Lehrstuhl Informatik III: Datenbanksysteme
Community Training:
Partitioning Schemes in
Good Shape for Federated
Data Grids
Tobias Scholl, Richard Kuntschke, Angelika Reiser,
Alfons Kemper
3rd IEEE International Conference
on e-Science and Grid Computing
Bangalore, India
December 10th – 13th 2007
Lehrstuhl Informatik III: Datenbanksysteme
The AstroGrid-D Project
German Astronomy
Community Grid
http://www.gac-grid.org/
funded by the German
Ministry of Education and
Research
part of the D-Grid
Community Training
2
Lehrstuhl Informatik III: Datenbanksysteme
The Multiwavelength Milky Way
http://adc.gsfc.nasa.gov/mw/
Community Training
3
Lehrstuhl Informatik III: Datenbanksysteme
Data-intensive e-Science Applications
Many e-science application areas
astrophysics
geosciences
climatology
Combination of various, globally distributed
data sources
Increasing popularity (within community and
public domain): more users
Scalability issues with current approaches
Community Training
4
Lehrstuhl Informatik III: Datenbanksysteme
Up-coming Data-intensive Applications
Data rates
Terabytes a day/night
Petabytes a year
LOFAR
LSST
Pan-STARRS
LHC
LOFAR
LHC
Community Training
5
Lehrstuhl Informatik III: Datenbanksysteme
Current Sharing in Data Grids
Data autonomy
Policies allow partners to access data
Each institution ensures
Availability (replication)
Scalability
Various organizational structures:
Centralized
Hierarchical
Federated
Hybrid
Images from: “Data-Intensive Grid Computing” by Srikumar Venugopal
Community Training
6
Lehrstuhl Informatik III: Datenbanksysteme
Community-Driven Data Distribution
Community Training
7
Lehrstuhl Informatik III: Datenbanksysteme
The Training Phase
Extract data from the archives
Compute partitioning schemes
Compare different partitioning schemes
Standard Quadtrees
Median-based Quadtrees
Zones
Community Training
8
Lehrstuhl Informatik III: Datenbanksysteme
Quadtrees
Well-known index
structure
Recursive
decomposition
Adaptive to data
resolution
Community Training
9
Lehrstuhl Informatik III: Datenbanksysteme
Quadtree-based Schemes: Splitting Variants
Center splitting
Median heuristics
Always bisects each
Compute median for
dimension
each dimension
independently
congruent subareas
Splitting points stored O(n) median
algorithm
or computed
Splitting points stored
Community Training
10
Lehrstuhl Informatik III: Datenbanksysteme
The Zones Index
(J. Gray, M. Nieto-Santisteban, A. Szalay)
Index structure for databases
Specific spatial clustering in zones
Optimized for
Equi-distant partitioning
points-in-region queries
self-match, cross-match queries
Declination coordinate
Zone(ra, dec) = floor((dec + 90.0) / h)
Implemented directly in SQL
Community Training
Image by J. Gray et al.
11
Lehrstuhl Informatik III: Datenbanksysteme
Evaluation Setup
2 data sets: skewed and uniform
Size of data sample: 0.01%, 0.1%, 1%, 10%
Number of partitions:
4, 16, 64, 256, 1024, 4096, 8192, 16384,
32768, 65536, 131072 (24 – 217)
Community Training
12
Lehrstuhl Informatik III: Datenbanksysteme
Skewed Training Data (Dskew)
Community Training
13
Lehrstuhl Informatik III: Datenbanksysteme
Comparing Partitioning Schemes
Duration
Average data population
Variance in partition population
Empty partitions
Size of the training set
Baseline comparison
Community Training
14
Lehrstuhl Informatik III: Datenbanksysteme
Average Data Population
average data population (%)
100
90
80
70
avg(# objects in partitions)
60
50
# objects in biggest partition
40
30
center splitting (skewed data)
median splitting (skewed data)
center splitting (uniform data)
median splitting (uniform data)
20
10
0
16
64
256
1024
4096
8192
16384
32768
65536
131072
# partitions
10% training sample, Dskew
Community Training
15
Lehrstuhl Informatik III: Datenbanksysteme
Evolution of the Partitioning Scheme
4096 partitions
8192 partitions
Community Training
16384 partitions
16
Lehrstuhl Informatik III: Datenbanksysteme
Empty Leaves
8
empty partitions (%)
7
6
5
4
3
2
center splitting
median splitting
zones
1
0
16
64
256
1024
4096
8192
16384
32768
65536
131072
# partitions
10% training sample, Dskew
Community Training
17
Lehrstuhl Informatik III: Datenbanksysteme
Size of the Training Set
4096
sample ratio
35
sample ratio
center splitting
median splitting
30
1024
25
256
20
# objects in training set
64
15
# partitions to be created
16
10
4
5
1
0
131072
16
64
256
1024
4096
8192
16384
32768
65536
empty partitions (%)
16384
# partitions
0.1% training sample, Dskew
Community Training
18
Lehrstuhl Informatik III: Datenbanksysteme
Standard Quadtree vs. Median Heuristics
Community Training
19
Lehrstuhl Informatik III: Datenbanksysteme
Evaluation – Summary
Quadtrees: good adaption to data distribution
Quadtrees: Trade-off between data load
balancing and uniformly shaped regions
Median-based heuristics: best data load
balancing even for skewed data sets
Zone Index: good for uniform data sets
Training set needs to be sufficiently large in
order not to artificially create empty partitions
Community Training
20
Lehrstuhl Informatik III: Datenbanksysteme
HiSbase
Peer-to-Peer layer
assigns data
partitions to peers
Higher flexibility
New peers are
integrated seamlessly
Community Training
21
Lehrstuhl Informatik III: Datenbanksysteme
Query Submission (at Peer d)
0
Determine relevant
regions: [1,3]
Select coordinator:
Region 1
Send CoordinateQuerymessage to id1:
{[1,3], SQL}
Message gets routed to
Peer a.
Community Training
5
1
3
2
4
6
22
Lehrstuhl Informatik III: Datenbanksysteme
Query Coordination (at Peer a)
Peer a is coordinator
Contact relevant
regions
Collect intermediate
results
Send complete result
to client
select …
select …
Community Training
23
Lehrstuhl Informatik III: Datenbanksysteme
Prototype Implementation
Java-based prototype
FreePastry library (Pastry implementation)
Presentations at
Rice University
MPI-SWS
BTW 2007, Aachen, Germany
VLDB 2007, Vienna, Austria
Deployed in various settings
LAN
WAN (AstroGrid-D, PlanetLab)
Community Training
24
Lehrstuhl Informatik III: Datenbanksysteme
Summary
Training phase
Community-driven Data Grids
Domain-specific partitioning scheme
Partitioning scheme supports
Data skew
Region-based queries
Framework for comparing partitioning
schemes
Various measures with regard to data load
balancing
Community Training
25
Lehrstuhl Informatik III: Datenbanksysteme
Ongoing Work
Database-driven comparison
0.1% of a Petabyte still is 1 Terabyte
Feasibility of median-based techniques
Workload-aware data partitioning
Heterogeneous data nodes
Community Training
26
Lehrstuhl Informatik III: Datenbanksysteme
Get in Touch
Database systems group, TU München
HiSbase
Web site: http://www-db.in.tum.de
E-mail: [email protected]
http://www-db.in.tum.de/research/projects/hisbase/
Data stream management
“Grid-based Data Stream Processing in e-Science”
(e-Science '06)
http://www.gac-grid.de/project-products/Software/
DataStreamManagement.html
Community Training
27
Lehrstuhl Informatik III: Datenbanksysteme
AstroGrid-D Research Demo
Finding Galaxy Clusters using Grid Computing
Technology
Room:
Banquet
Wednesday
3:30 pm to
6:00 pm
Community Training
28