Beispielpool Integral 001 002 003 004 005 006 007 008 009 010 Error! Error! Error! Error! Error! Error! Error! Error! Error! Error! 5x + 3 ln x – Error! + C Error! + C 6x + 14 ln(x – 2) + C Error! ln (3x2 + 4) + C Error! + Error! + C Error! + C Error! + Error! + C Error! + 6x – 2 ln(x) + 14 ln(x – 2) + C C – (5x2 + 10x + 13) e–x C – Error! 011 Error! = 5x – 3 ln(x) – Error! + C 012 Error! = Error! + C 013 014 015 016 017 018 019 020 021 022 023 024 Error! = Error! = Error! Error! Error! Error! Error! Error! Error! Error!dx Error! Error! C – Error! C – Error! Error! + C C – Error! 5x + 10 ln(x – 2) + C e2x (1,5x + 1,75) + C 2 (x –12x + 16) ex + C Error! + C Error! + C 2 sin(4x – 4) + C ln(sin(x)) + C 3 ln(x –4) – ln(x + 2) + C 025 Error! 3 ln(2x2 + 4) + C 026 Error! 22 ln(x – 5) – 2 lnx + C 027 Error! Error! + C 028 Error! 5 e0,2x (2x2 – 20x + 105) + C 029 Error! 4 Error! + C 030 Error! Error! + C 031 Error! dx = 032 Error!dx = Error! + c 033 Error!dx = Error! + c 034 Error!dx = 3 sin(x2) + c 035 Error!dx = Error! + c 2x2 + 3x + 5 ln(x) + c 036 Error!dx = Error! + c 037 Error! = –2x cos(x) + 2 sin(x) + c 038 Error! = ex (7 – 2x) + c 039 Error! = c – e–x (3x3 + 14x2 + 28x + 36) 040 Error! c – Error! 041 Error! = c – 2 ln(cos(x)) 042 Error! = 7x (ln x – 1) = 043 Error! dx = 044 045 046 047 048 049 050 051 052 Error!dx = Error!dx = Error!dx = Error! dx = Error!dx = Error! = Error! = Error! = Error! = +C 3x4 + 4x + 8 ln(x) + Error!+ c Error! + C Error! + C – 3 cos(4x3) + C 2 ln2(x) + C Error! + C C – 5 cos(x) + 5 sin(x) (25x2 – 265x + 1.365) e0,2x + C 1,5 x2 – 6x + 16 ln(x + 2) + C 3 ln(x + 4) – 3 ln(x) – Error! 053 Error! = 5x5 + 2 cos(2x) + 4 ln(x) + C 054 Error! = Error!+ C = Error! + C 055 Error! = (3x + 2) 10 e 0,1x – Error! = (30x + 20) e 0,1x – 300 e 0,1x + C = e 0,1x (30x – 280) + C 056 Error! = 3x2 ( Error!) – Error!dx = Error! + 6x Error! – Error! = Error! + 6x Error! + Error! = Error!+ C 057 Error! = Error! = Error! – Error! Error! = Error! 5x + 3 = A(x – 7) + Bx(x – 7) + Cx2 38 = 49C C = Error! 3 = –7 A A = – Error! 43 = A + 8B + 64C B = Error! 058 Error! = Error! = 2x3 – 12x2 + 96x – 384 ln(x + 4) + C 059 Error! = 060 Error! = 061 Berechnen Sie Error! und vereinfachen Sie das Ergebnis so weit wie möglich. Error! = 3x2 cos(2 – x) – Error! = 3x2 cos(2 – x) – ( 6x (–sin(2 – x) – Error! = 3x2 cos(2 – x) + 6x sin(2 – x) – 6 cos(2 – x) 062 a) Berechnen Sie die folgenden Integrale und vereinfachen Sie die Ergebnisse so weit wie möglich: Error! = 6 sin(3x + 4) + C b) c) 063 a) b) c) Error! = Error! Error! = Error! = Error! = 4 ln(3x2 + 4) + C Berechnen Sie die folgenden Integrale und vereinfachen Sie die Ergebnisse so weit wie möglich: Error! = 4x cos (3 – x) – Error! = 4x cos(3 – x) + 4 sin(3 – x) + C Error! = Error! = Error!+ C Error! = Error! = 3x2 + 30x + 150 ln(x – 5) + C Error! = Error! 064 Error! = – Error! 065 066 Error! = Error! 067 Error! = Error! = Error! = Error! = 2 Error!+ C 068 Error! = (2x – 3) Error! – Error!dx = (2x – 3) Error! – Error! + C = = Error! (–10x +15–2) = Error! 069 Error! = Error! – Error! = Error! – Error! = = Error!+ C 070 Error! = Error! = Error!+ C Error! = Error! A = 2 C = – 0,5 B = 0,5 071 Error! = Error! = Error! 072 Error! = 4x2 – 6x + 3 ln(x) + C 073 Error! = 4 cos(3 – x) + 4e3x + C 074 Error! = Error! = Error! = 4 Error!+ C 075 Error! = Error!= Error!= 2 ln(5x2 + 3) + C 076 Error! = Error! – Error! = Error! + Error! + C = Error! + C 077 Error! = (x2 + 3x) ex – Error! = (x2 + 3x) ex – [ (2x + 3) ex – Error!] = ex (x2 + 3x – 2x – 3 + 2) + C = ex (x2 + x – 1) + C 078 Error! Error! = Error! x – 22 = A(x – 4) + B(x + 2) x = 4: –18 = 6B B = –3 x = –2: –24 = – 6A A = 4 = 4 ln(x + 2) – 3 ln(x – 4) + C 079 Error! = * Error! = Error! 128 = A(x – 4) + Bx(x – 4) + Cx2(x – 4) + Dx3 x = 4 128 = 64 D D = 2 x = 0 128 = –4 A A = – 32 x = 5 128 = A + 5B + 25C + 125D = –32 + 5B + 25C + 250 = 218 + 5B + 25C x = 6 128 = 2A + 12B + 72C + 216D = –64 + 12B + 72C +432 –90 = 5B + 25C und –240 = 12B + 72C B = – 8 und C = – 2 * = Error! + Error! – 2 ln(x) + 2 ln(x – 4) + C = Error! 080 Error! = Error! – 4x + 14 ln(x + 4) + C (x2 – 2) : (x + 4) = x – 4 + Error! 081 Error! = –5x e–x + Error! = – 5x e–x – 5e–x + C = C – 5e–x(x + 1) 082 Error! = 2 sin (0,5x + 3) + C 083 Error! = Error! = Error! = Error! + C 084 Error! = Error! – Error! = 085 Error! = Error! = Error! = Error! – Error! + C = +C PBZ: Error! = Error! –10x2 + 8x – 12 = A(2x – 3) + B x (2x – 3) + C x2 x = 0: – 12 = – 3 A A = 4 x = 1,5 – 22,5 = 2,25 C C = – 10 x=2 – 36 = A + 2B + 4C = 4 + 2B – 40 B = 0 086 Error! = Error! = 2x2 – 2 ln x – Error! + C Error! – 5 ln(2x – 3) – Error! 087 088 089 090 Error! = Error! = Error! + C = Error! + C Error! = u = 3x2 + 4x;du = (6x + 4) dx = Error! = Error! = 3 ln (3x2 + 4x) + C Error! = 5x (–10)e–0,1x – Error! = – 50x e–0,1x – 500 e–0,1x + C = C – 50e–0,1x(x + 10) Error! = (4x2 + 2) sin(x) – Error! = (4x2 + 2) sin(x) – [–8x cos(x) – Error!] = (4x2 + 2) sin(x) + 8x cos(x) – 8 sin(x) + C = (4x2 – 6) sin(x) + 8x cos(x) + C 091 092 Error! = Error! = 2x3 – 12x2 + 93x – 372 ln(x + 4) + C (6x3 – 3x) : (x + 4) = 6x2 – 24x + 93 –6x3 – 24x2 – 24x2 – 3x + 24x2 + 96x 93x –93x – 372 Error! = Error!= 3 ln(x – 5) – 3 ln(x – 3) + Error! + C 12 = A(x – 3)2 + B (x – 3)(x – 5) + C (x – 5) x = 3 12 = – 2 C C = – 6 x = 5 12 = 4 A A = 3 x=6 12 = 9A + 3B + C = 27 + 3B – 6 B = – 3 093 Error! = 3 sin(5x) + C 094 Berechnen Sie Error! Error! = Error! = Error! = mit u = 4x2 + 1 du = 8x dx = Error! = Error! = Error!+ C 095 Error! = Error! = 7x2 – 3 ln x – Error! + C 096 Error! = Error! = Error! + C = Error! + C 097 Error! = u = 5x2 + x;du = (10x + 1) dx = Error! = Error! = 4 ln (5x2 + x) + C 098 Error! = 5x (–5)e–0,2x – Error! = – 25x e–0,2x – 125 e–0,2x + C = C – 25e–0,2x(x + 5) 099 Error! = (4x2 + 5) sin(x) – Error! = (4x2 + 5) sin(x) – [–8x cos(x) – Error!] = (4x2 + 5) sin(x) + 8x cos(x) – 8 sin(x) + C = (4x2 – 3) sin(x) + 8x cos(x) + C 100 Error! = Error! = Error! – 4x2 + 29x – 116 ln(x + 4) + C (2x3 – 3x) : (x + 4) = 2x2 – 8x + 29 101 –6x3 – 8x2 – 8x2 – 3x + 8x2 + 32x 29x –29x – 116 Error! = Error!= 3 ln(x – 5) – 3 ln(x – 3) + Error! + C 12 = A(x – 3)2 + B (x – 3)(x – 5) + C (x – 5) x = 3 12 = – 2 C C = – 6 x = 5 12 = 4 A A = 3 x=6 12 = 9A + 3B + C = 27 + 3B – 6 B = – 3 102 Error! = 5 sin(8x) + C 103 Berechnen Sie Error! Error! = – Error! – Error! = – Error! + Error! = – Error! + Error! – Error! = – Error! + Error! + Error! + C 104 Error! = Error! = Error! = Error! + C = 3 Error! + C 105 Error! = Error! = 2x3 – x + 2 ln(x) + Error! + C 106 Error! = Error! = Error! = ln u + C = ln(4x2 + 5) + C 107 Error!= Error! = x2 – 8x + 32 ln(x + 4) + C 108 Error! = Error! – Error! = C – 15 x cos(3x) + 5 sin(3x) 109 Error! = – 3x2 e–x – Error! = –3x2 e–x – ( 6x e–x – Error! ) = –3x2e–x – 6xe–x – 6e–x + C = C – 3e–x (x2 + 2x + 2) 110 Error! = Error! = Error! + 4 ln(x+3) + 3 ln(x) + C PBZ: 7x2 + 25x + 27 = A x + B(x+3)x + C (x + 3) 2 x = 0 27 = 9C C = 3 x = –3 15 = –3A A = –5 x = 1 59 = A + 4B + 16C = –5 + 4B + 48 16 = 4B B = 4 111 Error! = Error! = 2 ln(x – 5) + 3ln(x – 2) + C x2 – 7x + 10 = 0 (x – 5)(x – 2) = 0 PBZ: 5x – 19 = A(x – 2) + B (x – 5) x = 5 6 = 3A A = 2 x = 2 – 9 = –3B B = 3 112 Error! = Division (x – 1) : (4x + 2) = Error! – Error! = Error! – Error! = Error! = Error! – Error! + C 113. Error! = * Substitution u = 3 + * = Error! = x+8 u–3= x+8 und Error! = Error! Error! = 2u – 6 ln(u) + C = 6 + 2 Error! – 6 ln(3 + Error!) + C oder 2 x + 8 – 6 ln(3 + x + 8 ) + C weil das C die „6“ schluckt.