Hochgeladen von Nutzer10273

Formelsammlung

Werbung
To save paper rubbish do not write into the formulas document.
After the exam, please return the document.
BFH/MNG, Dr. F. Löwenthal Version 4.2
πœƒπœƒ
πœ”πœ”
𝛼𝛼
Formulas in physics
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝛼𝛼 =
𝑑𝑑𝑑𝑑
Oscillations and waves ………………………………………….4
Geometrical optics ………………………………………………..5
Thermodynamics …………………………………………………..7
Atomphysics ………………………………………………………….9
Constants ……………………………………………………………..10
π›₯π›₯π›₯π›₯
π›₯π›₯π›₯π›₯
π‘₯π‘₯ = 𝑣𝑣 ⋅ 𝑑𝑑
displacement [m]
Mean velocity [m/s]
Movement on a circuit with
constant acceleration
𝑣𝑣 2
π‘Ÿπ‘Ÿ
2πœ‹πœ‹πœ‹πœ‹ 1 2πœ‹πœ‹
= =
𝑣𝑣
𝑓𝑓
πœ”πœ”
Angular acceleration
Centripetal acceleration
Vb: speed on the cicuit
r: Radius
Uniform movement on a
circuit
centripetal acceleration a
Periode T
Frequency f
1
πΈπΈπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ = πΌπΌπœ”πœ”2
2
Energy of rotation
𝐼𝐼𝐴𝐴 = 𝐼𝐼𝑆𝑆 + π‘šπ‘šπ‘šπ‘š 2
Theorem of Steiner
𝐿𝐿�⃗ = π‘Ÿπ‘Ÿβƒ— × π‘π‘βƒ—
angular momentum
οΏ½οΏ½βƒ— = π‘Ÿπ‘Ÿβƒ— × πΉπΉβƒ—
𝑀𝑀
Moment of force
Orbital angular momentum
distance [m]
velocity [m/s]
time [s]
𝐿𝐿 = 𝐼𝐼 ⋅ πœ”πœ”
distance x [m]
acceleration a [m/s^2]
𝑀𝑀 =
𝑑𝑑𝑑𝑑
= 𝐼𝐼 ⋅ 𝛼𝛼
𝑑𝑑𝑑𝑑
angular momentum of a
solid
Equation of circular motion
Force and Movement
Mean acceleration [m/s^2]
𝐹𝐹⃗ = π‘šπ‘š ⋅ π‘Žπ‘Žβƒ—
Moment in two and three dimensions
π‘Ÿπ‘Ÿβƒ— = π‘₯π‘₯𝑒𝑒���⃗1 + 𝑦𝑦𝑒𝑒����⃗
���⃗𝑧𝑧
𝑦𝑦 + 𝑧𝑧𝑒𝑒
1
πœƒπœƒ = πœƒπœƒ0 + πœ”πœ” ⋅ 𝑑𝑑 + 𝛼𝛼𝑑𝑑 2
2
𝑣𝑣 2
π‘Žπ‘Ž =
π‘Ÿπ‘Ÿ
𝑇𝑇 =
Moment with constant acceleration
1
π‘₯π‘₯ = π‘₯π‘₯0 + 𝑣𝑣0 ⋅ 𝑑𝑑 + π‘Žπ‘Žπ‘‘π‘‘ 2
2
𝑣𝑣(𝑑𝑑) = 𝑣𝑣0 + π‘Žπ‘Ž ⋅ 𝑑𝑑
𝑣𝑣 2 = 𝑣𝑣02 + 2a(π‘₯π‘₯ − π‘₯π‘₯0 )
1
π‘₯π‘₯ − π‘₯π‘₯0 = (𝑣𝑣0 + 𝑣𝑣)𝑑𝑑
2
π›₯π›₯π›₯π›₯
π‘Žπ‘ŽΜ„ =
π›₯π›₯π›₯π›₯
Angular speed
π‘Žπ‘Ž =
Movement in one dimension
Angular speed and
tangential speed
πœ”πœ” =
𝑣𝑣𝑏𝑏 = πœ”πœ” ⋅ π‘Ÿπ‘Ÿ
Mechanics
𝑣𝑣̄ =
radian
𝑣𝑣 = πœ”πœ” ⋅ π‘Ÿπ‘Ÿ
Electronics …………………………………………………………….3
π›₯π›₯π›₯π›₯ = π‘₯π‘₯2 − π‘₯π‘₯1
𝑠𝑠
π‘Ÿπ‘Ÿ
πœ™πœ™ =
Mechanis ………………………………………………………………1
angle in [rad]
angular speed [rad/s]
angular acceleration
Reibung
vector
𝑓𝑓𝑠𝑠,π‘šπ‘šπ‘Žπ‘Žπ‘₯π‘₯ = πœ‡πœ‡π‘ π‘  𝑁𝑁
displacement
π›₯π›₯π‘Ÿπ‘Ÿβƒ— = οΏ½οΏ½οΏ½βƒ—
π‘Ÿπ‘Ÿ2 − οΏ½οΏ½οΏ½βƒ—
π‘Ÿπ‘Ÿ1
throw
π‘₯π‘₯ − π‘₯π‘₯0 = (𝑣𝑣0 𝑐𝑐𝑐𝑐𝑐𝑐𝛩𝛩0 )𝑑𝑑
1
𝑦𝑦 − 𝑦𝑦0 = (𝑣𝑣0 𝑠𝑠𝑠𝑠𝑠𝑠𝛩𝛩0 )𝑑𝑑 − 𝑔𝑔𝑑𝑑 2
2
𝑔𝑔𝑔𝑔 2
𝑦𝑦(π‘₯π‘₯) = (𝑑𝑑𝑑𝑑𝑑𝑑𝛩𝛩0 )π‘₯π‘₯ −
2(𝑣𝑣0 cos𝛩𝛩0 )2
2
𝑣𝑣0
𝑅𝑅 = sin2𝛩𝛩0
Horizontal reach
𝑔𝑔
π‘“π‘“π‘˜π‘˜ = πœ‡πœ‡π‘˜π‘˜ 𝑁𝑁
Resistance of fluid
1
𝐹𝐹 = 𝐢𝐢𝑀𝑀 πœŒπœŒπœŒπœŒπ‘£π‘£ 2
2
Movement on a circle
1
𝑣𝑣𝑑𝑑 = οΏ½
2𝐹𝐹𝑔𝑔
𝐢𝐢𝑀𝑀 𝜌𝜌𝜌𝜌
2. axiom of Newton
F [N]
Maximal friction
N: Normal force
Dynamic friction
𝐢𝐢𝑀𝑀 : constant
𝜌𝜌: density of the fluide
A: front surface
v: speed
𝑣𝑣𝑑𝑑 Maximal speed
To save paper rubbish do not write into the formulas document.
After the exam, please return the document.
BFH/MNG, Dr. F. Löwenthal Version 4.2
𝐹𝐹 = π‘šπ‘š
𝑣𝑣 2
π‘Ÿπ‘Ÿ
momentum
Centripetal force
Equation of motion
Mechanical Energy
πΈπΈπ‘˜π‘˜ =
1
π‘šπ‘šπ‘£π‘£ 2
2
Kinetic energy
kinetic energy
π‘Šπ‘Š = 𝐹𝐹⃗ ⋅ π‘Ÿπ‘Ÿβƒ—
Golden rule of mechnanics
W: work
F: force
r: distance
𝐸𝐸𝑓𝑓 = 𝐸𝐸𝑖𝑖 + π‘Šπ‘Š
Change of energy
Ef: final energy
Ei: initial energy
W: work
𝐹𝐹 = −π‘˜π‘˜ ⋅ π‘₯π‘₯
Hook's law
k: spring constant
π‘Šπ‘Š = πΉπΉπ‘Ÿπ‘Ÿ ⋅ π‘₯π‘₯ = πœ‡πœ‡ ⋅ 𝑁𝑁 ⋅ π‘₯π‘₯
Friction work
π‘Šπ‘Š1,2 = ∫ 𝐹𝐹⃗ ⋅ οΏ½οΏ½οΏ½οΏ½βƒ—
𝑑𝑑𝑑𝑑
Generall math formulation
𝐸𝐸 =
1 2
π‘˜π‘˜π‘₯π‘₯
2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
π‘Šπ‘Š
𝑃𝑃̄ =
= 𝐹𝐹 ⋅ 𝑣𝑣
𝑑𝑑
𝑃𝑃 =
P: Momentum
M: mass
Total momentum
Spring energy
Instantaneous power [W]
Mean power
Potential energy
π›₯π›₯π›₯π›₯ = π‘šπ‘šπ‘”π‘”(𝑦𝑦𝑓𝑓 − 𝑦𝑦𝑖𝑖 )𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝
= π‘šπ‘šπ‘šπ‘šβ„Ž
1
π‘ˆπ‘ˆ(π‘₯π‘₯) = π‘˜π‘˜π‘₯π‘₯ 2
2
𝐹𝐹(π‘₯π‘₯) =
−𝑑𝑑𝑑𝑑(π‘₯π‘₯)
𝑑𝑑𝑑𝑑
Potential energy
Elastic energy
Force dermined from a
potiental
Collisions
J-Integral
Fm: mean force
J-Integral == change of
momentum
Impulse p or
𝐽𝐽 = πΉπΉπ‘šπ‘š ⋅ π›₯π›₯π›₯π›₯
𝐽𝐽⃗ = π›₯π›₯𝑝𝑝⃗
𝑝𝑝⃗ = π‘šπ‘š ⋅ 𝑣𝑣⃗
2
𝐹𝐹 =
πΈπΈπ‘˜π‘˜π‘˜π‘˜π‘˜π‘˜ =
οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½βƒ—
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑 = ∑
𝑝𝑝
οΏ½οΏ½οΏ½βƒ—πš€πš€
π›₯π›₯π›₯π›₯
π›₯π›₯π›₯π›₯
𝑝𝑝2
2 ⋅ π‘šπ‘š
To save paper rubbish do not write into the formulas document.
After the exam, please return the document.
BFH/MNG, Dr. F. Löwenthal Version 4.2
Elektrotechnics
Sources
π‘„π‘„π‘žπ‘ž Open circuit voltage
π‘ˆπ‘ˆπΎπΎ terminal voltage
𝑅𝑅𝑖𝑖 Internal resistance
Electrical charge
1 βˆ£π‘žπ‘ž1 βˆ£βˆ£π‘žπ‘ž2 ∣
𝐹𝐹 =
4πœ‹πœ‹πœ€πœ€0 π‘Ÿπ‘Ÿ 2
Electrical field (static)
𝐸𝐸�⃗ =
𝐸𝐸 =
𝐸𝐸 =
Current
Coulombs law
q charges
r distance between charges
Coulomb-Gesetz
πœ€πœ€0 = 8.85 ⋅ 10−12 𝐢𝐢 2 ⁄𝑁𝑁 ⋅ π‘šπ‘š2
𝑃𝑃𝑉𝑉 Power of the consumer
RV: Resistance of the
consumer
Ri: internal resistance of
the source
F Force
𝐹𝐹⃗
π‘žπ‘ž0
1 βˆ£π‘žπ‘žβˆ£βˆ£
4πœ‹πœ‹πœ€πœ€0 π‘Ÿπ‘Ÿ 2
E-Field of a point charge
1 𝑝𝑝
𝑝𝑝 = 𝑝𝑝𝑝𝑝
2πœ‹πœ‹πœ€πœ€0 𝑧𝑧 3
E-Field of a dipole
π‘ˆπ‘ˆ = 𝑅𝑅 βˆ™ 𝐼𝐼
Ohms law
U tension [V]
R Ohm’s resistance
I Current
𝐹𝐹⃗ = π‘žπ‘žπΈπΈοΏ½βƒ—
𝑅𝑅 = 𝜌𝜌 βˆ™
Unloaded Voltage divider
𝐿𝐿
𝐴𝐴
Force of a charge q in the EField
Specific resistance 𝜌𝜌
L Length
A Area
1
𝑅𝑅𝑑𝑑 = οΏ½οΏ½ οΏ½
𝑅𝑅𝑅𝑅
−1
𝑖𝑖
𝑅𝑅𝑑𝑑 = οΏ½ 𝑅𝑅𝑖𝑖
Parallel resistances
Serial resistances
𝑖𝑖
Condensor
Capacity
π‘ͺπ‘ͺ𝒕𝒕 = οΏ½ π‘ͺπ‘ͺπ’Šπ’Š
π’Šπ’Š
Ct = οΏ½οΏ½
𝑖𝑖
1
οΏ½
𝐢𝐢𝑖𝑖
−1
Parallel condensors
Serial condensors
3
π‘ˆπ‘ˆπΎπΎ = π‘„π‘„π‘žπ‘ž − 𝐼𝐼 ⋅ 𝑅𝑅𝑖𝑖
π‘ˆπ‘ˆ1 𝑅𝑅1
=
π‘ˆπ‘ˆ2 𝑅𝑅2
𝑃𝑃𝑉𝑉 = 𝑅𝑅𝑉𝑉 ⋅
π‘ˆπ‘ˆπ‘žπ‘ž2
(𝑅𝑅𝑖𝑖 + 𝑅𝑅𝑉𝑉 )2
To save paper rubbish do not write into the formulas document.
After the exam, please return the document.
BFH/MNG, Dr. F. Löwenthal Version 4.2
Oscillations
𝛾𝛾 =
Oscillations without
friction
π‘₯π‘₯̈ + πœ”πœ”02 π‘₯π‘₯ = 0
2πœ‹πœ‹
𝑇𝑇 =
πœ”πœ”
𝑓𝑓 =
1
𝑇𝑇
Harmonic oscillations
𝐸𝐸(𝑑𝑑) = 𝐸𝐸0 ⋅ 𝑒𝑒 −2𝛾𝛾𝛾𝛾
vmax = xm 𝝎𝝎
πœ”πœ” = οΏ½
π‘˜π‘˜
π‘šπ‘š
π‘šπ‘š
𝑇𝑇 = 2πœ‹πœ‹οΏ½
π‘˜π‘˜
𝑇𝑇 = 2πœ‹πœ‹οΏ½
𝐿𝐿
𝑔𝑔
𝑇𝑇 = 2πœ‹πœ‹οΏ½
πΏπΏπ‘Ÿπ‘Ÿ =
𝐼𝐼𝑐𝑐𝑐𝑐 + π‘šπ‘šπ‘šπ‘š 2
π‘šπ‘šπ‘šπ‘šπ‘šπ‘š
𝐼𝐼𝑐𝑐𝑐𝑐 + π‘šπ‘šπ‘šπ‘š 2
π‘šπ‘šπ‘šπ‘š
π‘Ÿπ‘Ÿπ‘‘π‘‘ = οΏ½
Maximal speed
Maximal acceleration
Damping term
M: mass
b: Ns/m: Fr = - b v
Damped frequency
Energy loss
Doppler shift
Periode T
𝑓𝑓′ = 𝑓𝑓 ⋅
Frequence [Hz]
π‘Žπ‘Žπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š = πœ”πœ”2 π‘₯π‘₯π‘šπ‘š
t
πœ”πœ”2 = πœ”πœ”02 − 𝛾𝛾 2
Equation of oscillations
π‘₯π‘₯(𝑑𝑑) = π‘₯π‘₯π‘šπ‘š sin(πœ”πœ”πœ”πœ” − πœ™πœ™0 )
𝑏𝑏
2π‘šπ‘š
𝑣𝑣
Resonance
=
1 ± 𝑣𝑣 ⁄𝑐𝑐
1 βˆ“ 𝑣𝑣 ⁄𝑐𝑐
f, f': Frequency
v: velocity Sender / recipient
c: velocity of sound
Resonance Equation
π‘₯π‘₯̈ + 2𝛾𝛾π‘₯π‘₯Μ‡ + πœ”πœ”02 = π‘“π‘“π‘šπ‘š cos(πœ”πœ”πœ”πœ”)
Spring oscillations
πœ”πœ” Angular velocity
Stationary solution
Periode of a spring oscillator
Periode
Mathematical pedulum
Periode
Physical pendulum
Amplitude 𝐴𝐴(πœ”πœ”) =
Reduced length of pendulum
Lr
Phase
𝛿𝛿(πœ”πœ”)
πΉπΉπ‘šπ‘š ⁄π‘šπ‘š
οΏ½(πœ”πœ”02 −πœ”πœ”2 )2 +𝑏𝑏 2 πœ”πœ”2 οΏ½π‘šπ‘š2
= arctan οΏ½
Radius of inertia r
𝐼𝐼𝑐𝑐𝑐𝑐
π‘šπ‘š
π‘Žπ‘Ž
=
Damped oscillations
Equation of damped harmonic oscillations
π‘₯π‘₯̈
+
+
=
̈ + 2 𝛾𝛾 xΜ‡ + πœ”πœ”02 x = 0
x(t)
4
𝑏𝑏𝑏𝑏
οΏ½
π‘šπ‘š(πœ”πœ”02 − πœ”πœ” 2 )
πœ”πœ”π‘…π‘… = οΏ½πœ”πœ”02 −
𝑏𝑏 2
2m2
π‘π‘π‘˜π‘˜π‘˜π‘˜π‘˜π‘˜π‘‘π‘‘ = √4π‘˜π‘˜π‘˜π‘˜
π‘₯π‘₯(t) = 𝐴𝐴(πœ”πœ”)cos(πœ”πœ”πœ”πœ” − 𝛿𝛿(πœ”πœ”))
𝑏𝑏
𝛾𝛾 =
2π‘šπ‘š
πœ”πœ”2 = πœ”πœ”02 − 𝛾𝛾 2
𝐸𝐸(𝑑𝑑) = 𝐸𝐸0 ⋅ 𝑒𝑒 −2𝛾𝛾𝛾𝛾
Resonance frequency
Critical damping
To save paper rubbish do not write into the formulas document.
After the exam, please return the document.
BFH/MNG, Dr. F. Löwenthal Version 4.2
Waves
π‘˜π‘˜ =
2πœ‹πœ‹
πœ†πœ†
Wave number
𝑇𝑇 =
2πœ‹πœ‹
πœ”πœ”
Periode
πœ”πœ” = 2πœ‹πœ‹π‘“π‘“
Angular frequency
𝜏𝜏
πœ‡πœ‡
Speed in the rope
𝑣𝑣 = πœ†πœ† ⋅ 𝑓𝑓
𝑣𝑣 = οΏ½
π‘ƒπ‘ƒπ‘šπ‘š =
1
2
πœ‡πœ‡πœ‡πœ‡πœ”πœ”2 ⋅ π‘¦π‘¦π‘šπ‘š
2
Speed of phase
Power
Stationary waves
π‘˜π‘˜ =
2πœ‹πœ‹
πœ†πœ†
𝑓𝑓𝑛𝑛 = 𝑛𝑛 ⋅
𝑐𝑐
2L
wave number
Eigenfrequenzen
n = 1,2,3, …
5
To save paper rubbish do not write into the formulas document.
After the exam, please return the document.
BFH/MNG, Dr. F. Löwenthal Version 4.2
[P] = W
Geometrical Optics
Besselsche Methode
Mirrors
für Sammellinse
p: distance of object
i: distance of image
f: focal length
R: Radius of curvature
a: Abstand Objekt –
Bild
e: Abstand der beiden
Linsenpositionen
f: Brennweite
Refraction
n =
Für Streulinse
Refraction index n
c: speed of light in
vacuum
cm: speed of light in
medium
c
cm
f1: Brennweiter Streulinse
a: Distanz ObjektStreulinse
d: Distanz StreulinseSammellinse
b: Distanz: SammellinseBild
Law of refaction
Sign convention
r : radius of curvature
r < 0 for concave
surface
r > 0 für convex
surface
Dioptry D
Korrektur Kurzsichtig
smax: maximale
Sehdistanz
Lens maker formula
1
= (n-1)οΏ½r 1
1
r2
οΏ½
Abbildungsgleichung
dünner Linsen
Intensität bei
isotropem
Leuchtkörper
[I] = W/m2
𝑛𝑛 ⋅ sin(𝛼𝛼) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑀𝑀 =
−𝐡𝐡 −𝑖𝑖
=
𝐺𝐺
𝑝𝑝
1 1 1
+ =
𝑝𝑝 𝑖𝑖 𝑓𝑓
Korrektur Weitsichtig 𝐼𝐼(π‘Ÿπ‘Ÿ) = 𝑃𝑃
2
ri < 0 for convave
ri > 0 for convex
f
𝑐𝑐0
π‘π‘π‘šπ‘š
Linse in Serie
Dünne Linsen in Serie
𝑛𝑛1 𝑛𝑛2 𝑛𝑛2 − 𝑛𝑛1
+
=
𝑝𝑝
𝑖𝑖
π‘Ÿπ‘Ÿ
Refraction on a
spherical surface
1
π‘›π‘›π‘šπ‘š =
s0: normale
Sehdistanz
smin: minimale
Sehdistanz
4πœ‹πœ‹π‘Ÿπ‘Ÿ
smin > s0 für
Weitsichtigkeit
1 1 1
+ =
𝑝𝑝 𝑖𝑖 𝑓𝑓
𝑅𝑅 = 2 ⋅ 𝑓𝑓
Optische
Instrumente
Konvex f < 0
konkav f > 0
6
π‘›π‘›π‘šπ‘š =
𝑐𝑐0
π‘π‘π‘šπ‘š
To save paper rubbish do not write into the formulas document.
After the exam, please return the document.
BFH/MNG, Dr. F. Löwenthal Version 4.2
Lupe
s0 = 25 cm
f Brennweite der Lupe
Beamexpander
D:
Ausgangsdurchmesse
r
d:
Eingangsdurchmesser
f1: Eingangslinse
f2: Ausgangslinse
𝑒𝑒 = 2οΏ½
π‘Žπ‘Ž2
− π‘Žπ‘Ž ⋅ 𝑓𝑓
4
π‘Žπ‘Ž2 − 𝑒𝑒 2
4 ⋅ π‘Žπ‘Ž
1 1
1
= +
𝑓𝑓1 π‘Žπ‘Ž 𝑑𝑑 − 1
1 1
−
𝑓𝑓2 𝑏𝑏
𝑓𝑓 =
π‘“π‘“π‘œπ‘œπ‘œπ‘œπ‘œπ‘œ
Fernrohr
π‘šπ‘š =
π‘“π‘“π‘œπ‘œπ‘œπ‘œ
m:
Winkelvergrösserung
fok: Okularlinse
fobj: Objektivlinse
Mikroskop
s0 = 25 cm
s = Tubuslänge
fok = Okularbrennweite
fobj = Objektivbrennweite
𝑀𝑀 =
π›₯π›₯π›₯π›₯ =
−𝐡𝐡 −𝑖𝑖
=
𝐺𝐺
𝑝𝑝
𝐷𝐷 =
1
1
𝑓𝑓
=
−1
π‘ π‘ π‘šπ‘šπ‘šπ‘šπ‘šπ‘š
𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒
π›₯π›₯π›₯π›₯ < 0
1
1
π›₯π›₯π›₯π›₯ = −
𝑠𝑠0 π‘ π‘ π‘šπ‘šπ‘šπ‘šπ‘šπ‘š
π›₯π›₯π›₯π›₯ > 0
𝑒𝑒 = 2οΏ½
𝑓𝑓 =
π‘Žπ‘Ž2
− π‘Žπ‘Ž ⋅ 𝑓𝑓
4
π‘Žπ‘Ž2 − 𝑒𝑒 2
4 ⋅ π‘Žπ‘Ž
7
To save paper rubbish do not write into the formulas document.
After the exam, please return the document.
BFH/MNG, Dr. F. Löwenthal Version 4.2
Thermodynamics
π›₯π›₯𝐿𝐿 = 𝛼𝛼 ⋅ 𝐿𝐿 ⋅ π›₯π›₯𝑇𝑇
π›₯π›₯𝐴𝐴 = 𝛽𝛽 ⋅ 𝐴𝐴 ⋅ π›₯π›₯π›₯π›₯
𝛽𝛽 = 2 ⋅ 𝛼𝛼
π›₯π›₯π›₯π›₯ = 𝛾𝛾 ⋅ 𝑉𝑉 ⋅ π›₯π›₯π›₯π›₯
𝛾𝛾 = 3 ⋅ 𝛼𝛼
[Rs] = J/kg/K
[v] = m3/kg
M: mol volume
v: spezific volume
vm: molar volume
1.Dimensions
2 dimensions
Equation of real gas
3 dimensions
𝑝𝑝 ⋅ 𝑉𝑉 = 𝑍𝑍 ⋅ 𝑅𝑅𝑠𝑠 ⋅ 𝑇𝑇
π‘£π‘£π‘šπ‘š = 𝑀𝑀 ⋅ 𝑣𝑣
𝑅𝑅 = 𝑅𝑅𝑠𝑠 ⋅ 𝑀𝑀
Q = m C βˆ†T
Specific heat
capacity
[C] = J kg/K
NA = 6.022·1023/mol
𝑄𝑄 = 𝑛𝑛 ⋅ π‘π‘π‘šπ‘š ⋅ π›₯π›₯𝑇𝑇
Molar heat
[cm] = J/mol/K
[n] mol-1
Work Wx
𝐢𝐢̄ =
𝑇𝑇2
∫𝑇𝑇1
𝐢𝐢(𝑇𝑇)𝑑𝑑𝑑𝑑
𝑇𝑇2 − 𝑇𝑇1
𝑄𝑄 = 𝐿𝐿 ⋅ π‘šπ‘š
𝑑𝑑𝑑𝑑𝑣𝑣 = 𝑝𝑝(𝑉𝑉) ⋅ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑣𝑣 = 𝑝𝑝(𝑣𝑣)𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑝𝑝 = −𝑉𝑉(𝑝𝑝) ⋅ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑝𝑝 = −𝑣𝑣(𝑝𝑝) ⋅ 𝑑𝑑𝑑𝑑
Mean value
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
Melting enthalpy
[L] = J/kg
𝑝𝑝 ⋅ 𝑣𝑣 = 𝑅𝑅𝑠𝑠 𝑇𝑇
𝑝𝑝 ⋅ π‘£π‘£π‘šπ‘š = 𝑅𝑅 ⋅ 𝑇𝑇
Avogadro number
V-work Wv
p-work
Heat
[Q] = J
[q] = J/kg
(Spec.) Inner Energy
𝑓𝑓
[U] = J
⋅ 𝑁𝑁𝐴𝐴 ⋅ π‘˜π‘˜π΅π΅ ⋅ 𝑇𝑇
[u] = J/kg
2
𝑅𝑅 = 𝑁𝑁𝐴𝐴 ⋅ π‘˜π‘˜π΅π΅
Perfect gas: f = 3
π‘ˆπ‘ˆ =
Perfect gas
𝑝𝑝 ⋅ 𝑉𝑉 = π‘šπ‘š ⋅ 𝑅𝑅𝑠𝑠 ⋅ 𝑇𝑇
Real gas factor Z
𝛿𝛿𝛿𝛿
𝑇𝑇
π›Ώπ›Ώπ‘žπ‘ž
𝑑𝑑𝑑𝑑 =
𝑇𝑇
𝑑𝑑𝑑𝑑 =
Equation of equilibrium
of the perfect gas.
[V] = m3
[p] = Pa
[m] = kg
Rs = spez. Gaskonstante
R = universelle
Gaskontante
R = 8.314 J/mol/K
(spez.) Entropy S, s
[S] = J/K
[s] = J/K/kg
4 Principles of thermodynamics
8
To save paper rubbish do not write into the formulas document.
After the exam, please return the document.
BFH/MNG, Dr. F. Löwenthal Version 4.2
Four elementary Processes in
closed systems
Closed systems
𝑑𝑑𝑑𝑑𝑝𝑝 = −𝑉𝑉(𝑝𝑝) ⋅ 𝑑𝑑𝑑𝑑 Volume work
𝑑𝑑𝑑𝑑𝑝𝑝 = −𝑣𝑣(𝑝𝑝) ⋅ 𝑑𝑑𝑑𝑑
Isochor process
1a. closed systems
𝑑𝑑𝑑𝑑 = 𝛿𝛿𝛿𝛿 − π›Ώπ›Ώπ‘Šπ‘Šπ‘‰π‘‰
𝑑𝑑𝑑𝑑 = 𝛿𝛿𝛿𝛿 − 𝛿𝛿𝑀𝑀𝑣𝑣
V = const
𝑑𝑑𝑑𝑑𝑣𝑣 = 𝑝𝑝(𝑉𝑉) ⋅ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑀𝑀𝑣𝑣 = 𝑝𝑝(𝑣𝑣)𝑑𝑑𝑑𝑑
Work
Conversion of energy
𝑝𝑝
= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇
Equation of state
1b. open Systems
heat
𝑑𝑑𝑑𝑑 π‘₯π‘₯ = 𝛿𝛿𝛿𝛿 − π›Ώπ›Ώπ‘Šπ‘Šπ‘π‘
π‘‘π‘‘β„Ž π‘₯π‘₯ = 𝛿𝛿𝛿𝛿 − 𝛿𝛿𝑀𝑀𝑝𝑝
v-work
isobar process
2. natural processes 𝑑𝑑𝑑𝑑 = 𝛿𝛿𝛿𝛿
𝑇𝑇
takes the direction to
𝛿𝛿𝛿𝛿
𝑑𝑑𝑑𝑑 =
increase the total
𝑇𝑇
entropy.
π‘žπ‘ž12 = 𝑒𝑒2 − 𝑒𝑒1
𝑀𝑀𝑣𝑣 = 0
p = const
𝑣𝑣
= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇
Equation of state
heat
𝑑𝑑𝑑𝑑 > 0
𝑑𝑑𝑑𝑑 > 0
v-work
π‘žπ‘ž12 = β„Ž2 − β„Ž1
𝑀𝑀𝑣𝑣12 = 𝑅𝑅 ⋅ (𝑇𝑇2 − 𝑇𝑇1 )
isotherm process T = const
lim π›₯π›₯π›₯π›₯ = 0
3. It is not possible to 𝑇𝑇→0
lim π›₯π›₯π›₯π›₯ = 0
hit the absolut zero
𝑇𝑇→0
temperature by a
natural process.
Equation of state
heat
v-work
0. Two systems in a
thermodynamical
process have the
same temperature.
adiabatic process
𝑝𝑝
= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇
𝑝𝑝 ⋅ 𝑣𝑣 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑
𝑀𝑀𝑣𝑣12 = 𝑝𝑝1 ⋅ 𝑣𝑣1 ⋅ ln
π‘žπ‘ž12 = 𝑅𝑅 ⋅ 𝑇𝑇 ⋅ ln
𝑣𝑣2
𝑣𝑣1
k = adiabatic
exponent
k = cp/cv = 1.4
Equation of state
𝑝𝑝 ⋅ 𝑣𝑣 π‘˜π‘˜ = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑝𝑝 ⋅ 𝑣𝑣 π‘˜π‘˜ = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑
𝑝𝑝 ⋅ 𝑣𝑣 π‘˜π‘˜ = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑
open systems
9
𝑣𝑣2
𝑣𝑣1
𝑝𝑝 ⋅ 𝑣𝑣 π‘˜π‘˜ = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑
𝐻𝐻 = π‘ˆπ‘ˆ + 𝑝𝑝 ⋅ 𝑉𝑉
β„Ž = 𝑒𝑒 + 𝑝𝑝 ⋅ 𝑣𝑣
To save paper rubbish do not write into the formulas document.
After the exam, please return the document.
BFH/MNG, Dr. F. Löwenthal Version 4.2
Enthalpy H, h
[H] = J
[h] = J/kg
Totale Enthalpy H*
[H*] = J
[h*] = J/kg
1
𝐻𝐻 π‘₯π‘₯ = 𝐻𝐻 + π‘šπ‘šπ‘π‘ 2
2
1
𝐻𝐻 π‘₯π‘₯ = π‘ˆπ‘ˆ + 𝑝𝑝𝑝𝑝 + π‘šπ‘šπ‘šπ‘š 2
2
1
β„Ž π‘₯π‘₯ = β„Ž + 𝑐𝑐 2
2
1
β„Ž π‘₯π‘₯ = 𝑒𝑒 + 𝑝𝑝 ⋅ 𝑣𝑣 + 𝑐𝑐 2
2
10
To save paper rubbish do not write into the formulas document.
After the exam, please return the document.
BFH/MNG, Dr. F. Löwenthal Version 4.2
Quantum
mechanics
Quantisierung der
Energieniveaus
h: Planckkonstante
f: Photonenfrequenz
Eu: oberes
Energieniveau
El: unteres
Energieniveau
Projektion des
Spindipolmoment
Photoelektrischer
Effekt
β„Ž ⋅ 𝑓𝑓 = 𝐸𝐸𝑒𝑒 − 𝐸𝐸𝑙𝑙
Photonenenergie
f: Frequenz
Wellenlänge Frequenz
Photonenimpuls
Photonenmasse
Atomarer Drehimpuls
(Bahndrehimpuls)
Klassischer Drehimpuls
Atomarer
Bahndrehimpuls
L Bahndrehimpuls
l Quantenzahl, 𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙 <
𝑛𝑛
Photelektrische
Gleichung
𝐿𝐿 = π‘šπ‘š ⋅ π‘Ÿπ‘Ÿ ⋅ 𝑣𝑣
𝐿𝐿 = �𝑙𝑙(𝑙𝑙 + 1) ⋅ ℏ
K: Kinetische Energie
der
Austrittselektronen
πœ™πœ™π‘Žπ‘Ž Austrittsarbeit
V: Stoppotential
e: Elementarladung
n: Hauptquantenzahl
Z-Projektion des
Drehimpulses,
βˆ£π‘šπ‘šπ‘§π‘§ ∣ ≤ 𝑙𝑙, π‘šπ‘šπ‘§π‘§ πœ–πœ–πœ–πœ–
Bohrsches
Magnetonπœ‡πœ‡π΅π΅
Magnetisches
Dipolmoment
Z-Projektion des
magnetischen
Dipolmoments
𝐿𝐿𝑧𝑧 = π‘šπ‘šπ‘™π‘™ ⋅ ℏ
πœ‡πœ‡π΅π΅ =
πœ‡πœ‡π΅π΅ =
οΏ½οΏ½οΏ½οΏ½βƒ—
Materiewellen –
Wahrscheinlichkeit
𝑒𝑒
ℏ
2π‘šπ‘šπ‘’π‘’
De Broglie
Wellenlänge
−𝑒𝑒
οΏ½βƒ—
𝐿𝐿
2π‘šπ‘š
πœ‡πœ‡π΅π΅,𝑧𝑧 = −π‘šπ‘šπ‘™π‘™ ⋅ πœ‡πœ‡π΅π΅
π‘šπ‘šπ‘™π‘™ πœ–πœ–πœ–πœ–
Elektronenspin
(Eigendrehimpuls)
Spin des Elektrons
Z-Projektion des
Spins
Magnetisches
Dipolmoment des
Spins
𝑆𝑆 = �𝑠𝑠(𝑠𝑠 + 1) ⋅ ℏ
1
𝑠𝑠 =
2
𝑆𝑆𝑧𝑧 = π‘šπ‘šπ‘ π‘  ⋅ ℏ
1
π‘šπ‘šπ‘ π‘  = ± οΏ½ οΏ½
2
π‘’π‘’β„Ž
πœ‡πœ‡π‘ π‘  = − οΏ½ οΏ½ 𝑆𝑆⃗
οΏ½οΏ½οΏ½βƒ—
π‘šπ‘šπ‘’π‘’
οΏ½οΏ½οΏ½βƒ—
πœ‡πœ‡π‘ π‘  = −2πœ‡πœ‡π΅π΅ 𝑆𝑆⃗
11
πœ‡πœ‡π‘ π‘ ,𝑧𝑧 = ±πœ‡πœ‡π΅π΅
πœ‡πœ‡π΅π΅ =
οΏ½οΏ½οΏ½οΏ½βƒ—
−𝑒𝑒
𝐿𝐿�⃗
2π‘šπ‘š
πΈπΈπ‘π‘β„Ž = β„Žπ‘“π‘“
πœ†πœ† ⋅ 𝑓𝑓 = 𝑐𝑐
β„Ž ⋅ 𝑓𝑓 β„Ž
=
𝑐𝑐
πœ†πœ†
β„Ž ⋅ 𝑓𝑓
π‘šπ‘šπ‘π‘β„Ž = 2
𝑐𝑐
𝑝𝑝 =
πΈπΈπ‘π‘β„Ž = 𝐾𝐾 + πœ™πœ™π‘Žπ‘Ž
β„Ž ⋅ 𝑓𝑓 = 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ⋅ 𝑒𝑒 + πœ™πœ™π‘Žπ‘Ž
β„Ž
πœ™πœ™π‘Žπ‘Ž
𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = οΏ½ οΏ½ ⋅ 𝑓𝑓 −
𝑒𝑒
𝑒𝑒
πœ‡πœ‡π‘ π‘ ,𝑧𝑧 = ±πœ‡πœ‡π΅π΅
πœ†πœ† =
β„Ž
𝑝𝑝
To save paper rubbish do not write into the formulas document.
After the exam, please return the document.
BFH/MNG, Dr. F. Löwenthal Version 4.2
Constants
Speed of light
Elementary charge
Electron mass
Proton mass
Avogadro number
Boltzmann constant
Planck constant h,
β„Ž
oder ℏ = 2πœ‹πœ‹
Bohr magneton
𝑐𝑐 = 2.998 ⋅ 108 π‘šπ‘š⁄𝑠𝑠
𝑒𝑒 = 1.60210 ⋅ 10−19 𝐢𝐢
π‘šπ‘šπ‘’π‘’ = 9.11 ⋅ 10−31 π‘˜π‘˜π‘˜π‘˜
π‘šπ‘šπ‘π‘ = 1.67 ⋅ 10−27 π‘˜π‘˜π‘˜π‘˜
π‘˜π‘˜ = 1.38 ⋅ 10−23 𝐽𝐽⁄𝐾𝐾
β„Ž = 6.626 ⋅ 10−34 𝐽𝐽𝐽𝐽
ℏ = 1.054 ⋅ 10−34 𝐽𝐽𝐽𝐽
π‘šπ‘š
=
⋅
πœ‡πœ‡π΅π΅ = 9.274 ⋅ 10−24 𝐽𝐽⁄𝑇𝑇
𝑁𝑁𝐴𝐴
= 6.0225
⋅ 1023 π‘šπ‘šπ‘šπ‘šπ‘šπ‘š −1
12
To save paper rubbish do not write into the formulas document.
After the exam, please return the document.
BFH/MNG, Dr. F. Löwenthal Version 4.2
Updates
Version
updated
2.3
- Formatting, some minor corrections
upload: 27.10.17
2.4
- Update sign in lens maker formula
- Added: Work of loss
upload: 31.10.17
2.5
- added: cinematics of rotation
upload 7.11.17
2.6
- update: mechanics formula for air
resistance
2.7
Added: formulas for physics of atoms
Added: stern – triangle – formula
minor corrections
upload 14.11.17
2.8
Minor corrections
3.0
- added: some formulas for oscillations
upload 17.4.18
3.2
- added: some formulas of atom physics
- added: some formulas of electronics
22.2.18
3.3
- added: Some formulas rotations
- added: some formulas standing waves
11.6.18
4.0
- Change to english
- minor corrections
4.1
upload 14.01.18
11.9.18
05.06.20
- added: some formulas of electrotechnics
5.6.2020
4.2
- translated: thermodynamics -> english
13
Herunterladen