Theoretisch-physikalisches Pflichtseminar (PSEM) über Themen der Modernen Quantenmechanik in Theorie und Experiment WS 2015/16 — Prof. Dr. Thomas Gasenzer and Prof. Dr. Markus Oberthaler Freitags, 15:00 - 17:00, Raum: INF 227, SB 1.107 Bei organisatorischen Fragen bitte Email an Frau Hufnagel: [email protected] Bei inhaltlichen Fragen: [email protected], [email protected], [email protected] Bitte vereinbaren Sie frühzeitig mit Ihrem Tutor einen Termin zur Vorbesprechung der Vortragsinhalte und zur Koordination der weiteren Vorbereitung, insbesondere für einen Probevortrag. 16.10. Vorbesprechung 23.10. Das Einstein-Podolsky-Rosen-Argument Bitte lesen Sie als Vorbereitung für diesen Termin die Originalarbeit [1] zum EPR-Argument! Literatur: [1, 2, 3, 4, 5, 6, 7, 8] 30.10. Neutrino-Oszillationen Literatur: [9, 10, 11, 8] Maurer Tutor: S. Ohmer 06.11. Ramsey-Spektroskopie und Atomuhren und Bellsche Ungleichungen Literatur: [12, 8] D. Liebert / A. Persch Tutor: M. Oberthaler/S. Ohmer 13.11. Quantisierung des Elektromagnetischen Feldes. Existieren einzelne Photonen? Literatur: [13, 14] G. Anders / C. Klein Tutor: S. Ohmer 20.11. Quantenkryptographie und das Protokoll von Bennett und Brassard Literatur: [15, 16, 8] A. Hesse Tutor: S. Ohmer 27.11. Zweiphotonen-Interferenz: Hong-Ou-Mandel Experiment und Quantenteleportation Literatur: [17, 18, 19, 20] V. Adam / S. Wenzel Tutor: T. Gasenzer 04.12. Laserkühlung und Laserfallen Literatur: [21, 22, 23, 24, 8] N. Potters / J. Weis Tutor: M. Oberthaler 11.12. Streutheorie: Lippmann-Schwinger-Gleichung, T-Matrix, Partialwellenanalyse, Niederenergiestreuung, Feshbach-Resonanzen. Literatur: [7, 29, 30] L. Heinen / M. Schiffer Tutor: T. Gasenzer 18.12. Bose-Einstein-Kondensate wechselwirkender Teilchen Literatur: [25, 26, 27, 28, 8] T. Steinle / J. Trautmann Tutor: M. Oberthaler 08.01. Blochsches Theorem, Optische Gitter und Bloch-Oszillationen. Langsames Licht. Literatur: [31, 32, 33] P. Lysakovski / T. Schmitt Tutor: S. Ohmer 15.01. Topologie, Berry-Phasen und Aharonov-Bohm Effekt Literatur: [34, 7, 35] B. Plieske / D. Spitz Tutor: T. Gasenzer 22.01. Physik am Rand: Topologische Isolatoren Literatur: [36, 37, 38] Kreutle Tutor: T. Gasenzer Literatur: [1] A. Einstein, B. Podolsky, and N. Rosen, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?, Phys. Rev. 47, 777 (1935). [2] B. D’Espagnat, The Quantum Theory and Reality, Scientific American 241, 158–181 (1979). [3] B. D’Espagnat, Nonseparability and the tentative descriptions of reality, Physics Reports 110(4), 201 – 264 (1984). [4] B. Espagnat and B. Espagnat, Conceptual Foundations of Quantum Mechanics, Advanced book classics, Advanced Book Program, Perseus Books, 1999. [5] J. S. Bell, On the Einstein-Podolsky-Rosen paradox, Physics 1, 195 (1964). [6] J. S. Bell, Speakable and Unspeakable in Quantum Mechanics, CUP, Cambridge, UK, 1987. [7] F. Schwabl, Quantenmechanik (QM I): Eine Einführung, Springer-Lehrbuch, Springer Berlin Heidelberg, 2013. [8] J. Basdevant and J. Dalibard, The Quantum Mechanics Solver: How to Apply Quantum Theory to Modern Physics, Advanced Texts in Physics, Springer Berlin Heidelberg, 2013. [9] Y. Fukuda et al., Evidence for Oscillation of Atmospheric Neutrinos, Phys. Rev. Lett. 81, 1562–1567 (1998). [10] Q. R. Ahmad et al., Measurement of the Rate of νe + d → p + p + e − Interactions Produced by 8 B Solar Neutrinos at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 87, 071301 (2001). [11] Q. R. Ahmad et al., Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89, 011301 (2002). [12] N. F. Ramsey, A Molecular Beam Resonance Method with Separated Oscillating Fields, Phys. Rev. 78, 695 (1950). [13] M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond, and S. Haroche, Quantum Rabi Oscillation: A Direct Test of Field Quantization in a Cavity, Phys. Rev. Lett. 76, 1800–1803 (1996). [14] G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J. M. Raimond, and S. Haroche, Seeing a single photon without destroying it, Nature 400(6741), 239–242 (1999). [15] C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing , 175 (1984). [16] B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, Provably secure and practical quantum key distribution over 307?km of optical fibre, Nat Photon 9(3), 163–168 (2015), Letter. [17] C. K. Hong, Z. Y. Ou, and L. Mandel, Measurement of subpicosecond time intervals between two photons by interference, Phys. Rev. Lett. 59, 2044–2046 (1987). [18] C. H. Bennett, G. Brassard, C. Crépeau, R. Josza, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70, 1895 (1993). [19] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Experimental quantum teleportation, Nature 390, 575 (1997). [20] X.-S. Ma et al., Quantum teleportation over 143 kilometres using active feed-forward, Nature 489(7415), 269–273 (2012). [21] T. Hänsch and A. Schawlow, Cooling of gases by laser radiation, Optics Communications 13(1), 68 – 69 (1975). [22] D. J. Wineland and H. Dehmelt, Proposed 1014 δν/ν Laser Fluorescence Spectroscopy on Tl+ Mono-Ion Oscillator III (side band cooling), Bull. Am. Phys. Soc. 20, 637 (1975). [23] S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure, Phys. Rev. Lett. 55, 48–51 (1985). [24] S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, Experimental Observation of Optically Trapped Atoms, Phys. Rev. Lett. 57, 314–317 (1986). [25] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science 269, 198 (1995). [26] M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. M. Kurn, D. S. Durfee, and W. Ketterle, BoseEinstein Condensation in a Tightly Confining dc Magnetic Trap, Phys. Rev. Lett. 77, 416–419 (1996). [27] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions, Phys. Rev. Lett. 75, 1687 (1995). [28] C. C. Bradley, C. A. Sackett, and R. G. Hulet, Bose-Einstein Condensation of Lithium: Observation of Limited Condensate Number, Phys. Rev. Lett. 78, 985 (1997). [29] A. Messiah, Mécanique Quantique, volume 2, Dunod, Paris, 1964. [30] J. Dalibard, Collisional dynamics of ultra-cold atomic gases, in Proceedings of the International School of Physics, edited by M. Inguscio, S. Stringari, and C. E. Wieman, page 321, IOS Press, 1999. [31] M. Greiner and S. Folling, Condensed-matter physics: Optical lattices, Nature 453(7196), 736–738 (2008). [32] I. Bloch, Ultracold quantum gases in optical lattices, Nat Phys 1(1), 23–30 (2005). [33] E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, and H.-C. Nägerl, Inducing Transport in a Dissipation-Free Lattice with Super Bloch Oscillations, Phys. Rev. Lett. 104, 200403 (2010). [34] F. Wilczek and A. Shapere, Geometric Phases in Physics, Advanced series in mathematical physics, World Scientific, 1989. [35] Y. Aharonov and D. Bohm, Significance of Electromagnetic Potentials in the Quantum Theory, Phys. Rev. 115, 485–491 (1959). [36] M. Fruchart and D. Carpentier, An introduction to topological insulators, Comptes Rendus Physique 14, 779–815 (2013). [37] C. L. Kane, Condensed matter: An insulator with a twist, Nat Phys 4(5), 348–349 (2008). [38] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, A topological Dirac insulator in a quantum spin Hall phase, Nature 452(7190), 970–974 (2008).