Document

Werbung
Important discoveries from
Ground-based Transit Surveys
Charbonneau et al. (2000): The observations that started it all:
•
•
•
•
Proof that RV variations are due to planet
Mass = 0,63 MJupiter
Radius = 1,35 RJupiter
Density = 0,38 g cm–3
GJ 436: The First Transiting Neptune
Host Star:
Mass = 0.4 M‫( סּ‬M2.5 V)
Butler et al. 2004
MEarth-1b: A transiting Superearth
D Charbonneau et al. Nature 462, 891-894 (2009) doi:10.1038/nature08679
Lower bound
r = 0.15 gm cm–3
Upper bound
r = 3 gm cm–3
Both RV and Transit Searches show a peak in the
Period at 3 days
The ≈ 3 day period may mark the inner edge of
the proto-planetary disk
Radius (RJ)
Mass-Radius Relationship
Mass (MJ)
Radius is roughly independent of mass, until you get to small planets
(rocks)
Summary of Global Properties of Transiting Planets
1. Transiting giant planets (close-in) tend to have inflated radii
(much larger than Jupiter)
2. The period distribution of close-in planets peaks around P ≈ 3
days for both RV and transit discovered planets.
3. Most transiting giant planets have densities near that of Saturn.
It is not known if this is due to their close proximity to the star
(i.e. inflated radius)
4. Transiting planets have been discovered around stars fainter
than those from radial velocity surveys
Transits from Space: CoRoT and Kepler
Why do Transit searches from Space?
1. No scintillation noise → One can reach the
photon limit
2. No atmospheric extinction → Less false positives
3. Continous temporal coverage → if a stars shows
a transit you will find it!
In short: the light curves are of better quality, have
better temporal coverage so you can find smaller transits
and transits in long period orbits
Sources of Errors
Atmospheric Extinction
Atmospheric Extinction can affect colors of stars and photometric
precision of differential photometry since observations are done at
different air masses. To remove tranparency effects one has to
reference the light level of your target star to a „constant“ star.
Disadvantages of Space
1. If the launch fails you do not get a second chance
2. If your instrument breaks, you cannot fix it
3. Space environment introduces different problems in the
light curve analysis
4.
It is expensive!
~25.000 Euros
150.000.000 Euros
The CoRoT Mission (CNES)
COnvection ROtation and Planetary Transits
• Goals: exoplanets + astroseismology
• Polar Earth orbit
• 27 cm Telescope w/ 4 CCD detectors
• 2.8° x 2.8° field-of-view
• Max 150 days observing runs
• Launched: 27th December 2006
• Participation from: F, A, B, D, E, ESA, Brasil
• Duration 6+ years
CoRoT was successfully launched from Baikanur on
27 December 2006
630 kg +
1000 kg
water
CoRoT is a dual-purpose mission:
Asteroseismology and Exoplanets
Seismo field: ~10 targets/CCD
Exofield field: ~ 6000 targets/CCD
5 < V < 9.5
11 < V < 16
CoRoT-Mission: Focal Plane
Focal Plane:

PSF: Astroseismology
2.8o x 1.4o
secondary target
* *
main target
*
*
faint stars (11-16)
targets / CCD
PSF: exo-Planet
*
*
*
*
*
Asteroseismologie
channel
Field of view
Exoplanets
channel
The 4 CCD detectors of CoRoT. Two are devoted 2 are devoted to
exoplanets and 2 to asteroseismology
The eyes of CoRoT
Duty Cycle: Not completely continuous coverage
The South Atlantic
Anomaly (SAA)
• ~ 6% of the data is lost
due to the SAA
• other „random events“
cause 1-2% loss
• Duty cycle ~ 92%
Relative Flux
Relative Flux
The SAA also creates challenges in the data
reduction: Discontinuities
JD-2400000
JD-2400000
• Proton events associated with SAA crossing
• Affects lightcurves in the starflux and/or background subtraction
• On-board software modified to treat hot pixels in the background
subtraction
Sample Light Curves from the Exofield
Showing Stellar Variability
So is all this effort worth going to Space?
An OGLE
transit discovery
(ground-based)
A CoRoT transit
discovery
The CoRoT Ground-based Follow-up Effort
CoRoT only finds transit „candidates“. An extensive
ground-based effort is required to confirm that this is
indeed a planet.
For Space-based transit searches, Ground-based
observations are „part of the Mission“
But before the ground-based follow up starts one needs to do
the best possible analysis on the light curve to give the best
candidates. Much information comes from the light curves
e.g.:
Is the transit too long : probably a giant
Do you see a secondary? Probably an eclipsing binary
Problem : The size of the CoRoT aperture
The CoRoT PSF can have up
to 0-20 background stars
whose light contaminates the
light of the primary star. The
first step is to identify which
star is making the transit
Follow-up facilities: if it collects photons, we will use it!
Step 1: Get on-off Photometry to Identify the Star
responsible for the Transit
Telescopes used for Photometric Followup
CoRoT-3b was on target!
Step 3: Get Radial Velocity Measurements to determine the mass
Sometimes it turns out to be a low-mass star
M ~ 0.15 M‫סּ‬
Step 4: Correct the CoRoT light curve for contaminants
The background stars contribute to the light measured
by CoRoT. One has to correct the light curve for these
contaminants. One has to know all the stars, and their
brightness that lie in the CoRoT aperture.
Status of CoRoT
• CoRoT operated for over 6 years
• Over 200,000 stars have been observed
• 32 Transiting Planets have been discovered
• CoRoT mission was extended for 3 years until the end
of 2015, but….
• On 7 March 2009 CoRoT lost DPU1 (Data Processing
Unit) that controlled one Exoplanet and one Seismo
CCD. CoRoT continued to work well, but only getting
data on ½ the original number of stars
• On 2 November 2012 CoRoT lost the second DPU
CoRoT-3b : The First Transiting Brown Dwarf
P: 4.2568 days
R: 1.01 RJ
m: 21.66 MJ
r: 26.4 cgs
Planets
Stars
Pressure support
provided by electron
degeneracy pressure,
no fusion (M < 13 MJup)
Hydrogen fusing
in hydrostatic
equilibrium
(M > 80 MJup)
Brown Dwarfs
Pressure support
provided by electron
degeneracy pressure,
short period of
deuterium burning (13
< M < 80 MJup)
CoRoT-1b
OGLE-TR-133b
CoRoT-3b
CoRoT-3b : Radius = Jupiter, Mass = 21.6 Jupiter
CoRoT-1b : Radius = 1.5 Jupiter, Mass = 1 Jupiter
OGLE-TR-133b: Radius = 1.33 Jupiter, Mass = 85 Jupiter
Modified From H. Rauer
CoRoT-7b
In spite of rotational modulation due to spots with a photometric amplitude of
~2% one can find…
CoRoT-7b : The Crown Jewel of CoRoT
Transit Curve
0.035%
CoRoT-7b: - Rpl = 1.6 R


-P = 0.8536 d
- a = 0.017 AU
Leger et al., 2009; Queloz et
al. 2009, Hatzes et al. 2010
RV (m/s)
CoRoT-7 is an active star with an RV jitter twice that the expected RV
planet from the star
JD
Prot = 23 d
44
CoRoT-7b
sO–C = 1.7 m/s
sRV = 1.8 m/s
P = 0.85 d
Mass = 7.3 MEarth
A carefull analysis shows that you can extract the planet signal from the
activity signal
CoRoT-7b
The CoRoT-7 Planetary System
CoRoT-7c
P = 3.7 Days
Mass = 12.4 ME
CoRoT-7d
P = 9 Days
Mass = 16.7 ME
The analysis of the radial velocity measurements reveals the
presence of 2 additional planets. So why do these not transit?
CoRoT-7b,c,d
10o
Only CoRoT-7b Transits
r ~ M1.17
from wikipedia
The Kepler Mission
55
The Kepler Mission (NASA)
• Goal: detect Earth-sized planet in HZ
• Orbit: Earth Trailing
• 0.95 m aperture Schmidt telescope
• 42 CCD detectors
• 105 square degree field of view
• Stare at one star field of 100,000 stars
• Duration: 4 years Launched: March 6, 2009
• Failed in May 2013  Kepler 2
56
Kepler detectors. Note that they are on a curved surface. This is
because the focal plane for a Schmidt telescope is a sphere.
Status of Kepler
• Kepler has collected data for over 4 years
• Over 170,000 stars have been observed
• 962 Transiting planets discovered so far (not all
confirmed by Doppler measurements
•In May 2013 it lost a second reaction wheel and is no
longer able to point precisely enough to detect Earthlike planets
• In Spring 2014 Kepler will begin a new mission:
observe fields in the ecliptic for 2 months
Kepler‘s First Giant Planet Discoveries
Kepler-4b
P = 3.21 d
MP =0.077MJ
RP = 0.36 RJ
r (gm cm–3) = 1.91
Kepler-5b
P = 3.55
MP =2.11 MJ
Rp = 1.43 RJ
r (gm cm–3) = 0.89
Kepler-6b
P = 3.23
MP =0.67 MJ
Rp = 1.32 RJ
r (gm cm–3) = 0.35
Kepler 7b: The „Foam“ planet
Period: 4.88 d
Mass: 0.433 MJup
Radius: 1.84 RJup
Density: 0.16 gm cm–3
The inner structure of
Kepler-10b and CoRoT-7b
CoRoT-7b
Kepler-10b
r(gm/cm3)
10
7
Earth
Mercury
5
4
3
Venus
Mars
Moon
2
From Diana Valencia
1
0.2
0.4
0.6
0.8
2
1
1.2
1.4
Radius (REarth)
1.6
1.8
A new class: Circumbinary Planets
Kepler 16(AB)b
Pbinary = 41 days
Pplanet = 229 days
Mplanet = 0.33 MJ
Rplanet = 0.75 RJ
The Circumbinary Planets
Kepler 16
Binary
Planet b
MA = 0.69 M Pb = 229 d
MB = 0.20 M
Rb = 0.75 RJ
PAB = 41 d
mb = 0.33 MJ
Kepler 35
Binary
Planet b
MA = 0.89 M Pb = 131.4 d
MB = 1.02 M Rb = 0.78 RJ
PAB = 20.7d
mb = 0.13 MJ
Kepler 34
Binary
Planet b
MA = 1.05 M Pb = 288 d
MB = 1.02 M Rb = 0.22 RJ
Pbinary = 27.8 d mb = 0.76 MJ
Kepler 38
Binary
Planet b
MA = 0.95 M Pb = 105.6 d
MB = 0.25 M Rb = 0.39 RJ
PAB = 18.8 d
mb < 0.38 MJ
Sometimes Hollywood gets it right!
Multiple Transiting Planets: Kepler 11b-g
M = 4,2 ME
M = 13 ME
M = 6,36 ME
M = 8,3 ME
M = 2,2 ME
M < 300 ME
With multiple planets around faint stars
it is difficult to get the planet mass with
radial velocity measurements. It takes
too much data. However, Kepler can
use transit timing variations (TTVS).
TTVs are caused by the mutual
gravitation interaction with the planets
and using dynamical simulations you
can determine the mass.
Planet e has a shorter transit
duration than expected because
it is more inclined
Distribution of
planets
Kepler-22b: „A superearth in the Habitable Zone
Kepler-22b
Radius = 2,38 REarth
Mass < 36 MEarth
Period = 290 days
Distance to Star =
0,89 AU
Temperature = 262 K
Kepler-22 in comparison to our Solar
System
Kepler-186: The „First“ Earth-sized Planet in the
Habitable Zone
Qunitana et al. 2014
Radius of Planet
= 1.11 ± 0.14 MEarth
Leuchtkraft gegen Alter (Sterne, braune Zwerge und Planeten)
Sterne leuchten selbst, Planeten nicht, junge Planeten doch etwas
Deuterium-Brennen: D(p,g)He
Fusoren
Sterne: H(p,e n)D(p,g)He
log L / Lsun
+
Braune Zwerge
0.078 Suns
= 78 Jupiter
Planeten
(= Nicht-Fusoren)
13 Jup
Jupiter
Simple Definition: Objekte mit weniger als 13 Jupitermassen sind Planeten,
falls entstanden im Orbit um einen Fusor..
(Burrows et al. 1993, 1997 ApJ)
log Age (years)
Naos-Conica: Nasmyth Adaptive Optics System
& Coude optical and near-infrared camera
Unit Teleskop 4
YEPUN
Sinfoni: Spectrograph for Integral field Observations
in the near Infrared
Direkte Detektion von Exo-Planeten: Problem der Dynamik
TWA-5 B
3.5m-NTT (Sofi)
TWA-5 B
8.2m-VLT (Fors2)
Abstand zum Stern:
z.B. 10 AE
(1 arc sec in 10 pc)
(0.2 arc sec in 50 pc)
Problem der Dynamik: Stern viel zu hell und viel zu nah !!!
PZ Tel
12 Myrs
NACO
Ks-band
S13
(in b Pic
group)
N
0.5''
E
Mugrauer
et al.
2010
A&A
Speckle Technik / Speckle imaging
Tausende von sehr kurzen (Millisekunden) Belichtungen, die addiert werden (shift + add).
Belichtung kürzer als Korrelationszeitskala der Erdatmosphäre (~ 60 ms).
Speckle:
Shift + Add:
3.5m New Technology Telescope (NTT)
ESO, La Silla, Chile
Lucky Imaging in Jena
(wie Speckle imaging, aber im roten Optischen)
RTK
no filter
raw frames (t=0.05s)
5 arcsec
Lucky Imaging in Jena
(wie Speckle imaging, aber im roten Optischen)
RTK
no filter
simple add
5 arcsec
Lucky Imaging in Jena
(wie Speckle imaging, aber im roten Optischen)
RTK
no filter
shift+add
5 arcsec
Lucky Imaging in Jena
(wie Speckle imaging, aber im roten Optischen)
RTK
no filter
Lucky Imaging 10%
5 arcsec
Lucky Imaging in Jena
(wie Speckle imaging, aber im roten Optischen)
RTK
no filter
Lucky Imaging 5%
5 arcsec
Seeing und adaptive Optik
Auflösung = Wellenlänge l / Spiegelgröße D
Seeing limitiert !
Seeing durch Turbulenz in der Erdatmosphäre, korrektur durch AO.
Adaptive Optics (AO):
Adapt optics (one mirror) to
to turbulence in atmosphere
r_0 = r_0(l) Größe des kohärenten Teils der Wellenfront (1.2m @ 2.2 mm),
t_0 = t_0(l) Kohärenzzeit (10 ms @ 2.2mm),
Strehl Verhältnis = Maximum in beob. Bild
(0…1)
/ erwartet für perfekte Optik
Bestätigung (visueller) stellarer Begleiter
HR 7329 (VLT/Isaac)
TWA 5 (VLT/Fors)
Braune Zwerg
Begleiter !
(mehrere braune Zwerg
Begleiter, inklusive
Den ersten drei unter
den Vorhauptreihensternen)
(Guenther & Neuhäuser 2001)
(Neuhäuser et al. 2000)
HD 130948 (Gemini/Hokupaa)
(Neuhäuser et al. 2002)
(Potter, ..., Neuhäuser 2002 ApJ)
AO Instrument Hokupa´a am Gemini 8.3m
55 masProc.)
binary !
Mauna Kea,
(Neuhäuser,
Potter,Hawai´i
Brandner 2001 Conf.
TWA-5 A & B:
FWHM = 0.064 arc sec,
30% Strehl (H-Band)
H=17 at 1“ (5 Jup, 60 AU)
Bestes mit
VLT/FORS:
0.180 arc sec
(Potter, ..., Neuhäuser 2002 ApJ)
Gemini-North 8.3m
HD 130948 (200 Mio. Jahre, UMa cluster)
mit 2 Braunen Zwergen (frühes-L, H=12),
Abstand 0.13“ = 2.5 AE bei 18 pc.
10 Jahre Orbit, dann Massen dynamisch !
Tachihara et al.
1996, PASJ 48
Datenreduktion im Infraroten: Problem ist warme = helle Erdatmosphäre
Bild – Bias
Flat - Bias
2) Abzug des
Hintergrundes:
3) Schieben:
Bild_1 - Bild_2
Shift Bild_1 - Bild_2
Bild_2 - Bild_3
Shift Bild_2 - Bild_3
Bild_3 - Bild_4
Shift Bild_3 - Bild_4
4) Addieren:
1) Rohbilder:
Bild_1
Bild_2
Beipiel:
GQ Lupi
Bild_3
Neuhäuser et al. 2005
Sehr viele Bilder …
(1000 x 1000 pixel)
etc …
etc …
Shift+add von
5400 x 0.3 sec
=5400x4.4 Mbyte
Daten-Reduktion: shift + add
SofI/NTT (H-Band)
SofI/NTT
SofI/NTT
(H-Band)
(H-Band)
NTT Raw
SofI
Jitterframe 50x1.2s
10 Raw
SofI Specialdomeflat
frames (50x1.2s) shift+add
50 x 1.2 sec
Ergebnisbild
10 Bilder per shift + add
Eigenbewegungsanalyse
 „Direkt-Imaging“
– Methode
u And
 Spektroskopisch
55 Cnc
CT Cha: 1 Mio Jahre junger Stern im Sternbild Chamäleon am Südhimmel
(540 Lichtjahre Entfernung)
VLT / Sinfoni J, H, K, H+K-Band Spektren:
Auflösung: R=1500 - 4000
J-Band
H-Band
K-Band
CT Cha b
und Drift-Phoenix:
J
T= 2600 ± 250 K
AV= 5.2 ± 0.8 mag
 Mag, AV und Distanz
geben Leuchtkraft L
(log(L/Lʘ)= -2.68 ± 0.21)
H
 L and T gibt Radius
(~ 2.2 ± 0.7 RJup)
 T, L, Alter
gibt die Masse:
~ 17 ± 6 MJup
K
aber Modellabhängig
(Planet oder
Brauner Zwerg ?)
Lodieu et al. 2008
UScoJ160714-232101 AV=2.1 mag
Schmidt, Neuhäuser, Seifahrt et al. 2008 A&A
GQ Lup
0.7
arcsec
Fomalhaut b
HST 0.6 mm
12.7“ = 115 AU
(Kalas et al. 2008)
Belt inner edge at 133 AU
(with e = 0.11)
Upper mass limit 3 M_jup due to disk ring
HR 8799
b 1.73“ = 68 AU
c 0.95“ = 38 AU
d 0.63“ = 24 AU
Marois
et al.
2008
beta Pic b:
Lagrange et al.
2009, 2010:
6 – 13 Jup Massen bei 8.6 AE
Scheibenlücke
Freistetter, Krivov, Löhne, 2007
sagten einen 2 - 5 Jup Massen Planet
Bei rund 12 AE (7 – 16 AE)
um Beta Pictoris
in einer Scheibenlücke mit Hilfe von
Stabilitätsberechnungen voraus
2003
2009
Zukunft
Geplantes E-ELT – 39 m Durchmesser
978 m2 Fläche – 800 Spiegelsegmente
Beobachtungsbeginn ~ 2020
Darwin/Terrestrial Path Finder
hätten Nulling Interferometrie
benutzt
Earth
Venus
Mars
Ground-based European
Nulling Interferometer
Experiment wird die
Nulling Interferometrie am
VLTI testen
Voyager 1 Sonde (am 5. September 1977 gestartet)
nahm 1990 ein Bild der Erde auf –
aus ca. 6,4 Milliarden km Entfernung
= 43 Astronomische Einheiten
= 0,00002 Lichtjahre
Herunterladen