Einführung in die Genetik Prof. Dr. Kay Schneitz (EBio Pflanzen) http://plantdev.wzw.tum.de [email protected] Twitter: @PlantDevTUM, #genetikTUM FB: Plant Development TUM Prof. Dr. Claus Schwechheimer (PlaSysBiol) http://wzw.tum.de/sysbiol [email protected] Einführung in die Genetik - Inhalte 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Einführung Struktur von Genen und Chromosomen Genfunktion Transmission der DNA während der Zellteilung Vererbung von Einzelgenveränderungen Genetische Rekombination (Eukaryonten) Genetische Rekombination (Bakterien/Viren) Rekombinante DNA-Technologie Kartierung/Charakterisierung ganzer Genome Genmutationen: Ursache und Reparatur Regulation der Genexpression Genetische Analyse biologischer Prozesse Transposons bei Eukaryonten Veränderungen der Chromosomen Regulation der Zellzahl - Onkogene 13. 10. 15 20. 10. 15 27. 10. 15 03. 11. 15 10. 11. 15 17. 11. 15 24. 11. 15 01. 12. 15 08. 12. 15 15. 12. 15 22. 12. 15 12. 01. 16 19. 01. 16 26. 01. 16 02. 02. 16 KS KS KS KS KS KS KS CS CS CS KS CS CS CS CS Mapping and characterization of entire genomes Genetics 09 Based on Chapter 15 (Griffiths; 10th ed.) Summary • Genome sequencing • Large insert vectors • YAC 100 - 300 kB • BAC 50 - 2000 kB • Phage lambda 35 - 45 kB • Small insert vectors • Plasmids (pBR322, pUC18/19) < 10 - 15 kB • Insert size for sequencing 500 - 1000 bp • Minimal tiling path • Paired-end reads • Genome sizes • Chromosomes and chromosome numbers • Exons and introns • Synteny • Bioinformatics (conserved sequences, exon/intron precictions, cDNAs, ESTs, open reading frames) Structure of a eukaryotic gene Elements and sites be recognized by more or less conserved DNA sequence elements, can therefore be predicted by bioinformatics Exon/intron structure particularly important because it allows to predict the sequence of a protein Making gene predictions based on genome sequence How does the availability of genome sequences affect biological analyses? Functional studies - Gene knock outs Functional studies - Gene targeting Functional studies - Gene targeting Functional studies - Insertion mutagenesis Transcriptomics and gene expression profiling Microarrays Heat map Summary • Next generation sequencing • sequencing without cloning and ordering • massive parallel sequencing • 1000 genomes project • Functional genomics (examples) • Gene knock-outs (mammals, yeasts etc.) • Gene targeting (mammals) • Random insertion mutagenesis (T-DNA, plants) • Transcriptomics (Microarrays, gene chips) Gene mutations: their causes and repair mechanisms Genetics 10 Based on Chapter 17 (Griffiths; 10th ed.) Types of gene mutations Spontaneous mutations Induced mutations Quantitating mutagenicity and cancerogenicity Biological repair mechanisms Mutations and cancer Types of gene mutations Structure of a eukaryotic gene Gene mutations - point mutations Transition G:C -> A:T A:T -> G:C C:G -> T:A T:A -> C:G Transversion G:C -> T:A G:C -> C:G T:A -> A:T T:A -> G:C etc. Gene mutations - insertions and deletions (Indels) Indel mutations and replication slippage Mutations can affect splicing Effects of point mutations on transcript and protein Spontaneous mutations Luria-Delbrück’s fluctuation test mutations normally occur spontaneously and randomly Sequencing spontaneous mutations with Next Generation Sequencing Indel mutations and replication slippage Mechanisms of spontaneous mutations Mechanisms of spontaneous mutationsrare tautomeric form can induce mismatch pairings C* -> A T* -> G C -> A* T -> G* Manifestation of a mismatch Spontaneous lesions - depurination Spontaneous lesions - deamination G:C -> A:T Sequencing spontaneous mutations with Next Generation Sequencing Spontaneous lesions - oxidative damage blocks replication G:C -> T:A Trinucleotide repeat mutations in humans: e.g. the FMR-1 gene in Fragile X syndrome Slipped mispairing explains the expansion of trinucleotide repeats Trinucleotide repeat diseases Induced mutations Base analogs (5-BU) 5-Bromouracil (5-BU) 5-BU:A -> C:G Base analogs (2-AP) 2-Aminopurine (2-AP) 2-AP (A):T -> G:C Alkylating agents O C2H5 O S CH3 O Ethyl methanesulfonate Intercalating agents UV-light induced photoproducts “Natural” carcinogens - aflatoxins Aspergillus fumigatus Quantitating mutagenicity and carcinogenicity Ames test Ames test - classifying the mechanisms TA100 - sensitive to reversion through base pair substitution TA1535 and TA1538 sensitive to reversions through frame shift mutation Biological repair mechanisms Photolyases repair UV-induced photodimers Homology-dependent repair - base excision repair apurinic/apyrimidinic endonuclease deoxyribophosphodiesterase Homology-dependent repair - GGR and NER Homology-dependent repair - GGR and NER Xeroderma pigmentosum - Mutants in TFIIH Mutations and cancer Mutations can induce cancer The ras oncogene What you need to know and understand for the exam and for your life.... ... indels ... types of spontaneous mutations ... examples for induced mutations ... repair mechanisms ... Ames test The end