Algorithmen und Datenstrukturen SS09 Foliensatz 10 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 2009 Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 1 / 74 Balancierte Suchbäume Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 2 / 74 Balancierte Suchbäume Idee Lasse nur Bäume mit bestimmten Struktureigenschaften zu. Ziel ist z.B. das Erzwingen einer geringen Tiefe (d.h. O(log n) für n Einträge) delete und insert müssen so implementiert werden, dass sie die Struktureigenschaften erhalten und in Zeit O(Tiefe) durchgeführt werden können. Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 3 / 74 Perfekte Balancierung Definition (Perfekte Balancierung) Ein Binärbaum T heisst perfekt balanciert, wenn an jedem Knoten die Anzahl der Knoten im linken und im rechten Unterbaum sich um höchstens eins unterscheidet. Mittels der rekursiven Definition erhalten wir: ist perfekt balanciert. (T1 , x, T2 ) ist genau dann perfekt balanciert, wenn T1 und T2 perfekt Balanciert sind, und ||T1 | − |T2 || ≤ 1, wobei |Ti | die Anzahl der Knoten in Ti ist. Die Perfekte Balancierung ist aber eine ungeeignete Strukturbedingung, da delete und insert zu viel Zeit benötigen. Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 4 / 74 Häufig benutzte Implementierungen AVL-Bäume – höhenbalanciert Rot-Schwarz-Bäume (Cormen et al., Sedgewick) 2-3-Bäume – bis zu 2 Schlüssel pro Knoten B-Bäume, 2-3-4 Bäume (Cormen et al., Sedgewick) Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 5 / 74 AVL-Bäume Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 6 / 74 Höhenbalancierte Suchbäume Definition (Höhenbalancierte Binärbäume) Ein Binärbaum T ist höhenbalanciert, falls für jeden Knoten v von T der Teilbaum Tv = (Tv,1 , x, Tv,1 ) mit Wurzel v die Bedingung |d(Tv,1 ) − d(Tv,2 )| ≤ 1 erfüllt. v d(T1 ) T1 T2 d(T2 ) Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 7 / 74 Höhenbalancierte Suchbäume Äquivalent, kann man höhenbalancierte Binärbäume rekursiv definieren: Definition (Höhenbalancierte Binärbäume (rekursive Charakterisierung)) ist höhenbalanciert. Sind T1 und T2 höhenbalanciert und gilt |d(T1 ) − d(T2 )| ≤ 1, dann ist auch (T1 , x, T2 ) höhenbalanciert. Der Balancefaktor bal(v ) eines Knotens v ist genau die Höhendifferenz der Unterbäume, d.h. bal(v ) := d(Tv,2 ) − d(Tv,1 ). Achtung! Die Tiefe des linken Unterbaumes wird von der des rechten abgezogen. Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 8 / 74 Beispiele für den Balancefaktor −2 0 −1 1 0 0 0 2 0 −1 0 0 1 1 0 0 0 Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 9 / 74 AVL-Bäume Definition (AVL-Baum) Ein höhenbalancierter binärer Suchbaum heisst AVL-Baum (Adelson-Velskii und Landis 1962). Der Balancefaktor muss – zusätzlich zu dem Schlüssel-Wert-Paar – in jedem Knoten gespeichert werden. Die Hoffnung hinter den Höhenbalancierung ist, dass die resultierenden Bäume nicht zu tief sind. Tatsächlich hat ein AVL-Baum mit n inneren Knoten höchstens logarithmische Tiefe. Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 10 / 74 Die Tiefe von AVL-Bäumen Satz Ist T ein höhenbalancierter Binärbaum mit n Knoten, so gilt d(T ) ≤ 1, 4405 · log n. D.h. höhenbalancierte Bäume sind höchstens um den Faktor 1,4405 tiefer als vollständig balancierte Bäume mit gleicher Knotenzahl. Beweisidee: Wir werden zeigen, dass ein AVL-Baum der Tiefe d exponentiell viele Knoten haben muss. Genauer gesagt existiert eine Konstante C > 1 mit logC 2 ≤ 1, 4405 und ein AVL-Baum der Tiefe d enthält mindestens C d Knoten. Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 11 / 74 Die Tiefe von AVL-Bäumen Beweis Für d ∈ N sei N(d) die minimale Zahl innerer Knoten in einem AVL-Baum die Tiefe d. N(0) = 1 N(1) = 2 ... Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 12 / 74 Die Tiefe von AVL-Bäumen Beweis (Fortsetzung) Behauptung 1: N(d) = 1 + N(d − 1) + N(d − 2) für d ≥ 2 N(d − 1) N(d − 2) Damit der höhenbalancierte Baum die Tiefe d hat, muss mindestens einer seiner Unterbäume Tiefe d − 1 haben. Aus der Balancierung folgt dann, dass der andere Unterbaum mindestens Tiefe d − 2 hat. Außerdem müssen beide Unterbäume selbst minimale Knotenzahl haben. Damit hat der tiefere Baum N(d − 1) Knoten und der flachere Baum N(d − 2) Knoten. Damit ist Behauptung 1 gezeigt. ... Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 13 / 74 Die Tiefe von AVL-Bäumen Beweis (Fortsetzung) Diese Ungleichung legt exponentielles Wachstum nahe. Behauptung 2: N(d) ≥ C d für d ≥ 0 wobei C = 21 (1 + (goldener Schnitt) √ 5) ∼ 1, 618 . . . Wir beweisen die Behauptung 2 mittels Induktion. Induktionsanfang: Für d = 0 gilt N(0) = 1 = C 0 . Für d = 1 gilt N(1) = 2 > C . ... Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 14 / 74 Die Tiefe von AVL-Bäumen Beweis (Fortsetzung) Induktionsbehauptung: Für alle 0 ≤ i ≤ n − 1 gilt N(i) ≥ C i . Induktionsschritt: N(d) = 1 + N(d − 1) + N(d − 2) ≥ 1 + C d−1 + C d−2 ≥ C d−2 (C + 1) √ Betrachtet man C = 21 (1 + 5) genauer, stellt man fest, dass C 2 = C + 1 gilt. Das führt zu N(d) ≥ C d−2 · C 2 = C d , was die Behauptung beweist. ... Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 15 / 74 Die Tiefe von AVL-Bäumen Beweis (Fortsetzung) Ist T ein höhenbalancierter Baum der Höhe d(T ) ≥ 0 mit n Knoten, so folgt aus C d(T ) ≤ n d(T ) ≤ logC (n) = logC (2) · log(n). Es gilt log C (2) = ln 2/lnC = 1, 440429 . . . was den Beweis des Satzes abschließt. Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 16 / 74 Implementierung Es müssen noch Implementierungen von delete und insert beschrieben werden, die die Höhenbalancierung erhalten. Jeder einzelne Baumknoten enthält fünf Einträge. Den Schlüssel x die Daten d einen Zeiger left auf das linke Kind einen Zeiger right auf das rechte Kind den Balancefaktor bal. x left bal d right Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 17 / 74 Implementierung empty() : Erzeuge einen NULL-Zeiger lookup(T , x) : Wie bei einem gewöhnlichen BSB AVL insert und AVL delete bestehen aus zwei Phasen: In der ersten Phase werden die üblichen Operationen wie auf einem BSB ausgeführt. In der zweiten Phase müssen die Bäume unter Umständen rebalanciert werden. Die Rebalancierung erfolgt dabei rekursiv. Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 18 / 74 Hilfsoperationen – Die Rechtsrotation Die Rechtsrotation kippt eine Kante nach rechts. v u y x v u y x ⇒ T3 T1 T1 T2 T2 T3 Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 19 / 74 Hilfsoperationen – Die Rechtsrotation T v T′ u y x v u y x T3 T1 ⇒ T1 T2 T2 Ist T ein binärer Suchbaum, so auch T ′ . Beweis: Da T ein BSB ist, gilt für alle vi ∈ Ti key (v1 ) ≤ x ≤ key (v2 ) ≤ y ≤ key (v3 ). Das zeigt auch die Suchbaumeigenschaft für T ′ Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 20 / 74 T3 Hilfsoperationen – Die Rechtsrotation T v T′ u y x v u y x T3 T1 ⇒ T2 T1 T2 Änderungen: Rechtes Kind von u und linkes Kind von v T1 wird hochgezogen T3 wird abgesenkt Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 21 / 74 Hilfsoperationen – Die Rechtsrotation rotateR(v) u = left(v ); left(v ) = right(u); right(u) = v ; return u; Achtung! Die Balancefaktoren in u und v müssen noch korrigiert werden! Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 22 / 74 T3 Hilfsoperationen – Die Linksrotation Die Linksrotation kippt eine Kante nach links. v u y x v u y x ⇒ T3 T2 T1 T1 T3 T2 Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 23 / 74 Hilfsoperationen – Die Doppelrotationen Die Links-Rechts-Doppelrotation kann auf einen Links-Rechts-Weg angewandt werden. z z v y ⇒ u x y w w y v ⇒ u x u x Erst eine Linksrotation an der unteren Kante Dann eine Rechtsrotation an der oberen Kante Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 24 / 74 w z v Hilfsoperationen – Die Links-Rechts-Doppelrotation y w z v ⇒ x u y w T1 x u v T4 T1 T2 z T2 T3 T4 T3 Effekt: Der unterste Knoten des Lnks-Rechts-Weges wandert nach oben und wird Wurzel des Teilbaumes. Die beiden anderen Knoten des Weges werden sein linkes und rechtes Kind. Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 25 / 74 Hilfsoperationen – Die Links-Rechts-Doppelrotation rotateLR(v) u = left(v ); w = right(u); right(u) = left(w ); left(v ) = right(w ); left(w ) = u; right(w ) = v ; return w ; Achtung! Die Balancefaktoren in u und v müssen noch korrigiert werden! Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 26 / 74 Die Rechts-Links-Doppelrotation Die Rechts-Links-Doppelrotation ist symmetrisch zur Links-Rechts-Doppelrotation. y w z v ⇒ x u T1 z v x u y w T4 T2 T1 T2 T3 T4 T3 Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 27 / 74 Ein Beispiel Links Links−Rechts ⇒ D A P B F ⇒ P D S R A T P S F R B T S A D B R T F ⇓Rechts Rechts−Links ⇐ D B A P F A S R P D T Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau B Seite 28 / 74 S F R T Einfügen in AVL-Bäume Die Implementierung von AVL insert für AVL-Bäume besteht aus zwei Phasen: Das neue Schlössel-Wert-Paar wird wie in einen gewöhnlichen binären Suchbaum eingefügt. Anschließend wird die Balancierung geprüft. Wenn die Balancierung nirgendwo verletzt wird, geschieht nichts Wenn die Balancierungsbedingung irgendwo verletzt ist, gibt es auf dem Weg vom neuen Knoten zur Wurzel (nur dort kann die Verletzung auftreten) einen tiefsten Knoten v , an dem dies der Fall ist. An v wird eine Einfach- oder Doppelrotation ausgeführt und dadurch die Balancierung wieder hergestellt. Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 29 / 74 Ein Beispiel Wir fügen 1, 3, 9, 11, 12, 10, 2, 6, 4, 7, 0 in einen anfänglich leeren AVL-Baum ein. 3 3 1 1 9 1 Links 3 ⇒ 11 Links ⇒ 11 9 12 9 12 Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 30 / 74 10 Ein Beispiel 3 1 9 11 3 11 Rechts−Links 9 ⇒ 12 1 10 10 12 2 Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 31 / 74 Ein Beispiel 9 9 2 3 11 Links−Rechts 1 11 10 12 ⇒ 1 3 10 6 2 4 Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 32 / 74 12 Ein Beispiel 9 9 2 1 11 3 10 2 12 R−L 11 1 ⇒ 4 6 3 10 12 6 4 7 Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 33 / 74 Ein Beispiel 9 9 2 1 11 4 3 10 4 12 Links 2 ⇒ 1 6 0 7 Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 34 / 74 11 6 3 10 7 12 Ein Beispiel 9 4 2 1 11 6 3 0 10 7 12 4 Rechts ⇒ 2 1 9 3 0 6 11 7 10 12 Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 35 / 74 Einfügen in AVL-Bäume Problem Wie wird entschieden, welche Rotation die Balancierung wieder herstellt? Es soll weder die globale Sicht verwendet werden, noch soll das Balancieren durch Hinschauen bzw. Ausprobieren erreicht werden. Benutzt werden dürfen : Die Balancefaktoren bal(v ) in jedem Knoten Ein Flag deeper, das als Resultat eines rekursiven Aufrufs mitteilt, ob der bearbeitete Unterbaum tiefer geworden ist. Die Entscheidung, welche Rotation durchgeführt wird, wird an Hand dieser Werte gefällt. Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 36 / 74 Einfügen in AVL-Bäume AVL insert(T , x, r ) Eingabe: AVL-Baum T , Schlüssel x und Daten r ; Ausgabe: AVL-Baum T und ein Boolean deeper; if T == NULL then T = new AVL Tree(x, r ); return (T , true); end // Neuer Knoten if T ! = NULL and key (T ) == x then data(T ) = r ; return (T , false); end // Update (. . . ) Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 37 / 74 Einfügen in AVL-Bäume AVL insert(T , x, r ) – Fortsetzung if T ! = NULL and key (T ) > x then // links einfügen // Einfügen (left(T ), left deeper) = AVL insert(left(T ), x, r ); (T , deeper) = RebalanceInsLeft(T , left deeper); // Rebalancierung von T end else if T ! = NULL and key (T ) < x then // rechts einfügen (right(T ), right deeper) = AVL insert(right(T ), x, r ); // Einfügen (T , deeper) = RebalanceInsRight(T , right deeper); // Rebalancierung von T end return T , deeper; Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 38 / 74 Einfügen in AVL-Bäume Wie man sieht, wird der neue Schlüssel erst eingefügt, und dann auf dem Rückweg zur Wurzel wieder Rebalanciert. Dadurch fängt man immer beim untersten unbalancierten Knoten an und wandert aufwärts. Es bleibt festzustellen, welche Situationen auftreten können und wie sie gelöst werden. Wir konzentrieren uns im folgenden auf den Fall, dass der neue Knoten in den linken Unterbaum eingefügt wird. Für den rechten Unterbaum ist das Vorgehen symmetrisch. Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 39 / 74 Einfügen in AVL-Bäume 1. Fall: left deeper = false, d.h. der linke Unterbaum wurde nicht tiefer. T geändert, aber gleiche Höhe Da sich auch die Tiefe des rechten Unterbaumes nicht geändert hat (er hat sich gar nicht geändert), ist der Knoten T weiterhin balanciert. Da der Teilbaum die Tiefe nicht verändert hat: deeper = false Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 40 / 74 Einfügen in AVL-Bäume 2. Fall: left deeper = true und bal(T ) = 0, d.h. der linke Unterbaum wurde tiefer und die Unterbäume hatten gleiche Tiefe. T neu Da sich die Tiefen der beiden Unterbäume nur um eins unterscheiden, bleibt der Baum balanciert. deeper = true und bal(T ) = −1 Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 41 / 74 Einfügen in AVL-Bäume 3. Fall: left deeper = true und bal(T ) = 1, d.h. der linke Unterbaum wurde tiefer und der rechte Unterbaum war um eins tiefer, als der linke. T neu Da sich die Tiefen der beiden neuen Unterbäume nicht unterscheiden, ist der Baum balanciert. deeper = false und bal(T ) = 0 Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 42 / 74 Einfügen in AVL-Bäume 4. Fall: left deeper = true und bal(T ) = −1, d.h. der linke Unterbaum wurde tiefer und der linke Unterbaum war um eins tiefer, als der linke. T neu Die Höhen der beiden Unterbäume unterscheiden sich um 2. Damit ist der Baum unbalanciert. Frage Was nun ??? Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 43 / 74 Einfügen in AVL-Bäume Fall 4.1.: left deeper = true und bal(T ) = −1 und bal(left(T )) = −1 Rechtsrotation T T1 T1 T T1,1 neu T2 T1,1 neu T1,2 T1,2 T2 Die Rechtsrotation zieht den linken Unterbaum eine Ebene hoch und senkt den rechten eine Ebene ab. deeper = false und bal(T1 ) = 0 und bal(T ) = 0 und die neue Wurzel ist T1 . Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 44 / 74 Einfügen in AVL-Bäume Fall 4.2.: left deeper = true und bal(T ) = −1 und bal(left(T )) = 1 Links − Rechts T T1 T1,2 T1 T T1,2 T2 T1,1 T′ neu T′ neu T1,1 T ′′ neu T ′′ neu T2 Die Links-Rechts-Rotation zieht die mittleren Unterbäume eine Ebene hoch und senkt den rechten eine Ebene ab. deeper = false und die neuen Balancefaktoren wie folgt. Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 45 / 74 Einfügen in AVL-Bäume Neue Balancierung hängt von der Balancierung von T1,2 = right(left(T )) ab. Links − Rechts T T1 T1,2 T1 T T1,2 T2 T1,1 T′ neu T ′′ neu T1,1 T′ neu T ′′ neu Falls bal(T1,2 ) = 0 haben T ′ und T ′′ dieselbe Tiefe, wie T1,1 und T2 . bal(T1 ) = 0 und bal(T ) = 0 und bal(T1,2 ) = 0 Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 46 / 74 T2 Einfügen in AVL-Bäume Links − Rechts T T1 T1,2 T1 T T1,2 T2 T1,1 T′ neu T′ neu T1,1 T ′′ T ′′ T2 Falls bal(T1,2 ) = −1 bal(T1 ) = 0 und bal(T ) = 1 und bal(T1,2 ) = 0 Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 47 / 74 Einfügen in AVL-Bäume Links − Rechts T T1 T1,2 T1 T T1,2 T2 T1,1 T′ T ′′ neu T′ T1,1 T ′′ neu Falls bal(T1,2 ) = 1 bal(T1 ) = −1 und bal(T ) = 0 und bal(T1,2 ) = 0 Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 48 / 74 T2 Einfügen in AVL-Bäume Insgesamt ergibt sich die folgende Tabelle für den Fall 4.2.: bal(right(left(T)) -1 0 1 bal(T’) 0 0 0 bal(left(T’)) 0 0 -1 bal(right(T’)) 1 0 0 Dabei ist T die ursprüngliche Wurzel des Teilbaumes und T ′ die neue Wurzel. Das Ergebnis hängt also vom Balancefaktor von right(left(T )) vor der Rotation, aber nach dem Einfügen ab! Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 49 / 74 Einfügen in AVL-Bäume Faustregel für das Rotieren Wenn ein äußerer Teilbaum zu tief wird hilft eine einfache Rotation. Diese hebt den Teilbaum um eine Ebene an. Wenn ein mittlerer Teilbaum zu tief wird hilft eine Doppelrotation. Diese hebt den mittleren Teilbaum um eine Ebene an. Die rekursive Abarbeitung rebalanciert von unten nach oben. Beobachtung Nach dem ersten Auftreten des 4. Falles, gilt stets deeper = false und somit findet keine weitere Rebalancierung statt. Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 50 / 74 Einfügen in AVL-Bäume Lemma Die rekursive Prozedur AVL insert(T , x, r ) führt auf AVL-Bäumen die Wörterbuchoperation insert korrekt durch. AVL insert hat Laufzeit O(log n) und führt höchstens eine Einfach- oder Doppelrotation durch. Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 51 / 74 Löschen aus AVL-Bäumen Das Löschen in AVL-Bäumen läuft im Prinzip ähnlich ab, wie das Einfügen: Der Eintrag wird wie in gewöhnlichen binären Suchbäumen gelöscht. Der Baum wird anschließend von unten nach oben rebalanciert. Statt eines deeper-Flags benutzen wir aber ein shallower-Flag, das anzeigt, ob der Baum flacher geworden ist. Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 52 / 74 Löschen aus AVL-Bäume Wenn der Knoten T mit den zu löschenden Schlüssel x gefunden ist, können drei Fälle eintreten. Fall 1: Der Knoten T hat keinen linken Unterbaum, d.h. left(T ) = NULL. T T2 Dann kann man einfach den rechten Teilbaum zurückgeben. shallower = true Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 53 / 74 Löschen aus AVL-Bäume Fall 2: Der Knoten T hat keinen rechten Unterbaum, d.h. right(T ) = NULL. T T1 Dann kann man einfach den linken Teilbaum zurückgeben. shallower = true Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 54 / 74 Löschen aus AVL-Bäume Fall 3: Der Knoten T hat beide Unterbäume. T T1 T2 Wie bei gewöhnlichen binären Suchbäumen löscht man in diesem Fall den kleinsten Schlüssel aus dem rechten Unterbaum und verschiebt ihn stattdessen in die Wurzel. Ob der Baum flacher wird hängt dabei von der Postion des minimalen Schlüssels im rechten Unterbaum ab. Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 55 / 74 Löschen aus AVL-Bäume AVL delete(T , x, r ) Eingabe: AVL-Baum T , Schlüssel x; Ausgabe: AVL-Baum T und ein Boolean shallower; if T == NULL then return (T , false); end // nicht vorhanden if T ! = NULL and key (T ) > x then // Update (left(T ), left shallower) = AVL delete(left(T ), x); (T , shallower) = RebalanceDelLeft(T , left shallower); return (T , shallower); end (. . . ) Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 56 / 74 Löschen aus AVL-Bäumen AVL delete(T , x, r ) – Fortsetzung if T ! = NULL and key (T ) < x then // Update (right(T ), right shallower) = AVL delete(right(T ), x); (T , shallower) = RebalanceDelRight(T , right shallower); return (T , shallower); end if T ! = NULL and key (T ) == x then if left(T ) == NULL then return (right(T ), true); // Entferne Wurzel if right(T ) == NULL then return (left(T ), true); (right(T ), x, r , right shallower) = AVL deleteMin(T ); key (T ) = x, data(T ) = r ; return RebalanceDelRight(T , right shallower); end Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 57 / 74 Extraktion des Minimums Die Prozedur AVL deleteMin(T ) hat vier Rückgabewerte (S, x, r , shallower): S ist der resultierende AVL-Baum nach dem Löschen des Minimums x und r sind die Werte des gelöschten minimalen Schlüssel-Wert-Paares shallower gibt an, ob der Baum durch das Löschen flacher geworden ist. Um das Minimum zu finden, müssen wir – wie in gewöhnlichen binären Suchbäumen – immer nach links gehen, bis es kein linkes Kind mehr gibt. D.h. wir müssen zwei Fälle bezglüch left(T ) unterscheiden. Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 58 / 74 Extraktion des Minimums Fall 1: left(T ) = NULL, d.h. T enthält das Minimum. In diesem Fall können wir einfach den rechten Teilbaum als Wurzel zurückgeben. S = right(T ) und x = key (T ) und r = data(T ) und shallower = true. Fall 2: left(T ) 6= NULL In dieser Situation müssen wir das Minimum im linken Unterbaum löschen und anschließend Rebalancieren. (S, x, r , left shallower) = AVL deleteMin(left(T )); (S, shallower) = RebalanceDelLeft(T , left shallower); return (S, x, r , shallower); Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 59 / 74 Die Rebalancierung nach dem Löschen Wir beschränken uns wieder auf den Fall, dass das Element im linken Unterbaum gelöscht wurde. Für den rechten Unterbaum ergibt der Algorithmus durch Spiegelung. Löschen ⇒ T T1 T1′ T2 Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau T Seite 60 / 74 T2 Die Rebalancierung nach dem Löschen Fall 1: Falls left shallower = false ändert sich auch die Tiefe und die Balancierung von T nicht, d.h. shallower = false Fall 2: Falls left shallower = true und bal(T ) = −1 wurde der Linke Teilbaum flacher und die Balancierung ändert sich. T shallower = true und bal(T ) = 0 Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 61 / 74 Die Rebalancierung nach dem Löschen Fall 3: Falls left shallower = true und bal(T ) = 0 wurde der Linke Teilbaum flacher und die Balancierung ändert sich. T shallower = false und bal(T ) = 1 Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 62 / 74 Die Rebalancierung nach dem Löschen Fall 4: Falls left shallower = true und bal(T ) = 1 wurde der Linke Teilbaum flacher und die Balancierung ändert sich. T shallower = false Der Baum muss – je nach Form des rechten Unterbaumes – rebalanciert werden. Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 63 / 74 Die Rebalancierung nach dem Löschen Fall 4.1: bal(right(T )) = 0 Links T S S T T1 T2,2 T1 T2,1 T2,2 T2,1 bal(T ) = 1 und bal(S) = −1 und shallower = false Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 64 / 74 Die Rebalancierung nach dem Löschen Fall 4.1: bal(right(T )) = 1 Links T S S T T1 T2,1 T1 T2,1 T2,2 bal(T ) = 0 und bal(S) = 0 und shallower = true Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 65 / 74 Die Rebalancierung nach dem Löschen Fall 4.1: bal(right(T )) = −1 T S T1 T2,2 T2,1 Der mittlere Baum muss angehoben werden. Damit erfolgt eine Doppelrotation. Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 66 / 74 T2,2 Die Rebalancierung nach dem Löschen Fall 4.1: bal(right(T )) = −1 Links − Rechts T S R T S R ′ T2,1 T1 ′ T2,1 ′′ T2,1 T2,2 ′′ T2,1 T2,2 T1 shallower = true Die Balancefaktoren müssen in Abhängigkeit von bal(R) angepasst werden. alt bal(R) -1 0 1 bal(R) 0 0 0 neu bal(T) 0 0 -1 bal(S) 1 0 0 Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 67 / 74 Löschen in AVL-Bäumen Lemma Die Prozedure AVL delete führt die Wörterbuchoperation delete korrekt durch. D.h. es entsteht wieder ein AVL-Baum. Die Prozedur hat Laufzeit O(log n) und führt an jedem Knoten auf dem Weg von der Wurzel zum gelöschten Knoten höchstens eine Einfach- oder Doppelrotation aus. Satz In AVL-Bäumen kostet jede Wörterbuchoperation Zeit O(log n), wobei n die Anzahl der Wörterbucheinträge ist. Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 68 / 74 Ein Beispiel Im Gegensatz zum Einfügen, kann das Löschen eines Knotens zu mehreren Einfach- und Doppel-Rotationen führen. Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 70 / 74 Ein Beispiel Im Gegensatz zum Einfügen, kann das Löschen eines Knotens zu mehreren Einfach- und Doppel-Rotationen führen. Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 71 / 74 Ein Beispiel Im Gegensatz zum Einfügen, kann das Löschen eines Knotens zu mehreren Einfach- und Doppel-Rotationen führen. Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 72 / 74 Ein Beispiel Im Gegensatz zum Einfügen, kann das Löschen eines Knotens zu mehreren Einfach- und Doppel-Rotationen führen. Algorithmen und Datenstrukturen SS09 M. Brinkmeier TU Ilmenau Seite 73 / 74