HOCHSCHULE DARMSTADT h_da FB EIT, July 9th 2010 Master of Science Course: Electrical Engineering Analogue CMOS Circuit Design Final Examination Examiner: Prof. Dr. Bernhard Hoppe Instructions to Candidates: Reading Time: 10 Minutes Writing Time: 2 hours You may use notes, slides, textbooks and logbooks as required! The 4 questions (the first 3 with 20 marks, question 4 makes 40). The minimum score for passing the examination is 40 marks. 1 SECTION A. Devices Question A1: Calculate the small signal parameters gm, gmbs, gds for a PMOSand an NMOS transistor, if the magnitude of the drain current is 50µA and the magnitude of the source-bulk-voltage is 2V. Use the parameters from the following table! Width = 1µm, Length 1µm! Parameter-Symbol VT0 K’ 2F NMOS 0.7 0.15 110.0 10% 0.4 0.01 (L=2µm) 0.04 (L=1µm) 0.7 PMOS Unit Volts -0.7 0.15 µA/V² 50.0 10% 0.57 V0.5 0.01 (L = 2µm) 1/V 0.05 (L = 1µm) 0.8 V 2 Question A2: We have two transistors D- D+ ID G+ ID +B vDS G- vBS vGS -B vDS vBS vGS +S+ -SNMOS PMOS and the following model parameters Parameter-Symbol VT0 K’ 2F NMOS 0.7 0.15 110.0 10% 0.4 0.01 (L=2µm) 0.04 (L=1µm) 0.7 PMOS Unit Volts -0.7 0.15 µA/V² 50.0 10% 0.57 V0.5 0.01 (L = 2µm) 1/V 0.05 (L = 1µm) 0.8 V The W/L-ratios of the transistors are 5µm/1µm. If the drain-, gate-, source-, and bulk-voltages are 3V, 2V, 0V and 0V respectively for the NMOS device and -3V, -2V, 0V and 0V respectively for the PMOS device, find the drain current. The symbol K’ is µe,h·Cox. Determine the drain currents! 3 Question A3: What is the worst case ICMR for VDD = 5V 1V, VSS = 0V, ISS = 100 µA, W1/L1 = W2/L2 = 5, W3/L3 = W4/L4 = 1, L = 1,0µm and VDS5(sat) = 0,2V. Use the parameters, in order to obtain the minimum ICM-range. Parameter-Symbol VT0 K’ 2F NMOS 0.7 0.15 110.0 10% 0.4 0.01 (L=2µm) 0.04 (L=1µm) 0.7 PMOS Unit Volts -0.7 0.15 µA/V² 50.0 10% 0.57 V0.5 0.01 (L = 2µm) 1/V 0.05 (L = 1µm) 0.8 V 4 5 Section B: Circuits Question A4 Design a Cascode-Amplifier with the following specifications: VDD=5V, Pdiss < 1mW A = -50V/V, Voutmax = 4V and Voutmin = 1.5V. The slew rate for a 10pF load should be 10µV/s or greater! The amplifier consists of two NMOS-devices in series connecting ground with the output node and a PMOS-device as the load-transistor connecting to the supply voltage (M3). This transistor is biased with a current mirror (M4) sourcing the required current from VDD. Find the appropriate resistor value at the bottom of the PMOS diode connected transistor to provide IBIAS! One of the NMOS-transistors (M2) has to be biased to a certain voltage. This voltage has to be provided by a voltage divider of two additional transistors not shown in the picture. Both devices are diode-connected active load transistors (NMOS and PMOS in series). Use the following parameter to 1µm. parameters Parameter-Symbol NMOS VT0 0.7 0.15 K’ 110.0 10% and set the PMOS -0.7 0.15 50.0 10% channel length Unit Volts µA/V² 6 2F 0.4 0.01 (L=2µm) 0.04 (L=1µm) 0.7 0.57 0.01 0.05 0.8 V0.5 (L = 2µm) 1/V (L = 1µm) V Create SPICE-Models for NMOS- and PMOS-Transistors from the values of the table and verify your design with LT-SPICE! In case of insufficient performance of the first cut hand design change the appropriate transistor width until the design goal is met. 7 Solution Die Slew Rate braucht 100µA nach der Power-Vorgabe sind 200µA zulässig. Wir nehmen 150µA. Die Weite des oberen PMOS ist 6µm Die Weite des unteren NMOS ist 2,73µm Die Sättigungsspannung des unteren Transistors VDS1 = 0,8V Wenn man diesen Betrag von der Voutmin-Spannung abzieht erhalten wir VDS2sat = 0,7V und W2 = 5,57µm Die Bias-Spannung an Transistor 2 ist 2,2V. Diese Spannung kann man mit active loads folgendermaßen einstellen: In beiden Transistoren muss der gleiche Strom fließen: Beim NMOS-Transistor ist VDS = VGS = 2,2V und beim PMOSTransistor ist VDS = VGS = 2,8 V: (W/L)NK‘N(VGS – VTH)2 = (W/L)PK’P(VGS – VTH)2 (W/L)N110(1,5)2 = (W/L)P50(2,1)2 (W/L)N/(W/L)P = (5/11) (2,1)2(1,5)-2 (W/L)N/(W/L)P = 0,9 Also L = 1µm und WN = 4µm und WP = 4,5µm Der Stromspiegel der M3 ansteuert muss mit einem Widerstand gegen Masse so eingestellt werden, dass der Strom von 150µA auch dann noch fließt, wenn VOUTmax anliegt. Also muss bei 1V zwischen VDD und Voutmax 1V VGS=VDS vorhanden sein, also die Overdrivespannung muss auf 0,3V gesetzt werden: Vgs = 1V. Also ist R = 4V/150µA = 26,67 kOhm Die Biasspannung an M2 von 2,2V erzeugen wir mit einem Spannnungsteiler aus einer aktiven PMOS und einer aktiven NMOS-Last. *CS-Stage transfer characteristic Vdd 3 0 DC 5.0V *Vin 1 0 DC 0V Vin 1 0 PWL (0 0V, 2U 0V, 2.002U 5V, 6U 5V, 6.002U 0V) *VGG2 4 0 DC 2.2V *IBIAS 10 0 DC 150U RBIAS 10 0 22000 Cl 2 0 10P MVD1 4 4 3 3 MOSP W = 4.5U L =1U MVD2 4 4 0 0 MOSN W = 4.0U L = 1U M3 2 10 3 3 MOSP W = 6U L = 1U 8 M3B 10 10 3 3 MOSP W = 6U L = 1U M2 2 4 41 0 MOSN W = 5.6U L = 1U M1 41 1 0 0 MOSN W = 5.73U L = 1U *Level 1 SPICE Modell .MODEL MOSN NMOS VTO=0.7 KP=110U GAMMA=0.4 LAMBDA=0.04 PHI= 0.7 .MODEL MOSP PMOS VTO=-0.7 KP=50U GAMMA=0.57 LAMBDA=0.05 PHI=0.8 *.dc lin Vin 0V 5.0V 0.01V .TRAN 0.002U 10U .Plot(V2) 4V in 94ns steigende Eingangsflanke:43 V/µs 4,3V in 275ns fallende Eingangsflanke: 15,6V/µs 9