FREIER FALL ab Ende der 11. Schulstufe Für einen frei fallenden Körper ist eine Zeit−Weg−Funktion s(t) durch s(t) = g 2 ⋅t 2 gegeben. Dabei ist g ≈ 10 m/s² die Fallbeschleunigung. a) Welchen Weg legt der Körper in den ersten drei Sekunden zurück? b) In welcher Zeit legt er die ersten 20 m zurück, wenn s(0) = 0 ist? c) Berechne die mittlere Geschwindigkeit im Zeitintervall [2 ; 4] Sekunden. d) Berechne die Momentangeschwindigkeit zum Zeitpunkt t = 2 Sekunden. Möglicher Lösungsweg a) s(t) = 5t² Für t = 3 ⇒ s(3)=45 Antwort: In den ersten drei Sekunden fällt der Körper 45 m. b) t = 20 =2 5 Antwort: Für die ersten 20m braucht er 2 Sekunden. c) Zeitintervall [ 2 ; 4 ] : v = s(4) − s(2) 80 − 20 = = 30 4−2 2 Antwort: Die mittlere Geschwindigkeit beträgt 30m/s. d) v(t) = s’(t) = 10t v(2) = 20 Antwort: Die Momentangeschwindigkeit zum Zeitpunkt t = 2 Sekunden beträgt 20m/s. keine Hilfsmittel erlaubt Freier Fall gewohnte Hilfsmittel möglich besondere Technologie erforderlich 1 Klassifikation Wesentliche Bereiche der Handlungsdimension a) b) c) d) H2 • elementare Rechenoperationen in den jeweiligen Inhaltsbereichen planen und durchführen H1 • ein für die Problemstellung geeignetes mathematisches Modell verwenden oder entwickeln Wesentliche Bereiche der Inhaltsdimension a) b) c) d) I2 • Funktionen: Begriff und Darstellungsformen (z.B. Text, Tabelle, Graph, Term, Gleichung, Parameterform, rekursive Darstellung) I3 • Differenzenquotient und Differentialquotient: Grundidee, verschiedene Deutungen (z.B. verschiedene Änderungsmaße, Geschwindigkeit) Wesentliche Bereiche der Komplexitätsdimension a) b) c) d) K1 • Einsetzen von Grundkenntnissen und Grundfertigkeiten Nachhaltigkeitserwartung a) b) c) d) N1 • immer verfügbar Technologieeinfluss Für das Lösen dieser Aufgabe ist regelmäßiger Technologieeinsatz im Unterricht erforderlich. vorteilhaft. neutral. Kommentar Bei den Antworten werden die richtigen Einheiten erwartet. Freier Fall 2