Schwacher Gegenwind
8 kn
Gesamtbeladung (Treibstoff, Passagiere, Lasten)
65 %
Flugstrecke vom Abheben bis zum Erreichen der zulässigen
Höchstgeschwindigkeit von IAS = 250 kn bei 4500 ft
f ≈ 5 km
horizontal
gemessen
Zeit vom Abheben bis zum Erreichen der zulässigen Höchstge- tf ≈33 s
schwindigkeit
Anfangsbeschleunigung eines Flugzeugs (b)
2,0 m/s
Beschleunigungsstrecke auf der Startbahn bis zum Abheben
1500 m
Beschleunigungsdauer auf der Startbahn bis zum Abheben
38 s
1.3
Berechnungen zu der Notwendigkeit der 15-Grad-Divergenz bei
parallel-unabhängigen Startbahnen
Die 15-Grad-Divergenz der anfänglichen Flugbahnen lässt sich auch für die Situation am BBI aus
den o. a. Grundannahmen berechnen. Dabei muss sich der Abstand parallel startender Flugzeuge
mit zunehmender Geschwindigkeit erhöhen, damit auch bei hoher Geschwindigkeit genug Zeit
für Notreaktionen bei Annäherung bleibt.
-3-
Es gelten folgende Abkürzungen
Größe
a
z
sf
ts
Angabe
Abstand der beiden Startbahnen (ca. 2 km)
zusätzlicher Abstand mit höherer Geschwindigkeit
Sicherheitsabstand in Flugrichtung bei parallelen Flugbahnen
zeitlicher Sicherheitsabstand (Sicherheitszeitabstand)
(Zeit bis zur Kollision, wenn 1 Flugzeug seine Bahn verlässt und in Richtung des
anderen fliegt)
Zeit zum Durchfliegen von a (a1 beim Abheben; a2 bei v2)
ta1
Abb. 1
z/2
7,5°
a+z
a
a
sf
7,5°
z/2
f
V1
V2
Berechnung des Sicherheitszeitabstandes nach Zuwachs der Geschwindigkeit (v1 → v2)
Prämisse 1:
Der Sicherheitszeitabstand muss auch bei hoher Geschwindigkeit erhalten bleiben.
Dann berechnet sich der Sicherheitszeitabstand zu ts = 24 Sekunden:
F.1)
ts =
2 km
a
=
= 0, 6 ⋅10 −3 h = 0,4 min = 24 s
km
v1 300
h
Aus Prämisse 1 ergibt sich aber für die Position, an der die zulässige Höchstgeschwindigkeit erreicht wird die Beziehung:
a+z
,
v2
F.2)
ts =
F.3)
z = t s ⋅ v 2 − a = 24 s ⋅ 500
woraus sich ergibt
km
− 2km = 1, 3 km ,
h
-4-
Für jedes der beiden Flugzeuge ergibt sich also ein zusätzlicher Abstand von
z
= + 0, 6 km .
2
Der gesamte Sicherheitsabstand wächst dann auf a + z = 3, 3 km .
F.4)
Weiterhin lässt sich aus der Abb. 1 die Beziehung ablesen:
tan(7,5) =
F.5)
z/2
,
f
woraus sich die Flugstrecke ergibt, bis v2 erreicht ist:i
f =
F.6)
z/2
=
tan(7,5)
0, 6 km
= 5,06 km .
1,3
Dieser durch geometrische Berechnung gewonnene Werte stimmt erstaunlich gut mit der in der
Computersimulation gemessenen Flugstrecke f überein (s. Tabelle in Abschnitt 1.2).
1.4
Berechnungen bei abhängigen Startbahnen mit anfänglich parallelen
Flugbahnen
Im Betrieb von parallel-abhängigen Startbahnen besteht Kollisionsgefahr, wenn mindestens eines
der beiden Flugzeuge (A und B) seine Bahn in Richtung der anderen verlässt und wenn außerdem
die Geschwindigkeitskomponente in Richtung der Startbahnen auf einen gemeinsamen Kollisionspunkt (K) hinführen.
Zunächst wird vereinfachend angenommen, dass alle Flugzeuge normalerweise mit ungefähr der
gleichen Geschwindigkeit starten und abfliegen.
Wie Abb. 2 zeigt, wird der hierbei notwendige Sicherheitsabstand (as) der beiden Flugzeuge in
Startbahnrichtung bedingt durch den Abstand a der Startbahnen und den Geschwindigkeitsunterschied der beiden Flugzeuge. Wenn z. B. das nachfolgende Flugzeug B sehr schnell fliegt
(500 km/h) und A relativ langsam (300 km/h; z. B. wegen eines Triebwerksschadens), kann B
seinen potentiellen Kollisionspartner über die Diagonale (d) auch dann noch einholen, wenn es
ihm beim Start einen großen Vorspruch gelassen hat.
Abb. 2
B1
sB
d = 3,3 km
a = 2 km
A1
as
sA
a
K
-5-
Zugrunde gelegt wird wiederum der Sicherheitszeitabstand von ts = 24 s.
Die beiden Wege, die A und B bis zur Kollision zurück legen, berechnen sich nach:
F.7)
s A = v1 ⋅ t s = 300
F.8)
d = v 2 ⋅t s
= 500
km
⋅ 24 s = 2 km
h
und
km
⋅ 24 s = 3, 3 km .
h
In dieser Zeit legt das schnellere Flugzeug die berechneten 3,3 km zurück. Mit Hilfe des Pythagoras errechnet sich dessen in Startbahnrichtung zurück gelegte Wegkomponente als:
F.9)
sB =
d 2 − a2
= 2, 6 km .
Damit ergibt sich der Sicherheitsabstand in Startbahnrichtung:
F.10)
as =
s B − s A = 2, 6 km − 2,0 km = 0, 6 km .
Der Streckenvorsprung, den das Flugzeug A bekommt, wächst so lange an, bis beide ihre Maximalgeschwindigkeit von ca. 500 km/h erreicht
haben. Der Sicherheitsabstand zwischen beiden
soll jedoch schon vorhanden sein, wenn das nachfolgende Flugzeug B von der Startbahn abhebt.
Der zeitliche Vorsprung, den das Flugzeug A bekommen müsste, wird über die quadratische Abhängigkeit des Weges von der Zeit errechnet, wobei jeweils die Zeit bis zum Abheben mit t 2 = 38s
aus der Computersimulation bestimmt wurde.
Die entsprechende Beschleunigungsstrecke auf
der Startbahn wurde zu s2 ≈ 1500 m ermittelt.
Durch Addition des geforderten Sicherheitsabstandes von as = 666,6 m ergibt sich
s1 = as + s2 = 2166,6 m.
Aus diesen Werten berechnet sich die zeitliche
Verzögerung des zweiten Starts (Flugzeug B):
F.11)
tV = t1 − t 2 =
2 ⋅ s1
− 38 s =
b
Abb. 3
s
vmax
t1
A
as
B
s2
tv
t
t2
2 ⋅ 2166,6
− 38 s ≈ 8,6 s
2
Ergebnis:
Jedes Mal, wenn sich bei abhängigem Betrieb der beiden Startbahnen (bei nicht abknickenden
Startflugbahnen) ein gleichzeitiger Start ergeben würde, müsste einer der beiden Piloten mindestens ca. 9 Sekunden warten, bis er selbst „Vollgas“ gibt…
-6-
2
Schlussfolgerungen
Die im Folgenden beschriebenen Schlussfolgerungen beruhen teilweise auf sehr vagen Vermutungen, da uns in diesem Bereich die notwendigen Beurteilungsgrundlagen fehlen:
(1)
Der parallel-abhängige Startbetrieb würde einen kombinierten Startplan mit abwechselnden
Starts auf beiden Startbahnen erfordern. Der dafür berechnete Mindestsicherheitszeitabstand
von ca. 9 Sekunden müsste eventuell auf Grund anderer Sicherheitserwägungen noch erhöht
werden.
(2)
Flugplanstörungen anderer Ursachen (Verspätungen) würden danach regelmäßig eine Folgeverzögerung von 10-20 Sekunden produzieren. Diese Verspätungen wären nur schwer kalkulierbar und wahrscheinlich nur durch die Planung einer weniger dichten Startfrequenz vermeidbar.
(3)
Wenn nur bei jedem 6. Start eine solche Verzögerung auf träte, könnte sich im Laufe eines
Tages so ein (zusätzliches) Flugausfallvolumen von evtl. 1% ergeben, da sich die Verzögerungen in der Weise addieren, dass sich die nachfolgenden Flüge nach hinten verschieben.
(4)
Im komplexen europäischen Flugverkehrssystem mit seinen vielfachen Abhängigkeiten ergeben sich auch jetzt schon immer wieder Verzögerungen, die sowohl die Fluggäste treffen
(Verspätungen, Flugstreichungen) als auch die Fluggesellschaften und Flughafenbetreiber,
indem sich daraus wirtschaftliche Nachteile ergeben. Warum sollte man sich ohne Not an dieser Stelle in Gegnerschaft zu den Flughafenbetreibern und den Fluggesellschaften begeben?
(5)
Daher erscheint es uns wichtig, fest zu stellen, dass ein parallel-unabhängiger Betrieb
der beiden Startbahnen ohne irgendwelche Schwierigkeiten – auch unter Einhaltung
der zitierten ICAO-Richtlinie – realisierbar ist, ohne die Flugrouten auch nur annähernd über dicht besiedeltes Gebiet zu führen:
– Die Abflugrichtung von der südlichen Startbahn nach Westen kann wie geplant (Sept.
2010) mit einem Winkel von ca. 20 Grad zur Startbahnrichtung nach Süden abknicken.
– Von der nördlichen Startbahn können die Flugzeuge nach Westen geradeaus fliegen.
)
– Alle Flugrouten werden im weiteren Verlauf um dicht besiedelte Gebiete herum geführt.2
2)
vgl. die vom Leiter der DFS, Hans Niebergall, vorgestellte Alternative zu den neuen Flugrouten (in BildZeitung Berlin vom 06.10.2010: „Vorschlag der Fluglärmschutzkommision an die DFS“)
Herunterladen
Random flashcards
Erstellen Lernkarten