NMR Spektroskopie • Teil 1: Wiederholung Was mir wichtig ist: • • • Ein wenig physikalischer Hintergrund Die Chemische Verschiebung Die Inkrementenregeln zur Berechnung der chemischen Verschiebung Magnetischer Dipol μ=γ*P Spinnender Kern Wichtige Eigenschaften verschiedener Kerne Nucleus Spin I 1 ½ 1 0 ½ 1 ½ 0 ½ H 2 H 12 C 13 C 14 N 15 N 16 0 31 P Abundance [%] 99.98 0.016 98.9 1.1 99.63 0.37 99.96 100 γ [107 rad /Ts] 26.7519 4.1 NMR frequency (Bo=2.4T) 100 15.351 6.728 1.938 -2.712 25.144 7.224 10.133 10.841 40.481 Empfindlichkeit und Resonanzfrequenz sind proportional zu γ 1) 2) Magnetische Feldstaerke oft in MHz (1H) genannt (anstatt Tesla) 1.41T=60 MHz, 14 T =600MHz, 21T = 900 MHz (derzeit maximum) Verschiedene Kerne sind sehr unterschiedlich in ihrer Larmorfrequenz ΔE= ħ γ Bo = h ν Die Energieniveaudifferenz ist proportional zur Feldstaerke des Magnetfeldes Ansteigendes Bo Kein Feld Spins in alle Richtungen Keine Energiedifferenz Magnetfeld Spins ausgerichtet mit oder gegen das Feld Numerische Berechnung der EnergieniveauPopulationen ΔE = γħB0 = hν ħ= h/2π = 1.05459 x 10 -34 Js k= 1.38066 x 10-23 J/K T = 298 K Numerische Beispiele: Bo = 1.44 T or 14.4 T At 60 MHz:= Nβ/Nα = 0.9999904 (or 9.6 x 10-6 excess spins in α) At 600 MHz:= Nβ/Nα = 0.9999013 (or 98.7 x 10-6 excess spins) NMR ist eine sehr unempfindliche Spektroskopie! Μ0 = makroskopische Magnetisierung Transversale Magnetisierung koennen wir detektieren! Der FID – fast induction decay Precession Relaxation T2 –Spin-Spin Relaxation T1 – Spin-Gitter Relaxation = Ueberlagerung Integral: 2 1 2 2 2 3 Die Chemische Verschiebung / the Chemical Shift Resonanz Bedingung Definition der δ-Skala Die Resonanzfrequenz relative zur Referenz (TMS) in der ppm Skala wird die Cehmische Verschiebung genannt. Diese Skala hat den Vorteil, dass die Werte unabhaengig von der Feld/Magnetstaerke des Spektrometers sind. 1H-NMR von mono-substitutierten Aromaten Mesomerieeffekte bewirken starke positions-abhaengige Verschiebungen im Aromaten • • Die Substituenteneffekte sind in erster Naeherung additiv, d.h. man kann diese Tabelle auch zur Abschaetzung von Verschiebungen in di/tri substituierten Benzolen verwenden. Aber: Bei sterischen Wechselwirkungen (grosse Substituenten in o-Position geht die Additivitaet verloren, und die errechneten Shifts werden ungenau. Diese oder aehnliche Inkrementrechnungen fuer Alkene, Aromaten usw. finden in jedem Lehrbuch z.B. Hesse Meier Zeeh 13C-Inkrement-Rechnung • Beispiel Aromat • Siehe Material auf der Website Und : • Benutzen Sie die Inkrementenregeln • INSBESONDERE zur Bestimmung der Kohlenstoffverschiebungen! • Tabellen im Hesse Meier Zeeh • Oder auf der Website =Informationsunterlagen zu diesem Kurs (NMR_shifts.pdf) Carbon-13 NMR 12C 13C 1H I = 0 (sum of protons and neutrons is even) NMR inactive I = 1/2 I = 1/2 13C is less sensitive than 1H primarily due to two factors 1. 13C has a low natural abundance (1.1 %) 2. the gyromagnetic ratio (γ) of 13C is 1/4 that of 1H sensitivity = γ5/2 ; (1/4)5/2 = 0.03 less sensitive Thus, lower natural abundance and smaller magnetogyric ratio lowers sensitivity to ~ 1:33 for 13C : 1H To get the same S/N as proton we would have to increase the number of scans by a factor of 332 = 1100 !!! Signal-to-noise ratio /Signal-Rausch Verhaeltniss 13C {1H} ¾ 13C NMR spectra are generally acquired with proton decoupling. ¾ Irradiation on 1H leads to rapid interconversion of the spin states of the proton, so that averaged over time the effect of the coupling will be removed. Thus, the 13C multiplett collapses into a single line. ¾ The decoupling may lead to signal enhancement by a dipolar interaction between carbon and its attached proton. This interaction is termed NOE (nuclear Overhauser enhancement) , is distance dependent, and can lead to intensity increases up to 3 fold . ¾ This signal enhancement makes it impossible to quantify carbon atoms by integration ¾ Typical chemical shift range : 0 – 230 ppm ¾ 13C- 13C coupling is (generally) not observed due to the low natural abundance Coupling in 13C-NMR spectra 1D-13C NMR : broadband decoupled (0-10 ppm) Increase sensitivity due to NOE Decouples resonances to singulett. BB - Fully 1H Decoupled FID (free induction decay) signals which are detected 13C Observe with Gated 1H Coupling Intensity enhancement due to NOE during irradiation time (note: T >> at) Signal multiplicity (1JCH coupling retained) DEPT ¾ Polarizationtransfer (PT) The population difference/sensitivity of 1H is transferred to 13C ¾ Only CH, CH2 and CH3 groups will be detected (Cq will be missing) ¾ The duration of the last proton pulse width determines the intensity and sign of the resonances ¾ Unambiguous assignment of CH, CH2, and CH3 by comparison of DEPT 90 and DEPT 135 pulse width of last H-pulse The combination of • a cpd/broadband decoupled 13C-NMR experiment • and the DEPT135 experiment are the most powerful way, to determine both the frequency of all carbon atoms , and their multiplicity in two simple, fast, and relatively sensitive 1-dimensional NMR experiments. Carbon chemical shift range • • • • • • • Very large, leading to Easy group identification Very sharp lines since J-couplings are small compared to δ-range No/rarely overlap One (dominant) coupling = 1J C-H 120 – 160 Hz (can be up to 320 Hz) Splits signal -> lowers signal to noise Multiplicity provides invaluable information on number of directly attached protons 13C ¾ Chemical Shifts Hybridization 150-100 ppm (sp2), 90-60 ppm (sp), 55-10 ppm (sp3) ¾ Substituent effects are additive for alkanes, alkenes, and aromatics; many empirical additivity rules exist for alkanes, alkenes, cyloalkanes, etc. ¾ Magnetic anisotropy and ring current effects, which are important in 1H NMR, are not important in 13C NMR (usually < 2 ppm) Many formulas to calculate chemical shifts can be found in textbooks!! 1H and 13C chemical shifts are largely correlated