Mathematik Jahrgangsstufe 11 Koordinatengeometrie 2005 - 2006 Johannes-KeplerGymnasium Koordinatengeometrie Mathematik Jahrgangsstufe 11 Koordinatengeometrie 2005 - 2006 Thema Vorgehensweise: 1. Was ist Geometrie? 2. Was sind Koordinaten? 3. Was ist Koordinatengeometrie? 4. Wozu benötigt man das? 5. Beispiel 6. Aufgaben Mathematik Jahrgangsstufe 11 Koordinatengeometrie 2005 - 2006 Geometrie Ägypten Geometrie Konstruktion von • Dreiecken • regelmäßigen N-Ecken • Kreisen Mathematik Jahrgangsstufe 11 Koordinatengeometrie 2005 - 2006 Geometrie Antike EUKLID lebte etwa von 340 bis 270 v.C. Euklid leitete eine Schule in Alexandria. In seinen Elementen fasste er das überlieferte mathematische Wissen zusammen und erweiterte es um eigene Beiträge. Erhard Ratdolt Edition von 1482 Universität Toronto Mathematik Jahrgangsstufe 11 Koordinatengeometrie 2005 - 2006 Descartes „Cogito ergo sum“ René Descartes (1596 bis 1650) Einführung der Einheitsstrecke Führt zur Arithmetisierung der Geometrie Die Konstruktionen mit Zirkel und Lineal werden durch das Lösen von Gleichungen und Gleichungssystemen ersetzt Mathematik Jahrgangsstufe 11 Koordinatengeometrie 2005 - 2006 Descartes 2 Descartes zu Ehren nennt man heute jedes Koordinatensystem mit paarweise aufeinander senkrecht stehenden Achsen, die alle dieselbe gleichmäßige Unterteilung besitzen, ein kartesisches Koordinatensystem Die größte mathematische Leistung von Descartes bestand in der Algebraisierung der Geometrie, indem er Koordinaten einführte, so dass es möglich war, geometrische Punkte in der Ebene (oder im Raum) durch Paare (oder Tripel) von Zahlen darzustellen. Auf diese Weise gelang es, geometrische Beziehungen durch algebraische Gleichungen auszudrücken. Mathematik Jahrgangsstufe 11 Koordinatengeometrie 2005 - 2006 Computergrafik • • • • Computergrafik Computeranimation Computerspielen Autopiloten in einem modernen Fahrzeug „Alles ist Zahl“ Mathematik Jahrgangsstufe 11 Koordinatengeometrie 2005 - 2006 Definition Was ist Koordinaten-Geometrie? Koordinatengeometrie ist eine Systematische Sammlung von Techniken, um geometrische Probleme Probleme nicht durch Zeichnen, sondern durch Berechnungen zu lösen. Mathematik Jahrgangsstufe 11 Koordinatengeometrie 2005 - 2006 Zwei liebestolle Schildkröten sind 10 km voneinander entfernt. Sie krabbeln aufeinander zu. Die eine mit einer gleichbleibenden Geschwindigkeit von 2 km in der Stunde, die andere mit einer gleichbleibenden Geschwindigkeit von 1 km in der Stunde. Wann und wo umarmen sie sich? 2 km/h 1 km/h 10 km Mathematik Jahrgangsstufe 11 Koordinatengeometrie 2005 - 2006 S (3,3/ 6,7) Mathematik Jahrgangsstufe 11 Koordinatengeometrie 2005 - 2006 y = 2x y = -x + 10 Rechnung 2 x = 10 - x 3 x = 10 10 3 10 y = 2* 3 = x= 20 3 Mathematik Jahrgangsstufe 11 Koordinatengeometrie 2005 - 2006 Ergebnis: • Nach 3 Stunden 20 Minuten umarmen sie sich bei 6 km 666 m und 67 cm Mathematik Jahrgangsstufe 11 Koordinatengeometrie 2005 - 2006 Die drei Fragen 1. Was ist Geometrie? 2. Was ist Koordinatengeometrie? 3. Löse diese Aufgabe: Zwei liebestolle Schildkröten sind 8 km voneinander entfernt. Sie krabbeln aufeinander zu. Die eine mit einer gleichbleibenden Geschwindigkeit von 1 km in der Stunde, die andere mit einer gleichbleibenden Geschwindigkeit von 3 km in der Stunde. Wann und wo umarmen sie sich? Mathematik Jahrgangsstufe 11 Koordinatengeometrie 2005 - 2006