Lehrstuhl Informatik III: Datenbanksysteme Community Training: Partitioning Schemes in Good Shape for Federated Data Grids Tobias Scholl, Richard Kuntschke, Angelika Reiser, Alfons Kemper 3rd IEEE International Conference on e-Science and Grid Computing Bangalore, India December 10th – 13th 2007 Lehrstuhl Informatik III: Datenbanksysteme The AstroGrid-D Project German Astronomy Community Grid http://www.gac-grid.org/ funded by the German Ministry of Education and Research part of the D-Grid Community Training 2 Lehrstuhl Informatik III: Datenbanksysteme The Multiwavelength Milky Way http://adc.gsfc.nasa.gov/mw/ Community Training 3 Lehrstuhl Informatik III: Datenbanksysteme Data-intensive e-Science Applications Many e-science application areas astrophysics geosciences climatology Combination of various, globally distributed data sources Increasing popularity (within community and public domain): more users Scalability issues with current approaches Community Training 4 Lehrstuhl Informatik III: Datenbanksysteme Up-coming Data-intensive Applications Data rates Terabytes a day/night Petabytes a year LOFAR LSST Pan-STARRS LHC LOFAR LHC Community Training 5 Lehrstuhl Informatik III: Datenbanksysteme Current Sharing in Data Grids Data autonomy Policies allow partners to access data Each institution ensures Availability (replication) Scalability Various organizational structures: Centralized Hierarchical Federated Hybrid Images from: “Data-Intensive Grid Computing” by Srikumar Venugopal Community Training 6 Lehrstuhl Informatik III: Datenbanksysteme Community-Driven Data Distribution Community Training 7 Lehrstuhl Informatik III: Datenbanksysteme The Training Phase Extract data from the archives Compute partitioning schemes Compare different partitioning schemes Standard Quadtrees Median-based Quadtrees Zones Community Training 8 Lehrstuhl Informatik III: Datenbanksysteme Quadtrees Well-known index structure Recursive decomposition Adaptive to data resolution Community Training 9 Lehrstuhl Informatik III: Datenbanksysteme Quadtree-based Schemes: Splitting Variants Center splitting Median heuristics Always bisects each Compute median for dimension each dimension independently congruent subareas Splitting points stored O(n) median algorithm or computed Splitting points stored Community Training 10 Lehrstuhl Informatik III: Datenbanksysteme The Zones Index (J. Gray, M. Nieto-Santisteban, A. Szalay) Index structure for databases Specific spatial clustering in zones Optimized for Equi-distant partitioning points-in-region queries self-match, cross-match queries Declination coordinate Zone(ra, dec) = floor((dec + 90.0) / h) Implemented directly in SQL Community Training Image by J. Gray et al. 11 Lehrstuhl Informatik III: Datenbanksysteme Evaluation Setup 2 data sets: skewed and uniform Size of data sample: 0.01%, 0.1%, 1%, 10% Number of partitions: 4, 16, 64, 256, 1024, 4096, 8192, 16384, 32768, 65536, 131072 (24 – 217) Community Training 12 Lehrstuhl Informatik III: Datenbanksysteme Skewed Training Data (Dskew) Community Training 13 Lehrstuhl Informatik III: Datenbanksysteme Comparing Partitioning Schemes Duration Average data population Variance in partition population Empty partitions Size of the training set Baseline comparison Community Training 14 Lehrstuhl Informatik III: Datenbanksysteme Average Data Population average data population (%) 100 90 80 70 avg(# objects in partitions) 60 50 # objects in biggest partition 40 30 center splitting (skewed data) median splitting (skewed data) center splitting (uniform data) median splitting (uniform data) 20 10 0 16 64 256 1024 4096 8192 16384 32768 65536 131072 # partitions 10% training sample, Dskew Community Training 15 Lehrstuhl Informatik III: Datenbanksysteme Evolution of the Partitioning Scheme 4096 partitions 8192 partitions Community Training 16384 partitions 16 Lehrstuhl Informatik III: Datenbanksysteme Empty Leaves 8 empty partitions (%) 7 6 5 4 3 2 center splitting median splitting zones 1 0 16 64 256 1024 4096 8192 16384 32768 65536 131072 # partitions 10% training sample, Dskew Community Training 17 Lehrstuhl Informatik III: Datenbanksysteme Size of the Training Set 4096 sample ratio 35 sample ratio center splitting median splitting 30 1024 25 256 20 # objects in training set 64 15 # partitions to be created 16 10 4 5 1 0 131072 16 64 256 1024 4096 8192 16384 32768 65536 empty partitions (%) 16384 # partitions 0.1% training sample, Dskew Community Training 18 Lehrstuhl Informatik III: Datenbanksysteme Standard Quadtree vs. Median Heuristics Community Training 19 Lehrstuhl Informatik III: Datenbanksysteme Evaluation – Summary Quadtrees: good adaption to data distribution Quadtrees: Trade-off between data load balancing and uniformly shaped regions Median-based heuristics: best data load balancing even for skewed data sets Zone Index: good for uniform data sets Training set needs to be sufficiently large in order not to artificially create empty partitions Community Training 20 Lehrstuhl Informatik III: Datenbanksysteme HiSbase Peer-to-Peer layer assigns data partitions to peers Higher flexibility New peers are integrated seamlessly Community Training 21 Lehrstuhl Informatik III: Datenbanksysteme Query Submission (at Peer d) 0 Determine relevant regions: [1,3] Select coordinator: Region 1 Send CoordinateQuerymessage to id1: {[1,3], SQL} Message gets routed to Peer a. Community Training 5 1 3 2 4 6 22 Lehrstuhl Informatik III: Datenbanksysteme Query Coordination (at Peer a) Peer a is coordinator Contact relevant regions Collect intermediate results Send complete result to client select … select … Community Training 23 Lehrstuhl Informatik III: Datenbanksysteme Prototype Implementation Java-based prototype FreePastry library (Pastry implementation) Presentations at Rice University MPI-SWS BTW 2007, Aachen, Germany VLDB 2007, Vienna, Austria Deployed in various settings LAN WAN (AstroGrid-D, PlanetLab) Community Training 24 Lehrstuhl Informatik III: Datenbanksysteme Summary Training phase Community-driven Data Grids Domain-specific partitioning scheme Partitioning scheme supports Data skew Region-based queries Framework for comparing partitioning schemes Various measures with regard to data load balancing Community Training 25 Lehrstuhl Informatik III: Datenbanksysteme Ongoing Work Database-driven comparison 0.1% of a Petabyte still is 1 Terabyte Feasibility of median-based techniques Workload-aware data partitioning Heterogeneous data nodes Community Training 26 Lehrstuhl Informatik III: Datenbanksysteme Get in Touch Database systems group, TU München HiSbase Web site: http://www-db.in.tum.de E-mail: [email protected] http://www-db.in.tum.de/research/projects/hisbase/ Data stream management “Grid-based Data Stream Processing in e-Science” (e-Science '06) http://www.gac-grid.de/project-products/Software/ DataStreamManagement.html Community Training 27 Lehrstuhl Informatik III: Datenbanksysteme AstroGrid-D Research Demo Finding Galaxy Clusters using Grid Computing Technology Room: Banquet Wednesday 3:30 pm to 6:00 pm Community Training 28