Geometrie 1.)Geometrische Grundkonstruktionen Halbierung einer Strecke, Mittelsenkrechte Teilung einer Strecke Winkelhalbierung Thaleskreis Konstruktion von Dreiecken Kongruenzsätze: SSS-Satz, SWS-Satz, WSW-Satz, SSW-Satz Vierecke: 1 Geometrie 2 Konstruktion von regelmäßigen 5-Eck und Zehneck (nach Kochanski) 1. Kreis mit normalen Durchmessern AB und CD 2. Halbiere einen Radius, etwa AM: AH =HM 3. Zeichne mit H als Mittelpunkt den Kreisbogen CE: E=k(H, r=CH) AB 4. ME=s10 und CE=s5 Goldener Schnitt: Beim Goldenen Schnitt (lateinisch: sectio aurea) oder auch bei der Goldenen Teilung – seltener beim Göttlichen Schnitt oder bei der Göttlichen Teilung (lateinisch: proportio divina) – entsteht ein bestimmtes Verhältnis zwischen zwei Zahlen oder zwei Größen. Dieses Verhältnis ist die Goldene Zahl (Phi) (oder das Goldene Verhältnis oder das Göttliche Verhältnis).Zum Beispiel stehen zwei Teile einer Strecke im Verhältnis , wenn sich der größere zum kleineren Teil verhält wie die ganze Strecke zum größeren Teil. Streckenverhältnisse wie beim Goldenen Schnitt werden seit der griechischen Antike als Inbegriff von Ästhetik und Harmonie angesehen. Sie werden als ideale Proportionen in Kunst und Architektur angewendet, kommen aber auch in der Natur vor. Näherungskonstruktionen des n-Ecks: Geometrie 3 2.) Kongruenzabbildungen Isometrien sind bijektive Abbildungen, die längentreu, geradentreu und winkeltreu sind. Kongruente Figuren sind deckungsgleiche Figuren. Schiebung (Translation) Drehung (Rotation) Spiegelung an einer Geraden (Axialspiegelung, Umklappung) Punktspiegelung (Zentralspiegelung) 3.) Ähnlichkeitsabbildungen Winkeltreu, nicht längentreu (und damit auch nicht flächentreu),– dafür aber immerhin längenverhältnistreu. Zentrische Streckung: Ähnlichkeitsabbildungen als maßstäbliche Vergrößerungen oder Verkleinerungen Geometrie 4.) Projektive Geometrie Eine Projektion ist eine lineare Abbildung eines Vektorraums. 4.1. Zentralprojektion 4.2.Parallelprojektion: a-)Die senkrechte Parallelprojektion (Normalprojektion, orthogonale Projektion) Die parallelen Projektionsstrahlen stehen senkrecht zur Bildebene. · Grundriss (Draufsicht) · Aufriss (Vorderansicht) · Kreuzriss (Seitenansicht) In der Dreitafelprojektion wird die Aufriss Ebene fixiert und die der Grundriss in die Fläche geklappt. 4 Geometrie 5 Geometrie 6 Seitenriss: Zur Veranschaulichung eines im Auf-und Grundriss dargestellten Objektes wird häufig neben den beiden Bildebenen eine dritte Bildebene (Seitenrissebene) verwendet, die entweder senkrecht zu ¶1 oder zu ¶2 ist. Dieser Normalriss bildet dann mit einem der bereits vorhandenen Risse wieder ein Paar zugeordneter Normalrisse. ´´´ Der Abstand des Punktes P von der neuen Rissachse ist gleich dem ersten Tafelabstand z des Punktes P (dem Abstand des wegfallenden Risses). In technischen Zeichnungen wird die Seitenrissebene normal auf beide Ebenen gewählt, diese besondere Projektion heißt Kreuzriss Geometrie 7 b.)Die schräge (schiefe) Parallelprojektion Schräge und parallele Projektionsstrahlen schaffen ein räumlich wirkendes Bild, bei dem mehrere Seiten eines Körpers zu sehen sind. Die Tiefenlinien sind zueinander parallel. 4.3. Kotierte Projektion Im Straßenbau und in der Kartografie verwendet man sog. kotierte Projektionen. Ein Gelände oder eine Liegenschaft werden im Grundriss abgebildet, aber durch zusätzliche Angaben wie Höhendifferenzen oder Höhenlinien bereichert. Geometrie 4.4. Axonometrie Kartesisches Koordinatensystem 8 Geometrie 9 5.) Kegelschnitte 5.1. Ellipsenkonstruktionen Eine Ellipse kann definiert werden als die Menge aller Punkte P der Ebene, für die die Summe der Abstände zu zwei gegebenen Punkten F1 und F2 gleich ist. Die Punkte F1 und F2 heißen Brennpunkte. P Geometrie 10 Scheitelkrümmungskreise 5.2. Parabelkonstruktion: Eine Parabel ist der geometrische Ort aller Punkte , deren Abstand zu einem speziellen festen Punkt – dem Brennpunkt – gleich dem zu einer speziellen Geraden – der Leitlinie – ist. 5.3.Hyperbel: