A B C - Plant Developmental Biology

Werbung
Einführung in die Genetik
Prof. Dr. Kay Schneitz (EBio Pflanzen)
http://plantdev.bio.wzw.tum.de
[email protected]
Twitter: @PlantDevTUM, #genetikTUM
FB: Plant Development TUM
Prof. Dr. Claus Schwechheimer (PlaSysBiol)
http://wzw.tum.de/sysbiol
[email protected]
Einführung in die Genetik
VO, 2 SWS / 3 ECTS im WS
Dienstags, 08.30 - 10.00 Uhr,
HS16, WZW
Übung
1 SWS / 1 ECTS in SFerien, LV-Nr 2401237000
08. 04. - 12. 04. 2013, 09.00 - 17.00 Uhr,
HS14, WZW,
PD Dr. Erich Glawischnig, Dr. Lilla Römisch-Margl (Genetik)
http://www.tum.de/genetik
[email protected], [email protected]
Einführung in die Genetik - Inhalte
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Einführung
Struktur von Genen und Chromosomen
Genfunktion
Transmission der DNA während der Zellteilung
Vererbung von Einzelgenveränderungen
Genetische Rekombination (Eukaryonten)
Genetische Rekombination (Bakterien/Viren)
Rekombinante DNA-Technologie
Kartierung/Charakterisierung ganzer Genome
Genmutationen: Ursache und Reparatur
Veränderungen der Chromosomen
Genetische Analyse biologischer Prozesse
Transposons bei Eukaryonten
Regulation der Genexpression
Regulation der Zellzahl - Onkogene
16. 10. 12
23. 10. 12
30. 10. 12
06. 11. 12
13. 11. 12
20. 11. 12
27. 11. 12
04. 12. 12
11. 12. 12
18. 12. 12
08. 01. 13
15. 01. 13
22. 01. 13
29. 01. 13
05. 02. 13
KS
KS
KS
KS
KS
KS
KS
CS
CS
CS
CS
CS
CS
KS
CS
Prüfung
12. 04. 2013
HS 14, WZW
13.00 Uhr
VO + Übung
Prüfungsanmeldung
• TUMonline zwingend!!!
• https://campus.tum.de/tumonline/
webnav.ini
• myTUM-Kennung / Password
• Wenn angemeldet --> Rückzug nur mit
Attest (Prüfungsamt), ansonsten --> nicht
angetreten und eine 5.0 !!
Downloads
http://plantdev.bio.wzw.tum.de/lehre/anmeldung
http://www.wzw.tum.de/sysbiol/index.php?id=10
user: gregor
password: mendel
Literatur
•
Introduction to Genetic Analysis. 10th Edition.
•
Genetik: Allgemeine Genetik - Molekulare Genetik Entwicklungsgenetik. 2. Auflage.
Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., Doebley, J. (2011). WH
Freeman and Company, New York, USA.
Janning, W., Knust, E. (2008). Georg Thieme Verlag, Stuttgart,
BRD
•
Genetics Essentials: Concepts and Connections. Pierce,
•
Molecular Biology of the Cell, 5th Edition.
B.A. (2010) WH Freeman and Company, New York, USA.
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.
(2008) Garland Science, Taylor & Francis Group, UK
Fundamental concepts
Cells
prokaryotic, eukaryotic
Multigenic traits
e.g. human height
Gene
Genetic Information
fundamental unit of heredity
contained in DNA and RNA
Alleles
Chromosomes
multiple forms of a gene
genes are located on chro
Mutations
Mitosis/Meiosis
permanent, heritable changes
chro separation
Genotype vs Phenotype
Central Dogma
genes confer phenotypes
DNA to RNA to protein
Evolution is genetic change
Genetics and biology
Transmission
genetics
Molecular
genetics
Population
genetics
Genetic dissection
Biosynthetic pathway
α
γ
β
δ
Enzymes
A
B
C
Genes
A
B
C
Mutation
Gene
Function
Genetics and basic science
Developmental genetics
Evolution
Human genetics
Genetics and application
Agriculture
Medicine: congenital disorders
Green revolution
Cystic fibrosis (Mukoviszidose)
Biotechnology
The Structure of Genes
and Chromosomes
Genetics 02
Topics
DNA Structure
Chromosomes
DNA Replication
DNA: The genetic material
Griffith, 1928
Transformation
DNA: The genetic material
Avery, MacLeod, McCarty, 1944
DNA: The genetic material
Hershey and Case, 1952
DNA is transforming principle
Genes are made of DNA
The Structure of DNA
The DNA double helix
groove: Rinne/Furche
1953: The double helix
James Watson
Francis Crick
Rosalind Franklin
The building blocks of DNA
Connecting the blocks:
phosphodiester linkage
5’
3’
The DNA double helix
(Rinne/Furche)
The DNA double helix
5’ pCpApGpTOH 3’
5’ CAGT 3’
1’000 b = 1 kb
Summary
•
•
•
•
genetic material is DNA
building blocks of DNA:
•
nucleotides (base, deoxyribose, phosphate)
nucleotides form a strand through phosphodiester linkage
between phosphate and sugar (5’ to 3’ direction)
DNA double helix: two, anti-parallel strands, kept together by
hydrogen bonds between matching bases
•
A-T
G-C
Chromosomes
Organizing the genome
Cells
Genome sizes
Plasmid
Chromosomes
Drosophila
E. coli
Human
Maize
Chromosomal landscapes
Specific human
chromosomal landscape
The nuclear genome
The nucleosome
Histone modifications
Chromatin, the stuff of
chromosomes
Solenoid
Chromosome condensation
by supercoiling
Chromatin structure varies
along the chromosome
Landmarks of tomato
chromosome 2
The human karyotype
2n = 46
Karyotype of a patient
with hereditary ataxia
Chro 4
Chro 12*
Summary
•
•
•
•
•
•
•
genomes are organized into chromosomes
karyotype is species-specific
diploid organism: pairs of homologous chro
chromsomes are made of DNA and proteins
chromatin
•
nucleosomes (histones plus DNA)
chro landmarks:
•
•
•
•
•
centromer (CEN)
NOR
chromosomal bands
euchromatin
heterochromatin
chromosomal condensation
DNA Replication
Making copies
Model: Semiconservative
DNA replication
Fork
New DNA strands are
complementary to
template
Meselson-Stahl experiment
Bacterial chro replication:
two replication forks
Bacterial chro replication:
two replication forks
Connecting the building
blocks: DNA polymerase
E. coli: DNA pol I (pol I - pol III)
5’-to-3’ polymerase activity
5’
chain growth
3’-to-5’ exonuclease activity
removal of mismatched bases
5’-to-3’ exonuclease activity
degrades single-stranded DNA or RNA
3’
DNA replication at
growing fork
Leading strand: Leitstrang
Lagging strand: Folgestrang
DNA replication at
growing fork
Leading strand: Leitstrang,
führender Strang
Lagging strand: Folgestrang,
verzögerter Strang
Synthesizing the lagging
strand
Leading strand: Leitstrang,
führender Strang
Lagging strand: Folgestrang,
verzögerter Strang
Movie
Movie
The replisome
Origins:
controlled start of
replication
Eukaryote: Starting
replication
Assembling nucleosomes
during DNA replication
How to terminate
replication?
How to terminate
replication?
Telomeres
Telomere lengthening
Telomere lengthening
Protecting the telomeric ends
Cap
Summary
•
•
•
•
•
•
•
•
DNA replication is semi-conservative
replication occurs at the replication fork
replication starts at oris
5’ to 3’ direction
leading/lagging strands (primers/Okazaki fragments)
DNA polymerases
replisome
telomers
•
•
terminating replication
protecting the ends
THE END
Herunterladen