Drosophila als Modell für die Analyse humaner Erkrankungen Stefan Luschnig [email protected] Drosophila als Modell für die Analyse humaner Erkrankungen Woche 1 (20.6. - 24.6.2016) I: Genetik und Entwicklung von Drosophila melanogaster Allgemeine Grundlagen: Genetik, Embryonal-Entwicklung von Drosophila Tubuläre Morphogenese, Einfluss von Hypoxie auf die Entwicklung Experimente: 1. Kartierung von Transposon-Insertionen (P-Elemente) durch inverse PCR und Sequenzanalyse 2. Analyse von Mutanten mit Defekten bei der tubulären Morphogenese: ImmunfluoreszenzFärbung, live imaging, konfokale Mikroskopie Drosophila als Modell für die Analyse humaner Erkrankungen Woche 1 (20.6. - 24.6.2016) Drosophila as a model organism Introduction • Life cycle, development, genetics Advantages: • small, easy and cheap to culture • large number of progeny (50 eggs per female per day) • short generation time (9 days) • rapid embryonic development (24h), accessible to live imaging approaches • powerful genetic and genomic tools, cell lines • extensive resources (collections of mutants, deletions, RNAi lines etc.) freely available Disadvantages: • labor-intensive maintenance of stocks (freezing not possible) Life cycle 1 day 4 days Generation time: 9 days (at 25°C) 1 day 1 day 2 days Was können wir von Drosophila lernen? 1933 Thomas H. Morgan "for his discoveries concerning the role played by the chromosome in heredity". 1946 Hermann J. Muller "for the discovery of the production of mutations by means of X-ray irradiation". 1995 Edward Lewis, Christiane Nüsslein-Volhard and Eric Wieschaus "for their discoveries concerning the genetic control of early embryonic development". 2011 one half jointly to Bruce Beutler and Jules Hoffmann "for their discoveries concerning the activation of innate immunity" and the other half to Ralph Steinman "for his discovery of the dendritic cell and its role in adaptive immunity". Was können wir von Drosophila lernen? • Genetik als Werkzeug für funktionelle Studien Mutanten erlauben Einblicke in die Funktion eines Genproduktes Funktionsverlust Phänotyp Funktionsgewinn Phänotyp Faktor X Loss-of-function Gain-of-function Mutanten erlauben Einblicke in die Funktion eines Genproduktes Funktionsverlust Phänotyp Funktionsgewinn Phänotyp Faktor X Loss-of-function Gain-of-function Zell- und Entwicklungsdefekte Mutanten erlauben Einblicke in die Funktion eines Genproduktes Funktionsverlust Phänotyp Funktionsgewinn Phänotyp Faktor X Loss-of-function Gain-of-function in vivo Funktion Zell- und Entwicklungsdefekte Forward vs. reverse genetics Forward genetics phenotype > gene • Loss-of-function screens (e.g., for embryonic lethal mutations) • Gain-of-function screens (ectopic expression, overexpression) • Modifier screens (sensitized genetic backgrounds) Reverse genetics gene > phenotype • targeted deletions (P-element excisions, Flp-FRT recombination) • Gene targeting by homologous recombination (more recently: TALENs, CRISPR-Cas9) type cells; tissue-specific transgenic RNAi in flies) (in cultured • RNAiwild Drosophila genetics and genetic tools • • • Genome organization • • • • • Nomenclature Balancer chromosomes Mutagenesis (random vs. site-directed, mutagens, mapping strategies, genetic screens) Transposons Transgenic animals RNAi Genetic mosaics The Drosophila melanogaster genome • 5 chromosomes (X,Y, II, III, IV): three autosome pairs, two sex chromosomes • Genome sequenced (2000) • 180 Mio bp (120 Mio bp Euchromatin) • approximately 15.000 genes • no meiotic recombination in males 40% 40% Females: X/X; 2/2; 3/3; 4/4 Males: X/Y; 2/2; 3/3; 4/4 http://flybase.org/ 20% Genomes of 12 Drosophila species http://rana.lbl.gov/drosophila/ http://flybase.org/static_pages/species/sequenced_species.html Genomes of 12 Drosophila species Bhutkar et al. (2008) Genetics 179: 1657-1680. complete genome sequences of 192 inbred D. melanogaster lines • complete genome sequences from 192 inbred lines derived from a natural population are available • This panel of inbred lines is being used to study the genetics of complex traits (life span, behavior, etc.) > genome-wide association studies http://service004.hpc.ncsu.edu/mackay/Good_Mackay_site/DBRP.html Polytene chromosomes 1000-2000 aligned stands of DNA; they form when successive rounds of DNA replication are not followed by cell division (= endoreplication) Somatic pairing • Generally, homologous chromosomes align during prophase of meiosis I • in few eukaryotes (diptera, some fungi), homologous chromosomes also align in somatic cells, with important consequences for gene regulation and recombination Polytene chromosomes: Cytology X 1 -­‐ 20 2L 21 -­‐ 40 2R 41 -­‐ 60 3L 61 -­‐ 80 3R 81 -­‐ 100 4 101, 102 Examples: white Sb 3B6 89B4-­‐6 Chromosomal deficiencies Df(1)BA1 1A1; 2A maintained with Dup 1B2-14; 3A3 maintained with Dup 3C2-3; 3E3-4 Df(1)N-8 T(1;3)sc[J4] 2F6; 3C5 Df(1)JC19 3C11; 3E4 Df(1)dm75e19 Df(1)A113 Df(1)JC70 4C15-16; 5A1-2 4F5; 5A13 Df(1)BA2-8 5A8-9; 5C5-6 Df(1)C149 Df(1)N73 6E2; 7A6 Df(1)Sxl-bt 7A2-3; 7C1 maintained with Dup 7B2-4; 7C3-4 Df(1)ct4b1 Df(1)ct-J4 5C2; 5D5-6 3D6-E1; 4F5 maintained with Dup Df(1)dx81 5C3-10; 6C3-12 maintained with Dup 7D1; 7D5-6 Df(1)C128 Df(1)RA2 7D10; 8A4-5 7F1-2; 8C6 Df(1)C52 Df(1)v-L15 Df(1)HA85 Df(1)N105 Df(1)C246 12A; 12E -or11F10; 12F1 12F5-6; 13A9-B1 maintained with Dup Df(1)sd72b 14B8; 14C1 14B13; 15A9; 35D-E Tp(1;2)r[+]75c Df(1)4b18 13F1; 14B1 13B5-6; 13E1-2 In(1)AC2[L]AB[R] Df(1)RK4 Df(1)g 11D-E; 12A1-2 10F7; 11D1 10C1-2; 11A1-2 9F; 10C3-5 maintained with Dup Df(1)v-N48 9B1-2; 10A1-2 8E; 9C-D Df(1)KA14 8B5-6; 8D8-9 -or8D1-2; 8E1-2 Df(1)lz-90b24 Df(1)RK2 Df(1)r-D1 12D2-E1; 13A2-5 Df(1)XR38 14A; 15D maintained with Dup 14C2-4; 15B2-C1 maintained with Dup Df(1)B25 15D3; 16A4-6 Df(1)BK10 15F2-9; 16C7-10 maintained with Dup 18A5; 18D Df(1)JA27 17A1; 18A2 Df(1)N19 16C; 16F Df(1)RR79 Df(1)Exel6291 18A2; 18A3 18D13; 18F2 Df(1)HF396 18E1-2; 20 Df(1)A209 20A; 20F Df(1)Exel6253 19F1-2; 20E-F maintained with Dup Df(1)DCB1-35b RpL36 RpL22 1 mRpL16 2 mRpL14 3 M(1)3E mRpL33 mRpL30 4 RpL35 5 Rp7-8 RpL7A 6 RpL17 RpS14a RpS14b CG11386 RpS6 7 8 RpS28 9 Fs(1)10A 10 11 mRpL49 RpS15A Hdl CG12725 12 mRpL3a mRpS25 RpL37 13 mRpL3 mRpS30 14 RpS19a RpS19 mRpL22 15 RpS5 16 wupA 17 18 mRpS14 RpS10b CG14224 19 CG15458 20 5 Df(2L)net-PMF 21A1:21B7-8 Df(2L)BSC16 21C3-4;21C6-8 Df(2L)dp-79b 22A2-3; 22D5-E1 41A-B; 42A2-3 41A Df(2R)M41A4 Df(2R)nap9 Df(2R)ST1 43F; 44D3-8 46A; 46C Df(2R)B5 45A6-7; 45E2-3 Df(2R)w45-30n Df(2R)H3C1 42B3-5; 43E15-18 42A1-2; 42E6-F1 In(2R)bw[VDe2L]Cy[R] 42E; 44C Df(2R)cn9 Df(2R)H3E1 44D1-4; 44F12 Df(2R)Np5 44F10; 45D9-E1 Df(2R)BSC29 45D3-4; 45F2-6 Df(2R)X1 46C; 47A1 Df(2R)stan1 47D3; 48B2 Df(2R)BSC3 50D1; 50D2-7 Df(2R)Exel7131 50E4; 50F6 Df(2R)BSC18 48E12-F4; 49A11-B6 Df(2R)en-A 46D7-9; 47F15-16 Df(2R)en30 48A3-4; 48C6-8 Df(2R)BSC39 48C5-D1; 48D5-E1 48E; 49A Df(2R)CB21 Df(2R)vg-C Df(2R)CX1 49C1-4; 50C23-D2 49A4-13; 49E7-F1 Df(2R)BSC40 March 2005 RpLP1 M(2)21AB mRpL10 21 mRpL48 22 dpp oho23B 23 24 RpL40 RpL27A mRpL24 mRpS2 mRpL28 25 RpL37a 26 27 unmapped female sterile 28 RpL36A 50D4; 50E4 Df(2R)Exel7130 Df(2R)BSC11 Df(2R)Jp1 51D3-8; 52F5-9 50E6-F1; 51E2-4 Df(2R)Jp8 52F5-9; 52F10-53A1 Df(2R)BSC49 Df(2R)robl-c 54B17-C4; 54C1-4 Df(2R)14H10Y-53 55A; 55F Df(2R)PC4 Df(2R)BSC19 56F12-14; 57A4 56F11; 56F16 Df(2R)Exel7162 Df(2R)BSC22 56D7-E3; 56F9-12 56C4; 56D6-10 Df(2R)BSC26 55E2-4; 56C1-11 Df(2R)P34 54E5-7; 55B5-7 Df(2R)14H10W-35 54D1-2; 54E5-7 54C1-4; 54C1-4 54C1-4; 54C1-4 Df(2R)k10408 53D9-E1; 54B5-10 Df(2R)BSC45 Df(2R)AA21 Df(2R)Egfr5 57D2-8; 58D1 58D1; 59A Df(2R)59AD 59A1-3; 59D1-4 Df(2R)X58-12 59B; 59D8-E1 Df(2R)ED4071 60F1; 60F5 Df(2R)Kr10 60C8; 60E7 Df(2R)Px2 60E6-8; 60F1-2 Df(2R)ES1 60E2-3; 60E11-12 Df(2R)M60E 60C5-6; 60D9-10 59D5-10; 60B3-8 Df(2R)or-BR6 Df(2R)vir130 56F9-17; 57D11-12 54C8-D1; 54E2-7 54B1-2; 54B7-10 Df(2R)BSC44 unmapped dominant female sterile (most likely corresponding to RpS13) RpS13 29 mRpL51 30 sop RpL13 RpL7 31 mRpS7 RpS27A 32 RpL9 33 CG5317 34 RpL24 mRpS23 35 mRpL4 36 RpS26 mRpL13 37 RpL30 mRpS18b 38 39 40 RpL21 RpL5 48E1-2; 48E2-10 Bloomington Deficiency Kit Df(2L)BSC4 21B7-C1;21C2-3 Df(2L)BSC106 21B8;21C4 Df(2L)ast2 21D1-2; 22B2-3 Df(2L)BSC37 22D2-3; 22F1-2 Df(2L)dpp[d14] 23C5-D1; 23E2 Df(2L)BSC28 23A1-2; 23C3-5 Df(2L)C14 22E4-F2; 22F3-23A1 Df(2L)JS17 23C1-2; 23E1-2 24C2-8;25C8-9 maintained with Dup Df(2L)Exel6011 Df(2L)E110 25F3-26A1; 26D3-11 25C8;25D5 Df(2L)sc19-8 24A2; 24D4 Df(2L)drm-P2 Df(2L)ed1 23F3-4;24A1-2 23E5; 23F4-5 Df(2L)BSC31 25C4;25C8 Df(2L)BSC109 Df(2L)cl-h3 25D2-4; 26B2-5 Df(2L)BSC5 Df(2L)BSC7 Df(2L)Dwee1-W05 27E2; 28D1 Df(2L)XE-3801 27C2-3; 27C4-5 26D10-E1; 27C1 26B1-2; 26D1-2 Df(2L)BSC6 26D3-E1; 26F4-7 27C1-2; 28A Df(2L)spd[j2] Df(2L)BSC4 Df(2L)TE29Aa-11 28E4-7; 29B2-C1 28A4-B1;28BD3-9 Df(2L)Trf-C6R31 28DE(within) Df(2L)BSC53 Df(2L)BSC50 29C1-2; 30C8-9 Df(2L)N22-14 30C3-5; 30F1 Df(2L)J2 30F4-5; 31B1-4 32D1; 32D4-E1 Df(2L)Prl Df(2L)BSC36 Df(2L)BSC32 32D1; 32F1-3 34A1; 34B7-9 Df(2L)r10 Df(2L)b87e25 Df(2L)TE35BC-24 35B4-6; 35F1-7 Df(2L)cact255rv64 35F-36A; 36D Df(2L)C' Deficiencies generated in the Drosdel Project (isogenic background) Deficiencies generated by Exelexis (isogenic background) Deficiencies generated by the Bloomington Stock Center using the isogenic Exelexis collection of FRT insertions Deficiencies generated by the Bloomington Stock Center using the male recombination approach 40h35; 40h38L 40A5; 40D3 Df(2L)Exel6049 38A6-B1; 40A4-B1 Df(2L)TW161 37B2-12; 38D2-5 Df(2L)pr-A16 36C2-4; 37B9-C1 maintained with Dup Df(2L)TW137 35D1; 36A6-7 34B12-C1; 35B10-C1 Df(2L)BSC30 32F1-3; 33F1-2 Df(2L)FCK-20 32A1-2; 32C5-D1 31B; 32A Df(2L)BSC17 29A2-B1; 29D2-E1 Definite Overlap Between Deficiencies Gap Minimized Between Deficiencies To Be Tested Definite Gap Known or Potential Haplolethal or Haplosterile Ribosomal Proteins Other Ribosomal Proteins Other Haplolethal or Haplosterile Loci available for download at: http://flystocks.bio.indiana.edu/df-kit-info.htm RpL38 41 42 43 mRpL52 44 45 RpL31 46 mRpS32 CG1381 47 RpS15Ab 48 RpS11 49 mRpL18 50 mRpS16 RpS23 51 52 mRpL41 U 53 RpS15 RpPLP2 54 mRpS4 RpL18A 55 mRpS35 56 RpL11 RpS18 57 mRpL54 RpL29 58 mRpS29 RpS16 bonsai RpS24 RpL23 59 RpL37b RpL22-like mRpL43 RpL12 RpL39 60 mRpS17 RpL41 RpL19 61A; 61D3 Df(3L)Exel6087 61A2; 62A7 Df(3L)emc-E12 61C5-8; 62A8 62A10-B1; 62D2 62F; 63D maintained with Dup Df(3L)M21 Df(3L)Aprt-1 Df(3L)Ar14-8 Df(3L)R-G7 62B8-9; 62F2-5 Df(3L)BSC23 62E8; 63B5-6 63C2; 63F7 Df(3L)GN34 63E6-9; 64A8-9 Df(3L)HR119 Df(3L)GN24 63F4-7; 64C13-15 64C; 65C 65A2; 65E1 Df(3L)XDI98 65F3; 66B10 Df(3L)BSC13 Df(3L)Scf-R6 66E1-6; 66F1-6 66B12-C1; 66D2-4 Df(3L)pbl-X1 Df(3L)ZN47 Df(3L)BSC27 65D4-5; 65E4-6 Df(3L)BSC33 65E10-F1; 65F2-6 Df(3L)ZP1 66A17-20; 66C1-5 66B8-9; 66C9-10 Df(3L)66C-G28 Df(3L)h-i22 66D10-11; 66E1-2 Df(3L)BSC35 66F1-2; 67B2-3 Df(3L)AC1 67A2; 67D7-13 -or67A5; 67D9-13 Df(3L)BSC14 Df(3L)vin7 69F6-70A1; 70A1-2 Df(3L)BSC12 68C8-11; 69B4-5 67E3-7; 68A2-6 Df(3L)vin5 68A2-3; 69A1-3 69A4-5; 69D4-6 Df(3L)eyg[C1] Df(3L)BSC10 69D4-5; 69F5-7 70A1-2; 70C3-4 + small Df somewhere in 89 In(3LR)C190[L]Ubx[42TR] 70C1-2; 70D4-5 Df(3L)fz-GF3b Df(3L)fz-M21 70D2-3; 71E4-5 Df(3L)XG-5 Df(3L)st-f13 74D3-75A1; 75B2-5 Df(3L)BSC8 72C1-D1; 73A3-4 71C2-3; 72B1-C1 Df(3L)brm11 71F1-4; 72D1-10 73A3; 74F Df(3L)81k19 Df(3L)W10 75A6-7; 75C1-2 Df(3L)Cat 75B8; 75F1 75F2; 75F10 Df(3L)ri-XT1 77E2-4; 78A2-4 77A; 77D1 Df(3L)rdgC-co2 76B1-2; 76D5 Df(3L)kto2 Df(3L)ED4782 Df(3L)fz2 75F10-11; 76A1-5 76B4; 77B Df(3L)XS-533 Df(3L)BSC20 76A7-B1; 76B4-5 Df(3L)ri-79c 77B-C; 77F-78A 77F3; 78C8-9 Df(3L)ME107 Df(3L)Pc-2q 78C5-6; 78E3-79A1 78D5; 79A1 Df(3L)ED4978 79C1-3; 79E3-8 Df(3L)Ten-m-AL29 Df(3L)HD1 79D3-E1; 79F3-6 79E5-F1; 80A2-3 Df(3L)BSC21 mRpL17 61 RpL23a 62 mRpL46 mRpL23 RpL8 mRpS28 63 RpL28 mRpS6 64 65 RpL18 mRpL50 66 mRpL36 RpL14 Df(3R)e1025-14 82F8-10; 83A1-3 Df(3R)ME15 81F3-6; 82F5-7 Df(3R)3-4 83A6; 83B6 Df(3R)Exel6144 82F3-4; 82F10-11 83B4-6 Df(3R)Tpl10 + Dp(3;3)Dfd[rv1] (Bipartite Df) 83E1-2; 84A4-5 Df(3R)WIN11 83C1-2; 83D4-5 and 84A4-5; 84B1-2 Df(3R)ED5177 84A1; 84B1-2 Df(3R)Scr Df(3R)BSC47 83B7-C1; 83C6-D1 Df(3R)Antp17 84B1-2; 84D11-12 -or- A6, D14 Df(3R)p712 84D4-6; 85B6 85A2; 85C1-2 Df(3R)p-XT103 Df(3R)BSC24 85C4-9; 85D12-14 Df(3R)by10 85F1-2; 86C7-8 Df(3R)BSC38 85D8-12; 85E7-F1 86C1; 87B1-5 Df(3R)M-Kx1 Df(3R)T-32 86E2-4; 87C6-7 Df(3R)ry615 87B11-13; 87E8-11 87D1-2; 88E5-6; Y Tp(3;Y)ry506-85C Df(3R)ea 88E7-13; 89A1 Df(3R)sbd105 Df(3R)P115 88F9-89A1; 89B9-10 89B9; 89C2-7 Df(3R)sbd104 89B7-8; 89E7-8; 20 maintained with Dup Df(3R)DG2 89E1-F4; 91B1-2 Df(3R)Cha7 91F1-2; 92D3-6 Df(3R)DI-BX12 Df(3R)BSC43 93B6-7; 93D2 Df(3R)e-R1 92F7-93A1;93B3-6 92B3; 92F13 Df(3R)H-B79 90F1-4; 91F5 93B; 94A3-8 Df(3R)23D1 94A3-4; 94D1-4 Df(3R)BSC55 95F7; 96A17-18 Df(3R)Exel6202 Df(3R)TI-P 96D1; 96E2 Df(3R)crb87-5 95A5-7; 95D6-11 Df(3R)mbc-R1 Df(3R)mbc-30 95A5-7; 95C10-11 94D2-10; 94E1-6 Df(3R)e-N19 Df(3R)BSC56 94E1-2; 94F1-2 95A4; 95B1 95C12; 95D8 95D7-11; 95F15 96DE2; 96E6 96F1; 97B1 97E3; 98A5 Df(3R)D605 97A; 98A1-2 Df(3R)Espl3 Df(3R)Exel6203 96A2-7; 96D2-4 maintained with Dup Df(3R)slo[8] Df(3R)crb-F89-4 95D8; 95E5 Df(3R)Exel6197 Df(3R)Exel6196 95B1; 95D1 Df(3R)Exel9014 Df(3R)Exel6195 mRpL7-L12 RpS9 RpS17 67 mRpL2 68 RpL10Ab 69 mRpL20 RpS12 RpS4 70 NHP2 71 mRpL5 72 mRpS31 mRpS34 73 74 mRpS26 75 RpL26 76 mRpL21 mRpL15 77 78 RpLP0 79 80 Rp21 Qm 98B1-2; 98B3-5 Df(3R)BSC42 Df(3R)3450 98E3; 99A6-8 Df(3R)Dr-rv1 99A1-2; 99B6-11 Df(3R)L127 99B5-6; 99E4-F1 maintained with Dup Df(3R)B81 99C8; 100F5 maintained with Dup 82 CG1172 RpL35A mRpL44 83 RpL13A Tpl 84 mRpS9 mRpL1 mRpS18c mRpL19 85 RpL34b mRpL47 RpS29 86 mRpL37 RpS25 RpL3 mRpL40 RpL24-like 87 mRpS21 88 mRpL11 RpS5b RpL10Aa mRpS10 mRpL9 89 mRpS33 Abd-B CG16941 mRpS11 90 CG7215 91 mRpL55 92 RpS20 RpS30 93 mRpL35 94 mRpL45 RpS3 95 RpS19b mRpS24 96 RpS27 RpL27 RpL34 97 RpS10a 98 mRpS22 RpL4 99 RpS8 RpS28a RpL32 RpS7 mRpS18a 100 mRpL32 RpL6 Balancer chromosomes Balancer chromosomes: -­‐ carry mul@ple inversions to prevent meio@c recombina@on during female meiosis -­‐ (usually) carry lethal muta@on(s) that lead to lethality of homozygous flies Marker muta@ons: -­‐ Dominant (or recessive) muta@ons with a visible phenotype: Balancer chromosomes do balancer chromosomes really prevent recombina@on? Drosophila mutations Drosophila genetic nomenclature Gene named aRer first mutant phenotype (not necessarily the null mutant phenotype); examples: -­‐ white : lacks all eye pigment -­‐ apterous , wingless : lack wings -­‐ eyeless : lacks eyes One of the biggest classes of visible mutants affects eye pigmenta@on (>80); e.g.: brown, carmine, carna7on, cinnabar, claret, deep orange, garnet, karmoisin, light, lightoid, orange, pink, purple, purploid, ruby, scarlet, vermilion, white Some very inven@ve names; e.g.: -­‐ ken and barbie, technical knockout, Cubitus interruptus, saxophone Mutagens EMS (Ethyl methane sulphonate) -­‐ most efficient chemical mutagen (best compromise between toxicity and mutagenicity) -­‐ highly reac@ve alkyla@ng agent, causes mostly GC -­‐> AT transi@ons -­‐ delivered by feeding male flies -­‐ cause many muta@ons throughout the genome -­‐ mapping is not trivial and work-­‐intensive (“needle in a haystack”) X-­‐rays -­‐ cause chromosomal breaks, which, when repaired result in dele@ons, duplica@ons, inversions -­‐ less efficient than chemical mutagens -­‐ cause cytologically visible defects, oRen complex genomic rearrangements Transposons (P elements, PiggyBac elements etc. ) -­‐ inser@onal mutagenesis -­‐ rapid iden@fica@on of affected gene -­‐ low efficiency -­‐ inser@on sites not en@rely random (P-­‐elements: oRen in introns, 5´-­‐UTRs) -­‐ inser@on sites are compara@vely easy to map Transposons P element: naturally occurring transposon requirements for transposi@on: -­‐ P element ends in cis -­‐ P transposase in trans +/-­‐ random inser@on; preference for promoter regions main tool for crea@ng transgenic flies inser@ons can also disrupt gene func@on Transgenesis Transposase mobilisiert rekombinantes P-Element auf zweitem Plasmid Integration erfolgt an zufälliger Stelle im Genom Venken, K. J. T. et al., Development 2007; 134:3571-3584 Transgenesis Mosaik Problems: integra@on site random posi@on effects influence expression of transgenes Venken, K. J. T. et al., Development 2007; 134:3571-3584 Mapping of P element (or other transposon) insertions • genetic mapping: Segregation analysis (> mapping to a chromosome), recombination mapping (> mapping to a region on a chromosome) • cytological mapping: in situ hybridization on polytene chromosomes • molecular mapping: inverse PCR (or similarly: plasmid rescue) Inverse PCR (iPCR) Inverse PCR (iPCR) • Sie erhalten zwei Fliegenstämme, die jeweils ein P-Element-Transgen (pUASTKonstrukte) an unbekannter Stelle im Genom integriert haben. • Ihre Aufgabe ist es die Insertionsstellen dieser Elemente mit Hilfe der inversen PCR Basen-genau zu bestimmen. • • • • • Zeitplan (siehe Skript): • Woche 2: Analyse von Sequenzen, BLAST Montag: Isolation von genomischer DNA aus Fliegen Dienstag: Restriktionsverdau (über Mittag), Ligation (über Nacht) Mittwoch: Fällung der ligierten DNA, PCR Donnerstag: Agarose-Gelelektrophorese,Vorbereitung der Proben zum Sequenzieren, Sequenzierung (außer Haus) Transgenesis: The ΦC31 integration system agP + agB -­‐> integrase -­‐> agL + agR Transgenesis: The ΦC31 integration system Bischof J. et al., PNAS 2007; 104: 3312-3317 The genetic toolbox • polytene chromosomes • many mutations available • balancer chromosomes • molecularly defined deletions and duplications covering the genome • transposon-mediated germline transformation • overexpression, ectopic expression, conditional expression: Gal4/UAS system • transgenic RNAi (tissue-specific knock-down of gene function) • CRISPR/Cas9-based genome editing • clonal analysis (genetic mosaics) • tissue culture (S2 cells; genome-wide RNAi screens) • databases! FlyBase The GAL4-UAS system Gal4 ‘driver’ line UAS ‘responder’ line (UAS promoter is silent in the absence of GAL4 -> no GFP expression) (Yeast GAL4 protein expressed under the control of a Drosophila promoter) breathless-Gal4 UAS-GFP GAL4 activates transcription of UAS construct -> GFP expression (only in cells that express GAL4): The GAL4-UAS system Modular system: • Large number of Gal4 and UAS lines available • GAL4 lines for various developmental stages, cell types, organs, inducible versions of GAL4 • UAS-gene-of-interest, fluorescent proteins, toxins, RNAi (dsRNA), CRISPR (sgRNA) constructs... • Useful for overexpression, ectopic (misexpression), and inducible expression of genes, as well as for knocking down gene expression (RNAi) RNA interference Mohr et al. Nature Reviews Molecular Cell Biology15, 591–600 (2014) tissue-specific transgenic RNAi Dietzl et al. (2007). A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156. genome-wide RNAi screens in vivo in cultured cells Ron Vale lab, UCSF Mummery-Widmer et al. (2009) Nature 458, 987–992. problems with RNAi • efficiency of knock-down (false-negative results) • specificity of knockdown (off-target effects) How to validate results of RNAi experiments? Mohr et al. Nature Reviews Molecular Cell Biology15, 591–600 (2014) Genetische Mosaike Organismus mit Zellen verschiedener Genotypen, die aus einer Zygote hervorgegangen sind (<> Chimäre: unterschiedlicher zygotischer Ursprung) Möglichkeiten der Entstehung von Mosaiken: - Verlust von Chromosomen während der Entwicklung (instabile Chromosomen, z.B. Ring-X Chromosom) Bsp. Gynandromorphe bei Insekten: aus männlichen und weiblichen Zellen mosaikartig zusammengesetzte Individuen - somatische Mutationen - mitotische Rekombination mitotische Rekombination > chromosome segregation * > * > > heterozygous cells St Johnston D., Nature Reviews Genetics 2002; 3: 176-188 Anwendungen von genetischen Mosaiken • Zell-Schicksalskarten (”fate maps”): zu welchen Strukturen kann sich eine Vorläuferzellen im adulten Tier entwickeln? wie gross kann ein Klon maximal werden? Kompartiment-Grenzen > Analyse von Klonen markierter Zellen, z.B. mit sichtbaren Mutationen (mwh) mwh/mwh multiple wing hairs (mwh) mwh/+ Anwendungen von genetischen Mosaiken • klonale Analyse zum Bestimmen der Zell-Autonomie von Mutationen (Bsp. SignalTransduktionswege): Hat das Ausschalten eines Gens in einer Zelle Auswirkungen auf benachbarte wildtypische Zellen, oder nur auf die mutante Zelle selbst ? Zell-autonome Mutationen wirken sich in genetischen Mosaiken nur auf die mutante Zelle, jedoch nicht auf benachbarte wildtypische Zellen aus (z.B. Rezeptor) Nicht-Zell-autonome Mutationen wirken auf entfernt liegende Zellen (z.B. diffusible Signalmoleküle, Hormone) Anwendungen von genetischen Mosaiken • Analyse von homozygoten Klonen letaler Mutationen im heterozygoten Organismus (z.B. Analyse der Funktion von essentiellen Genen während der Oogenese: Keimbahnklone) • > Genetische screens in Mosaik-Tieren Types of mutant alleles: Muller´s morphs scale of normal gene (allele) function / activity 100% 0% loss of function Antimorph Counteracts wild-type allele (“dominantnegative”) Amorph Complete loss of function (“null”) Hypomorph Reduced normal function dominant recessive mutation in a protein that acts as a dimer, such that the dimer still forms, but is inactive (e.g., Receptor tyrosine kinase) deletion of a gene gain of function Hypermorph Increased normal function Neomorph Qualitatively new /different function recessive dominant dominant mis-sense mutation in a protein that leads to reduced activity point mutation that leads to constitutive.g., missense mutation in a proteine activity of a protein (kinase, G-protein) regulatory mutation that leads to ectopic expression of a protein Wild type Normal function https://en.wikipedia.org/wiki/Hermann_Joseph_Muller Genetic tools and screens I • classic screens for genes controlling embryonic patterning: the ‘Heidelberg screen’ • • maternal vs. zygotic genes • strengths and limitations of classic loss-of-function screens genetic tools for morphological screens with specific readouts Christiane Nüsslein-Volhard and Eric Wieschaus • 1978/79: set out to identify all genes required for embryonic patterning using a random mutagenesis approach • First large-scale systematic genetic screen in Drosophila • Nobel Prize for Medicine or Physiology 1995 • basic idea: randomly mutate all genes and identify those required for embryonic patterning by their specific phenotypes • requires a morphological readout for embryonic pattern The larval cuticle provides a readout of positional information imaginal discs brain dorsal epidermis germline posterior midgut mesoderm ventral epidermis head anterior midgut dorsal epidermis ventral epidermis Head Thorax • • Abdomen Telson cuticle: positional information, polarity, differentiation easy and quick to prepare, scalable procedure zygotic vs. maternal mutations zygotic mutations maternal-effect mutations mutagenesis screens mutagens: • • • chemical (e.g., alkylating agents: EMS, ENU; epoxides) physical (e.g., radiation: X-rays) biological (transposons: P-element, PiggyBac, Minos, Mariner, Hobo, etc.) • EMS (Ethylmethane-sulfonate) causes mainly (not exclusively) G to A transitions; best compromise between mutagenic efficiency, toxicity, and ease of handling Crossing scheme for mutagenesis of the 2nd chromosome (F3 screen) • cn bw: isogenized chromosome with recessive markers 25mM EMS DTS cn bw x CyO cn bw • 25 mM EMS generates on average 0.6 lethal mutations per chromosome * cn bw CyO F1 DTS x or * cn bw • DTS: dominant temperature-sensitive lethal mutation CyO • CyO: balancer chromosome (homozygous lethal) DTS 14‘000 single malecrosses F2 * cn bw CyO grow at 29°C x * cn bw * cn bw DTS DTS CyO CyO DTS CyO DTS CyO Test each line for the presence of 25% non-hatched embryos Prepare cuticles and analyze phenotypes F3 * cn bw * cn bw * cn bw CyO * cn bw CyO CyO CyO 25% homozygous embryos Viable F3 lines were screened for maternaleffect mutations • F3 flies, if homozygous viable, can be screened for female fertility F3 * cn bw * cn bw * cn bw CyO * cn bw CyO CyO CyO test homozygous viable F3 females for maternal-effect mutations viable progeny or 100% mutant embryos? • Strict maternal effect: gene product is not required for zygotic development • 100% of the progeny of maternaleffect mutants show a phenotype • heterozygous (balanced) F3 flies are used maintain the mutant stock Results of the Heidelberg screen (all chromosomes) • 27’000 lines tested: – 18’000 lethal hits – 25 % (4’300) are embryonic-lethal – 13% (586) of these show embryonic visible (i.e. patterning) phenotypes – on average 5-6 alleles per complementation group • 140 genes with specific patterning defects, 30 of these are strictly maternally required genes • Expression patterns of cloned genes correspond to mutant phenotype • Basis for current understanding of early embryonic development Cuticle phenotypes of embryonic lethal mutants Jürgens et al. (1984), Roux’s Arch Dev Biol 193, 283 three classes of zygotic genes control segmentation gap pair rule segment polarity Three classes of maternal genes define the anterior-posterior axis Saturation mutagenesis • • How many genes were hit and how many were missed? how to estimate the degree of saturation? rate of discovery of new loci: Jürgens et al. 1984 distribution of allele frequencies (Poisson distribution): Nüsslein-Volhard et al. 1984 summary: chemical mutagenesis screens • Strengths: – Unbiased approach – In principle, all genes can be mutagenized (but not all genes are equal) – Different types of mutations are generated: null, hypomorphic, dominantnegative, gain-of-function (allelic series) • Limitations: – Mutation frequency is gene-specific and can vary to a large degree. Small genes are less frequently hit (e.g. miRNA genes; ‘hot spots’ vs. ‘cold spots’) – F2 & F3 type screens are very labor-intensive (establishment and maintenance of a large number of stocks) – Genes with redundant functions escape detection – mapping / identification of mutated genes is time-consuming (rate-limiting step; new sequencing techniques accelerate mutation detection) Limitations of loss-of-function screens Mutations that could not be identified: maternal-effect genes genes involved in patterning of internal structures redundant genes Enormous workload (individual crosses !) Only the first essential function of a gene can be analyzed Analysis cannot be limited to a particular tissue Identification of mutations is tedious Dominant modifier screens Idea: Render recessive mutations dominant (haplo-insufficient) Strategy: Generate a “sensitized” situation in which 50% of normal gene product is no longer sufficient -> F1 dominant modifier screens The compound eye of Drosophila as a model organ for genetic screens The Compound Eye – A Model System for Cell Signaling 3 2 1 4 7 5 6 Each ommatidium contains eight Jedes Ommatidium besteht aus photoreceptor cells(R1-R8) (R1-R8) 8 Photoreptorzellen Trapezartige Anordn. der Rhabdomere R-Zellen mit charakteristischse Struktur (Mikrovillisaum – Rhabdomer mit lichabsorbierenden Rhabdomere: charakteristische Struktur, Mikrovilli-Saum mit lichtabsorbierenden Pigment (Rhodopsin) Entwicklung der Ommatidien Augen-Imaginalscheibe Differenzierung von posterior nach anterior Bride of sevenless (Boss) kodiert für ein Signalmolekül, Sevenless für den Rezeptor zusätzliche R7Zellen zu viel oder ektopisches Boss Signal, oder konstitutiv aktiver Sev Rezeptor boss wirkt nicht-zellautonom sevenless Allele mit gegensätzlichen Phänotypen: Funktionsverlust vs. Funktionsgewinn Wildtyp sevenless loss-offunction: R7-Zellen fehlen sevenless gain-offunction: zusätzliche R7-Zellen A dominant suppressor of the S11 activated Dominant suppressors of Sev Sevenless receptor SevS11; +/+ SevS11; dos/+ mutation of a single copy of the daughter of sevenless (dos) gene dominantly suppresses the rough eye phenotype caused by activated Sevenless Der Ras/MAPK Signaltransduktionsweg Die Sevenless Signalkette Transkriptionsaktivatoren Pointed (Pnt) Seven in absentia (Sina) Transkriptionsrepressor Yan Dominant modifier screens Advantages - F1 screen: rapid, efficient - High degree of saturation reachable - Genes with an early essential function can be detected - Sets of molecularly defined deletions or UAS-RNAi lines can be used to systematically sample the genome Disadvantages - 50% reduction in gene expression is often not sufficient -> special (dominant-negative) alleles - Efficiency is pathway specific - Identification of mutations can be tedious Mosaic screens Idea: Generate homozygous mutant tissue in the F1 generation -> F1 FLP/FRT screen for recessive mutations - random - tissue specific The ey-FLP/FRT system Certain tissues are made homozygous mutant using the FRT system and a tissue specific FLP -> recessive mutations can be screened in F1 St Johnston D., Nature Reviews Genetics 2002; 3: 176-188 Changes in insulin signaling activity result in variable head sizes chico pinhead control PTEN bighead The “pinhead” screen 300‘000 flies screened 580 small head mutations ~ 30 growth-promoting genes 137 big head mutations 17 growth-inhibiting genes The pinhead screen revealed components of the insulin and TOR signaling pathways Insulin PIP2 Chico InR PIP3 PTEN PH PI3K PH PKB PDK1 Tsc2 Tsc1 Raptor TOR S6K 4EBP1 FLP/FRT mosaic screens Advantages - F1 screen ! - High degree of saturation reachable - Allelic series (alleles of varying strength) - Genes with an early essential function can be detected Disadvantages - Genes with redundant functions cannot be detected - Genes with weak phenotypes escape detection - Only genes with cell/tissue autonomous functions can be detected - Identification of mutations is tedious Principle of over-expression screens GMR Gal4 UAS EP EPElement element GMR-Gal4 + UAS-InR endogenes endogenousGen geneXX X Tester strain GMR-Gal4 UAS-InR EP lines Suppression of big eye phenotype? Overexpression of Imp-L2 suppresses InR-mediated overgrowth GMR-Gal4 UAS-InR GMR-Gal4 UAS-InR + EP 5.66 GMR-Gal4 UAS-InR + EP 5.66mut Imp-L2: Imaginal morphogenesis protein-Late 2; encodes a secreted insulin antagonist Hugo Stocker, ETH Zurich Imp-L2 overexpression reduces growth