INHALTSVERZEICHNIS i Inhaltsverzeichnis I Collegium Logicum 1 Die Aussagenlogik 1.1 Syntax der Aussagenlogik . . . . . . . . . . . . . . . . . . . 1.1.1 Definition der aussagenlogischen Formeln . . . . . . . 1.1.2 Induktion und Rekursion . . . . . . . . . . . . . . . . 1.1.3 Beweis durch Induktion über den Formelaufbau . . . . 1.1.4 Definition durch Rekursion über den Formelaufbau . . 1.2 Semantik der Aussagenlogik . . . . . . . . . . . . . . . . . . 1.2.1 Wahrheitsfunktionen . . . . . . . . . . . . . . . . . . 1.2.2 Interpretation von aussagenlogischen Formeln . . . . . 1.2.3 Definition der wichtigsten semantischen Begriffe . . . 1.2.4 Einige wichtige allgemeingültige Formeln . . . . . . . 1.2.5 Einige wichtige Äquivalenzen . . . . . . . . . . . . . 1.2.6 Boolesche Gesetze . . . . . . . . . . . . . . . . . . . 1.2.7 Einsetzungsregel . . . . . . . . . . . . . . . . . . . . 1.2.8 Ersetzungsregel . . . . . . . . . . . . . . . . . . . . . 1.3 Normalformen . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.1 Entscheidungsverfahren für Boolesche Normalformen 1.3.2 Boolescher Repräsentationssatz . . . . . . . . . . . . 1.3.3 Das Dualitätsprinzip . . . . . . . . . . . . . . . . . . 1.4 Der semantische Folgerungsbegriff: Erfüllbarkeit . . . . . . . 1.4.1 Zusammenhang zwischen Folgerung und Erfüllbarkeit 1.5 Der syntaktische Folgerungsbegriff: Beweisbarkeit . . . . . . 1.5.1 Axiomensysteme und Beweise . . . . . . . . . . . . . 1.5.2 Korrektheit und Vollständigkeit . . . . . . . . . . . . 1.5.3 Einige Axiomensysteme der Aussagenlogik . . . . . . 1.6 Vollständigkeit und Kompaktheit . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5 5 6 8 9 10 10 11 12 14 14 15 15 16 17 19 20 21 23 24 25 25 26 27 29 INHALTSVERZEICHNIS 1.6.1 1.6.2 1.6.3 1.6.4 1.6.5 1.6.6 1.6.7 1.6.8 1.6.9 2 3 ii Verallgemeinerte Expansion . . . . . . . . . . . . . . Lemma über die Negation . . . . . . . . . . . . . . . Tautologiesatz . . . . . . . . . . . . . . . . . . . . . Deduktionstheorem . . . . . . . . . . . . . . . . . . . Widerspruchsfreiheit und Vollständigkeit von Theorien Lemma über Beweisbarkeit und Konsistenz . . . . . . Vervollständigung . . . . . . . . . . . . . . . . . . . Verallgemeinerter Vollständigkeitssatz . . . . . . . . . Kompaktheitssatz der Aussagenlogik . . . . . . . . . Strukturen und formale Sprachen 2.1 Strukturen . . . . . . . . . . . . . . . . . . . . . . . . 2.1.1 Beispiele . . . . . . . . . . . . . . . . . . . . 2.1.2 Mehrsortige Strukturen . . . . . . . . . . . . . 2.1.3 Symbole für formale Sprachen . . . . . . . . . 2.2 Unterstrukturen und Morphismen . . . . . . . . . . . . 2.2.1 Beispiele . . . . . . . . . . . . . . . . . . . . 2.2.2 Satz über Unterstrukturen . . . . . . . . . . . 2.2.3 Homomorphes Bild, Identifizierung . . . . . . 2.3 Terme einer Sprache . . . . . . . . . . . . . . . . . . 2.3.1 Interpretation von Termen . . . . . . . . . . . 2.3.2 Spracherweiterung durch Namen . . . . . . . . 2.3.3 Erzeugte Unterstrukturen . . . . . . . . . . . . 2.4 Formeln einer Sprache . . . . . . . . . . . . . . . . . 2.4.1 Beweis durch Induktion über den Formelaufbau 2.4.2 Freie und gebundene Variable . . . . . . . . . 2.4.3 Substitution . . . . . . . . . . . . . . . . . . . Modelle und Theorien 3.1 Das Wahrheitsprädikat: Modelle . . . . . . . . . . 3.1.1 Satz über neue Konstanten . . . . . . . . . 3.2 Axiome und Theorien . . . . . . . . . . . . . . . . 3.3 Der Kompaktheitssatz und einige Folgerungen . . . 3.3.1 Kompaktheitssatz . . . . . . . . . . . . . . 3.3.2 Satz über die Existenz unendlicher Modelle 3.4 Diagramme . . . . . . . . . . . . . . . . . . . . . 3.4.1 Diagrammlemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 32 32 33 33 34 35 35 36 . . . . . . . . . . . . . . . . 37 38 38 39 40 41 43 44 44 45 45 46 47 48 49 50 51 . . . . . . . . 53 53 55 56 57 57 58 59 59 INHALTSVERZEICHNIS 3.5 4 3.4.2 Universelle Theorien . . . . . . . . . . . 3.4.3 Modellerweiterungssatz von Keisler . . . 3.4.4 Erhaltungssatz für universelle Formeln . 3.4.5 Satz von Łoś-Tarski . . . . . . . . . . . Einige mathematische Theorien . . . . . . . . . 3.5.1 Ordnungen . . . . . . . . . . . . . . . . 3.5.2 Gruppen- und Körpertheorie . . . . . . . 3.5.3 Axiomatisierbarkeit: Elementare Klassen 3.5.4 Zahlentheorie . . . . . . . . . . . . . . . 3.5.5 Mengenlehre . . . . . . . . . . . . . . . iii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gesetze der Prädikatenlogik 4.1 Ein Axiomensystem für die Prädikatenlogik . . . . . . . . . . 4.1.1 Axiomensystem von Shoenfield . . . . . . . . . . . . 4.1.2 Definition eines Beweises . . . . . . . . . . . . . . . 4.2 Der Tautologiesatz . . . . . . . . . . . . . . . . . . . . . . . 4.3 Substitution und universeller Abschluß . . . . . . . . . . . . . 4.3.1 Hintere Generalisierung . . . . . . . . . . . . . . . . 4.3.2 Satz über die Generalisierung . . . . . . . . . . . . . 4.3.3 Substitutionsregel . . . . . . . . . . . . . . . . . . . . 4.3.4 Substitutionssatz . . . . . . . . . . . . . . . . . . . . 4.3.5 Abschlußsatz . . . . . . . . . . . . . . . . . . . . . . 4.4 Ersetzung und Umbenennung, Gleichheit . . . . . . . . . . . 4.4.1 Ersetzungstheorem . . . . . . . . . . . . . . . . . . . 4.4.2 Eigenschaften des Gleichheitsprädikates . . . . . . . . 4.5 Pränexe Normalformen . . . . . . . . . . . . . . . . . . . . . 4.5.1 Umformungen mit der Negation . . . . . . . . . . . . 4.5.2 Umformungen mit Konjunktion und Disjunktion . . . 4.5.3 Umformungen mit der Implikation . . . . . . . . . . . 4.5.4 Das Dualitätsprinzip für die Prädikatenlogik . . . . . . 4.6 Das Deduktionstheorem . . . . . . . . . . . . . . . . . . . . . 4.7 Erweiterungen von Theorien, Widerspruchsfreiheit . . . . . . 4.7.1 Erweiterungen und Expansionen . . . . . . . . . . . . 4.7.2 Satz über rein sprachliche Erweiterungen von Theorien 4.7.3 Widerspruchsfrei/widerspruchsvoll . . . . . . . . . . 4.7.4 Beweisbarkeit und Widerspruchsfreiheit . . . . . . . . 4.8 Termmodelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 61 62 62 63 63 64 65 66 69 . . . . . . . . . . . . . . . . . . . . . . . . . 70 70 71 72 73 75 76 76 77 77 79 79 79 80 82 82 82 83 85 87 89 89 91 93 94 95 INHALTSVERZEICHNIS iv 4.8.1 Kanonische Struktur einer Theorie, Termstruktur . . . . . 4.8.2 Satz über Termmodelle . . . . . . . . . . . . . . . . . . . 4.9 Vervollständigung von Theorien . . . . . . . . . . . . . . . . . . 4.9.1 Satz von Lindenbaum . . . . . . . . . . . . . . . . . . . 4.10 Henkin-Theorien . . . . . . . . . . . . . . . . . . . . . . . . . . 4.11 Der Gödelsche Vollständigkeitssatz . . . . . . . . . . . . . . . . . 4.11.1 Vollständigkeit der Prädikatenlogik / Modellexistenz-Satz 4.11.2 Satz von Löwenheim . . . . . . . . . . . . . . . . . . . . 4.11.3 Kompaktheitssatz . . . . . . . . . . . . . . . . . . . . . . 95 96 97 98 99 102 102 104 105 II Mengenlehre 106 5 . . . . . . . . . . . . . . . . 107 107 108 111 112 112 114 115 116 117 120 122 124 127 127 130 133 . . . . . . 135 135 135 136 137 138 138 6 Grundlagen der Mengenlehre 5.1 Ordinalzahlen . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.1 Ordnungen . . . . . . . . . . . . . . . . . . . . . . 5.1.2 Definition der Ordinalzahlen . . . . . . . . . . . . . 5.1.3 Satz: Charakterisierung von Ordinalzahlen . . . . . 5.1.4 Die Ordnung der Ordinalzahlen . . . . . . . . . . . 5.2 Mengen und Klassen . . . . . . . . . . . . . . . . . . . . . 5.2.1 Komprehensionsaxiom . . . . . . . . . . . . . . . . 5.2.2 Auswege aus den Antinomien . . . . . . . . . . . . 5.2.3 Die mengentheoretische Sprache mit Klassentermen 5.2.4 Überblick über verschiedene Axiomensysteme . . . 5.3 Extensionalität und Aussonderung . . . . . . . . . . . . . . 5.4 Relationen und Funktionen . . . . . . . . . . . . . . . . . . 5.5 Vereinigung und Produkt . . . . . . . . . . . . . . . . . . . 5.5.1 Vereinigung . . . . . . . . . . . . . . . . . . . . . . 5.5.2 Potenzmenge und allgemeines Produkt . . . . . . . 5.6 Überblick über die ZF-Axiome . . . . . . . . . . . . . . . . Mengen von Mengen von . . . 6.1 Induktion und Rekursion . . . . . . . . . . . 6.1.1 Ordnungen auf Klassen . . . . . . . . 6.1.2 Minimumsprinzip . . . . . . . . . . . 6.1.3 Induktionsprinzip für Wohlordnungen 6.1.4 Segmente . . . . . . . . . . . . . . . 6.1.5 Rekursionssatz für Wohlordnungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . INHALTSVERZEICHNIS 6.2 6.3 7 8 III 9 v 6.1.6 Repräsentationssatz für Wohlordnungen . . 6.1.7 Transfinite Rekursion . . . . . . . . . . . . Die von-Neumannsche Hierarchie . . . . . . . . . Die Rolle des Unendlichkeitsaxioms . . . . . . . . 6.3.1 PA in mengentheoretischer Sprache . . . . 6.3.2 Die Theorie der endlichen Mengen . . . . . 6.3.3 Anwendungen der numerischen Rekursion . . . . . . . . . . . . . . . . . . . . . Das Auswahlaxiom 7.1 Zermelos Axiom . . . . . . . . . . . . . . . . . . . . . 7.1.1 Mengentheoretisch äquivalente Formen . . . . . 7.1.2 Der Zermelosche Wohlordnungssatz . . . . . . . 7.1.3 Maximumsprinzipien von Zorn und Hausdorff . 7.2 Anwendungen des Auswahlaxioms . . . . . . . . . . . . 7.2.1 Jeder Vektorraum besitzt eine Basis. . . . . . . . 7.2.2 Der Satz von Hahn-Banach . . . . . . . . . . . . 7.2.3 Nicht-meßbare Mengen . . . . . . . . . . . . . 7.2.4 Äquivalenz verschiedener Stetigkeitsdefinitionen 7.2.5 Satz von Tychonoff . . . . . . . . . . . . . . . . 7.2.6 Boolesches Primidealtheorem . . . . . . . . . . Mächtigkeiten und Kardinalzahlen 8.1 Endliche und abzählbare Mengen . . . . . . 8.2 Abzählbare Mengen . . . . . . . . . . . . . 8.3 Überabzählbare Mengen . . . . . . . . . . 8.4 Mächtigkeiten . . . . . . . . . . . . . . . . 8.4.1 Satz von Cantor-Schröder-Bernstein 8.4.2 Vergleichbarkeitssatz von Hartogs . 8.4.3 Satz von Cantor . . . . . . . . . . . 8.5 Kardinalzahlen . . . . . . . . . . . . . . . 8.5.1 Operationen auf den Kardinalzahlen 8.5.2 Satz von Hessenberg . . . . . . . . 8.5.3 Satz von Bernstein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Grundlagen der Modelltheorie Hin und her: Vollständigkeit und elementare Äquivalenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 143 144 145 146 148 148 . . . . . . . . . . . 151 151 151 152 153 156 156 156 156 158 158 158 . . . . . . . . . . . 161 161 163 165 165 166 167 167 168 169 170 171 172 173 INHALTSVERZEICHNIS 9.1 9.2 9.3 vi Elementare Äquivalenz . . . . . . . . . . . . . . . . . . . . . . . 173 Die Theorie der dichten linearen Ordnung . . . . . . . . . . . . . 175 Kategorizität . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 10 Auf und ab: Elementare Substrukturen 10.1 Elementare Substrukturen . . . . . . . . . . . . 10.2 Diagrammlemma (Fortsetzung) . . . . . . . . . 10.3 Kriterium von Tarski . . . . . . . . . . . . . . 10.4 Satz von Löwenheim-Skolem-Tarski (abwärts) . 10.5 Satz von Löwenheim-Skolem-Tarski (aufwärts) 10.6 Test von Vaught . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 180 181 181 182 183 184 11 Vereinigungen, Durchschnitte und Ketten 185 11.1 Satz über Ketten von Strukturen . . . . . . . . . . . . . . . . . . 186 11.2 Satz von Chang- Łoś-Szusko . . . . . . . . . . . . . . . . . . . . 188 12 Produkte und Ultraprodukte 12.1 Direktes Produkt . . . . . . . . . . . . . . . 12.2 Filter und Ultrafilter . . . . . . . . . . . . . . 12.3 Ultrafiltersatz, Boolesches Primidealtheorem 12.4 Reduziertes Produkt . . . . . . . . . . . . . . 12.5 Satz von Łoś . . . . . . . . . . . . . . . . . 12.6 Kompaktheitssatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 190 191 192 192 193 196 13 Modellvollständigkeit 198 13.1 Robinsonscher Test . . . . . . . . . . . . . . . . . . . . . . . . . 200 IV Unvollständigkeit und Unentscheidbarkeit 14 Berechenbare Funktionen 14.1 Turing-Maschinen . . . . . . . . . . . . . . 14.2 URM-berechenbare Funktionen . . . . . . 14.3 Churchsche These . . . . . . . . . . . . . . 14.4 Aufzählbarkeitssätze . . . . . . . . . . . . 14.5 Primitiv-rekursive Funktionen . . . . . . . 14.6 Rekursive und partiell-rekursive Funktionen 14.7 Partielle Entscheidbarkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 205 207 208 209 209 212 214 INHALTSVERZEICHNIS vii 15 Definierbarkeit berechenbarer Funktionen 15.1 Eine endlich-axiomatisierbare Teiltheorie von PA 15.2 Arithmetische Formeln . . . . . . . . . . . . . . 15.3 Enderweiterungen . . . . . . . . . . . . . . . . . 15.4 Erhaltungseigenschaften unter Enderweiterungen 15.5 Lemma . . . . . . . . . . . . . . . . . . . . . . 15.6 Gödels Lemma . . . . . . . . . . . . . . . . . . 15.7 Definierbarkeitssatz für rekursive Funktionen . . 15.8 Repräsentierbarkeit . . . . . . . . . . . . . . . . 16 Die Gödelschen Sätze 16.1 Gödel-Nummern . . . . . . . . . . . . . . 16.2 Diagonalisierungslemma . . . . . . . . . . 16.3 Satz von Gödel-Rosser . . . . . . . . . . . 16.4 Erster Gödelscher Unvollständigkeitssatz . 16.5 Kombinatorische Prinzipien . . . . . . . . 16.6 Zweiter Gödelscher Unvollständigkeitssatz 16.7 Wahrheit ist nicht arithmetisch definierbar . 16.8 Unentscheidbarkeit . . . . . . . . . . . . . 17 Literatur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 215 217 218 220 220 222 223 224 . . . . . . . . 227 227 228 229 230 231 233 234 235 238 198 Kapitel 13 Modellvollständigkeit Definition (1) Eine Theorie T heißt modellvollständig gdw T ∪ D(A) ist vollständig (bzgl. der Sprache LA ) für jedes A |= T. Mit Hilfe des Diagrammlemmas 10.2 ergibt sich, daß eine Theorie T modellvollständig ist gdw für alle A, B |= T gilt: A ⊆ B =⇒ A 4 B. Insbesondere folgt aus dem Kettenlemma 11.1 und dem Satz 11.2 von C HANG Ł O Ś -S ZUSKO, daß jede modellvollständige Theorie induktiv ist, also ein Axiomensystem aus ∀∃-Sätzen besitzt. (2) Ein Modell P |= T einer Theorie T heißt Primmodell von T gdw es sich in jedes Modell von T einbetten läßt. Beispiele und Bemerkungen 1. AA ist (wegen des Diagrammlemmas 10.2) stets ein Primmodell von D(A). 2. Ist die Theorie T modellvollständig und besitzt T ein Primmodell, so ist T vollständig. 3. In der Algebra wird der Begriff des Primkörpers eingeführt: dieser ist ein Primmodell in obigem Sinne, und zwar ist der Körper Q der rationalen Zahlen ein Primmodell der Theorie der Körper der Charakteristik 0, während 199 Z/p, der Restklassenkörper modulo p, das Primmodell der Theorie der Körper der Charakteristik p ist (p eine Primzahl). Die Theorie der Körper TF allein besitzt offenbar keinen Primkörper, sie ist weder vollständig noch modellvollständig. 4. Der Körper der reellen algebraischen Zahlen ist Primkörper der Theorie TRCF der reell-abgeschlossenen Körper, diese Theorie ist modellvollständig und somit vollständig. 5. Der Körper der algebraischen Zahlen ist Primkörper der Theorie der algebraisch-abgeschlossenen Körper der Charakteristik 0. Die Theorie TACF der algebraisch-abgeschlossenen Körper (ohne Festlegung der Charakteristik) ist zwar modellvollständig, aber nicht vollständig. Die obige Charakterisierung der modellvollständigen Theorien deutet darauf hin, daß man in solchen Theorien Eigenschaften (fast) quantorenfrei ausdrücken kann: Definition T sei eine Theorie der Sprache L, A eine L-Struktur. 1. T läßt (schwache) Quantorenelimination zu gdw zu jeder L-Formel ϕ eine quantorenfreie (bzw. ∃-) Formel ψ existiert mit T |= ϕ ↔ ψ. 2. A 41 B : ⇐⇒ A ⊆ B und für alle ∃-Formeln ψ(v1 , . . . , vn ) und alle a1 , . . . an ∈ A gilt: A |= ϕ[a1 , . . . an ] ⇐⇒ B |= ϕ[a1 , . . . an ]. 3. A heißt T- e.c. (T-existentiell-abgeschlossen) gdw für alle L-Strukturen B gilt: A ⊆ B |= T =⇒ A 41 B. 4. ET := {A | A T- e.c.}. 13.1. ROBINSONSCHER T EST 200 13.1 Robinsonscher Test Für eine Theorie T sind folgende Aussagen äquivalent: (i) T ist modellvollständig, (ii) T läßt schwache Quantorenelimination zu, (iii) jede ∃-Formel ϕ ist in T äquivalent zu einer ∀-Formel δ , (iv) für alle A, B |= T gilt: A ⊆ B =⇒ A 41 B, (v) für alle A, B |= T gilt: Ist f : A → B eine Einbettung, so ist f eine elementare Einbettung. (vi) Mod(T) = ET . Hierin ist (iv) das eigentliche Test-Kriterium, das insbesondere für Anwendungen auf algebraische Theorien noch etwas abgeschwächt werden kann.1 Um ein Kriterium für die vollständige Elimination von Quantoren zu erhalten, muß man die Eigenschaft der Modellvollständigkeit verstärken: Definition Eine Theorie T heißt substrukturvollständig gdw T ∪ D(A) ist vollständig für jedes A |= T∀ , d. h. T ∪ D(A) ist vollständig für jede Substruktur A eines Modells A ⊆ B |= T. Satz Für eine Theorie T sind folgende Aussagen äquivalent: (i) T ist substrukturvollständig, (ii) T läßt Quantorenelimination zu. Insbesondere gilt für eine ∀-Theorie T: T läßt Quantorenelimination zu gdw T modellvollständig ist. 1 S. etwa das Buch von R AUTENBERG , W.: Einführung in die mathematische Logik, vieweg 2002, Kap. 5.5 13.1. ROBINSONSCHER T EST 201 Beispiele 1. Die Theorie TACF der algebraisch-abgeschlossenen Körper ist modellvollständig, legt man auch die Charakteristik fest, so ist sie vollständig. 2. Die Theorie TRCF der reell-abgeschlossenen Körper ist modellvollständig und vollständig. Sie stimmt überein mit der Theorie des angeordneten Körpers der reellen Zahlen. 3. Die Theorie der Vektorräume über den rationalen Zahlen ist modellvollständig (eine ∃-Aussage über eine Konjunktion von Basisformeln besagt in diesem Falle die Lösbarkeit eines Systems von linearen Gleichungen und Ungleichungen). 4. Die Theorie der Gleichheit (also ohne nicht-logischen Axiome!) ist weder vollständig noch modellvollständig. Sie erlaubt auch keine Quantorenelimination, allerdings ist in dieser Theorie jede Formel äquivalent zu einer aussagenlogisch aus Anzahlformeln und den Formeln vi = v j zusammengesetzten Formel. 5. Die Theorie DLO + OE der dichten linearen Ordnungen ohne Endpunkte ist vollständig, modellvollständig und erlaubt Quantorenelimination. 6. Die Theorie Th(N, <) ist vollständig, aber nicht modellvollständig. Theorien mit Quantorenelimination sind meistens entscheidbar, d. h. es gibt ein effektives Verfahren (dieser Ausdruck wird später präzisiert werden), welches für jeden Satz der Sprache von T angibt, ob dieser Satz in T gilt oder nicht. So sind die Theorien • DLO + OE, • die Theorie des (angeordneten) Körpers der reellen Zahlen (= Theorie der reell-abgeschlossenen Körper) und • die Theorie des Körpers der komplexen Zahlen (= Theorie der algebraischabgeschlossenen Körper der Charakteristik 0) vollständig und entscheidbar. Dagegen ist dagegen die Theorie der natürlichen Zahlen Th(N, +, ·, 0, 1) unentscheidbar. Näher gehen wir hierauf in den abschließenden Kapiteln ein.