Vorlesung SS ‘08 Quantum Computing Physik der Quanten-Informationsverarbeitung C. Meyer, C.M. Schneider Vorlesung Quantum Computing SS ‘08 1 in the media Heise-online: 14.02.2007 12:49 << Vorige | Nächste >> Erster Quantenprozessor der Welt vorgestellt Das kanadische Start-up D-Wave Systems hat in Kalifornien einen Quantenprozessor mit 16 Qubits vorgestellt. Die Qubits werden von je einer kreisförmigen supraleitenden Stromschleife aus dem Metall Niob dargestellt. Die Betriebstemperatur des Prozessors beträgt 5 Millikelvin, 0,005 Grad über dem absoluten Nullpunkt. "Unser Durchbruch in der Quantentechnologie ist ein wichtiger Fortschritt bei der Lösung wirtschaftlicher und wissenschaftlicher Probleme, die bislang nur schwer in den Griff zu bekommen waren", erklärte DWave-Systems CEO Herb Martin. Vorlesung Quantum Computing SS ‘08 2 plan… 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. introduction quantum mechanical background basic operations/superposition/entanglement quantum computing with ion traps Deutsch-Josza algorithm and its implementation NMR quantum computing Shor algorithm and its implementation (15 = 5x3) magnetic resonance QC in solid state quantum dots for quantum computing first experiments superconducting qubits quantum error correction 13. invitation to Research Centre Jülich Vorlesung Quantum Computing SS ‘08 3 technology of computation Erbaut Built Technik Techniques 1941: Kondrad Zuse Rechenwerk: 600 relays Relais “Processor”: 600 Speicher: 1400relays Relais Memory: 1400 Taktfrequenz 5.3 Hertz Frequency RechenMultiplikation: 3 sec Multiplication Speed geschwindigkeit Addition: 0,7 sec Datenformat 22bit-Zahlen 22-bit digits im Format Gleitkommaformat floating point Weight Gewicht ~1t Einsatzgebiete techn. Berechnungen, Technical calculations, Tasks Schach chess 2001: Vandersypen et al. 1016 Moleküle mit je 7 NMR aktiven Atomen 1 Hertz einfaches logisches Gatter: ~ 20 ms 4bit-Zahlen ~4t Rebuilt 1960 by K. Zuse Primfaktorzerlegung: Deutsches Museum München 15 = 3 · 5 • 2-state (binary) logic: “0” and “1” • state is defined by a switch: “open” & “closed” • logic operations: array of switches (gates) • mechanical switches (Zuse Z1) • electromechanical relays (Zuse Z3) Vorlesung Quantum Computing SS ‘08 4 ENIAC 1946 • Electronic Numerical Integrator And Computer • 17468 vacuum tubes • weight 20 t, power consumption 150 kW Vorlesung Quantum Computing SS ‘08 5 Moore’s law Vorlesung Quantum Computing SS ‘08 6 birth of microelectronics • 1947 invention of transistor • 1958 invention of integrated circuit (TI) • 1971 first microprocessor (4004) Vorlesung Quantum Computing SS ‘08 7 microprocessors 4-bit 8-bit 16-bit 32-bit Intel 4004 1971 Intel 8080 1974 1985 2000 64-bit 2005 increase power of microprocessors by bus bit width and clock frequency Vorlesung Quantum Computing SS ‘08 8 microprocessor design http://www.offis.de/ Dr. Jens Appell Embedded Hardware- / Software-Systems Vorlesung Quantum Computing SS ‘08 9 quantum effects in silicon technology barrier silicon size of viruses and DNA semiconductor industry exponential extrapolation proteins, macro-molecules minimum size of chip components (nm) breaking the barrier? year source: Vorlesung Quantum Computing SS ‘08 10 computational power we want to increase our capability of solving problems increase { speed accuracy complexity what is a complex problem? Is there a subset of {−2,−3,15,14,7,−10} which adds up to 0? Easy: verify that sum{-2,-3,15,-10} = 0 Difficult: identify this subset Similar problem: find prime factors of 1601 Vorlesung Quantum Computing SS ‘08 11 fundamental approach Question: Is there a general method or process by which one could decide whether a mathematical proposition could be proved? Answer: No! what is a computer and what kind of problems can it solve? “Turing Machine” On computable numbers, with an application to the Entscheidungsproblem Proceedings of the London Mathematical Society, Series 2, Vol.42 (1936 - 37) pages 230 to 265 online available: http://web.comlab.ox.ac.uk/oucl/research/areas/ieg/e-library/sources/tp2-ie.pdf Vorlesung Quantum Computing SS ‘08 12 Turing machine ə 0 0 0 1 1 1 0 0 0 0 0 b,f head • Consists of a stripe and a head • Stripe consists of symbols “0”, “1”, “blank”, “ə” • Head can be in states, e.g. „b“ and „f“ • Symbols determine the action of the head: - Writing/Erasing of symbol - Direction of reading - change of state Vorlesung Quantum Computing SS ‘08 13 boolean algebra and logic gates classical (irreversible) computing in 1-bit logic gates: out gate identity x 0 1 Id 0 1 NOT x 0 1 x Vorlesung Quantum Computing SS ‘08 NOT x 1 0 NOT x 14 boolean algebra and logic gates 2-bit logic gates: x x x OR y y x y 0 0 1 1 0 1 0 1 x OR y 0 1 1 1 Vorlesung Quantum Computing SS ‘08 x AND y y x y 0 0 1 1 0 1 0 1 x AND y 0 0 0 1 15 Turing Machine ə 0 0 0 1 1 1 0 0 0 0 0 ə b 0 b 0 b 0 b 1 b 1 f 1 bf 0 1 bf 0 1 fbf 10 ff b 0 0 ff head head head head head head head head head head head head what happens, depends on the states of the head table of states 56 + 7 = 63 Vorlesung Quantum Computing SS ‘08 0 1 ə b R,b R,f P1,L,b f E,R,f R,f L,b R,b 16 complexity classes • Deterministic Turing Machine (DTM) models all classical computers therefore called “universal” P: problems that can be solved with a DTM in polynomial time • Probabilistic Turing Machine (PTM): actions are carried out with certain probability ZPP: problems that can be solved with a PTM with zero probability of error in polynomial time. • Non-Deterministic Turing Machine (NDTM): multiple computation paths (“computation tree”) NP: problems that can be solved with a NDTM in polynomial time. Vorlesung Quantum Computing SS ‘08 17 traveling salesman problem the traveling salesman problem is NP-complete What is the shortest route between a given number of cities? scales exponentially with number of cities for a DTM Can a physical implementation be found that provides a better solution? Experiment Vorlesung Quantum Computing SS ‘08 18 physical system designed for problem soap bubbles can (theoretically) be used to solve some optimization problems in NP-complete quantum soap bubbles computer ≠ NDTM ≠ NDTM [Feynman1982] “ ....certain quantum mechanical effects cannot be simulated efficiently on a classical computer. This observation led to speculation that perhaps computation in general could be done more efficiently if it made use of these quantum effects.” R. P. Feynman, Int. J. Theor. Phys. 21, 467(1982); Found. Phys. 16, 507(1986) Vorlesung Quantum Computing SS ‘08 19 Quantum Turing Machine • Read, write, and shift operations are accomplished by quantum interactions • Tape and head exist each in a quantum state • symbols “0” or “1” are replaced by qubits, which can hold a quantum superposition of |0 and |1 The quantum Turing machine can encode many inputs to a problem simultaneously, and then it can perform calculations on all the inputs at the same time. This is called quantum parallelism. David Deutsch, Proceedings of the Royal Society of London A 400 (1985), 97 Vorlesung Quantum Computing SS ‘08 20 quantum bits conventional bit on <=> 3.2 - 5.5 V <=> 1 off <=> -0.5 - 0.8 V <=> 0 quantum mechanical bit (qubit) | 1 <=> ( <=> ( <=> Vorlesung Quantum Computing SS ‘08 1 0 0 1 ( ( | 0 <=> superposition: a1| 0 + a2| 1 = a1 a2 ( ) 21 quantum parallelism input output {} { }{} a1 |00> + a2 |01> + a3 |10> + a4 |11> Vorlesung Quantum Computing SS ‘08 F a1 F |00> + a2 F |01> + a3 F |10> + a4 F |11> = b1 |00> + b2 |01> + b3 |10> + b4 |11> 22 quantum computing quantum-bit (qubit) 0 a a1 0 + a2 1 = a1 2 1 classical bit 1 ON 3.2 – 5.5 V 0 OFF -0.5 – 0.8 V calculation decoherence preparation Y0 H U read-out H-1 time Y|A|Y time exponentially faster for Fourier transformation (Shor algorithm) Vorlesung Quantum Computing SS ‘08 23 important algorithms algorithm task classical computer quantum computer database search N data sets e.g. find no. in phonebook (60 million data sets) 30 million steps 7746 steps 1019 steps 89 steps prime factor decomposition e.g. 128 bit decoding Vorlesung Quantum Computing SS ‘08 24 trapped ions R. Blatt group (Innsbruck) '97 - '00 C. Monroe, D.Wineland, et al. Nature 2000 Vorlesung Quantum Computing SS ‘08 C. Monroe group, Michigan ‘06 25 spin resonance Vorlesung Quantum Computing SS ‘08 26 quantum dots F. Koppens et al., Nature 2006 J. R. Petta et al., Science 2005 Vorlesung Quantum Computing SS ‘08 27 superconductor electronics Y. Nakamura et al., Nature 1999 Vorlesung Quantum Computing SS ‘08 I. Chiorescu et al., Science 2003 28 implementations atoms or ions in traps electronic states of atoms/ions vibrational modes F spin resonance (NMR, ESR) spins in molecules or solid state matrix hyperfine, exchange, or magnetic dipolar interaction F C C F (CH)5 Fe (CO)2 F C C F spintronic electron spins in quantum dots exchange interaction superconductor electronics Cooper pairs or flux Josephson coupling Vorlesung Quantum Computing SS ‘08 29 from classic to quantum we live in Hilbert Space H the state of our world is |y Vorlesung Quantum Computing SS ‘08 30