t h c a Atome im Computer Erik Koch n s t 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R Computational Materials Science German Research School for Simulation Sciences Riesenmagnetwiderstand n s t t h c a 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R Materialwissenschaften Steinzeit t h c a Dreiperiodensystem n s t 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R Bronzezeit Eisenzeit Anfänge der Atomistik t h c a Johannes Kepler, 1611: Neujahrsgabe oder Vom sechseckigen Schnee n s t 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R Anfänge der Atomistik t h c a Johannes Kepler, 1611: Neujahrsgabe oder Vom sechseckigen Schnee n s t 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R X-Strahlen Wilhelm Conrad Röntgen, 1895 t h c a n s t 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R Die Hand von Frau Röntgen, aufgenommen am 22. Dezember 1895. Kristallstruktur Max von Laue, Walter Friedrich und Paul Knipping,1912 t h c a n s t 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R n s t t h c a 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R Übungsaufgabe Gegeben: Atome der Ordnungszahl Zα an den Positionen Rα. Lösen Sie n s t 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R Ne 2 � � H=− 2m j=1 ∇2j − 1 4π�0 Ni Ne � � j=1 2 Zα e 1 + |r − Rα | 4π�0 α=1 j Ne � j<k t h c a Ni � e Zα Zβ e 2 1 + |rj − rk | 4π�0 |Rα − Rβ | 2 The underlying laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that exact applications of these laws lead to equations which are too complicated to be soluble. It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation. P.M.A. Dirac, Proceedings of the Royal Society A123, 714 (1929) Theory of (almost) Everything α<β Reduktionismus t h c a n s t 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R sehr einfache Regeln führen zu simplem Verhalten Reduktionismus t h c a n s t 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R einfache Regeln führen zu komplexem Verhalten Formen des Kohlenstoffs Diamant t h c a n s t 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R Formen des Kohlenstoffs Graphit t h c a n s t 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R Buckminsterfullerenes: 1985 n s t t h c a 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R Nano-Röhren: 1991 n s t t h c a 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R Graphen: 2004 n s t t h c a 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R Periodensystem H n s t 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R Li Be B C Na Mg Al Si K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd Cs Ba Lu Hf Ta W Re Os Ir Pt Au Fr Ra Lr Rf Db Sg Bh Hs Mt La Ce Pr Nd Pm Sm Eu Gd Ac Th Pa U Np Pu Am Cm t h c a He N O F Ne P S Cl Ar Ge As Se Br Kr In Sn Sb Te I Xe Hg Tl Pb Bi Po At Rn Tb Dy Ho Er Tm Yb Bk Cf Es Fm Md No Baukasten Periodensystem MgB2 Supraleiter: 2000 t h c a LaMnO3 colossal magnetoresistance n s t 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R FeAs Supraleiter: 2008 La2-xSrxCuO4 HiTc: 1987 Baukasten Periodensystem Telefonnummer-Verbindungen Ca14Cu24O41: 14-24-41 t h c a organische Kristalle n s t 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R Die Rolle der Theorie R t h c a Man siehtnnur, s was man weiß 2 t f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W Man sieht nur, was man weiss n s t t h c a metallisch 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R isolierend CNT (n,m) n s t t h c a 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R n-m = 3l : metallisch Einteilchenbild t2g gu Aufbauprinzip realistische Rechungen: Dichtefunktional-Theorie (DFT) n s t gg 5 h t2u hu 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R E in eV g t1g t1u 0 hu g t2u u -5 hg ag t1u t h c a gg + hg Spin-Ladungs-Trennung n s t t h c a 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R Elektronenzerfall im korrelierten Festkörper Theorie made in Aachen Dynamical Mean-Field Theory (DMFT) t h c a n s t 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R Dynamical Mean-Field Theory ersetze Kristallgitter t h c a Gloc (ω) = � n s t � �−1 dk ω − µ − ε(k) − Σ(ω) 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R −1 Gb−1 (ω) = Σ(ω) + Gloc (ω) durch Elementarzelle, die in ein dynamisches Medium eingebettet ist Gb−1 (ω) ≈ ω + µ − �0 − HAnd = Hloc + � lσ † εlσ alσ alσ + � � li,σ l Vli |Vl |2 (ω − εl ) � † ciσ alσ −1 Σ(ω) = Gb−1 (ω) − Gimp (ω) Ein-Platz Problem � + H.c. Rechenzentrum, ca. 1890 OPINION BIG DATA ESSAY t h c a NATURE|Vol 455|4 September 2008 n s t 2 f The Harvard computers1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R Observatories hired computers — a term used for human processors since the early 1700s A photograph taken at the Harvard Observatory in Cambridge, Massachusetts, circa 1890, features eight women in what looks like a Victorianstyle sitting room. They wear long skirts, have upswept hair and are surrounded by flowered wallpaper and mahogany tables. At first glance they seem to be sampler stitching or reading. In fact these ‘human computers’ are analysing photographs of the heavens, cataloguing stars. When cameras were first attached to telescopes, with the ability to capture the image of thousands of stars on a single photographic plate, people were needed to trawl through these new data. Observatories hired ‘computers’ — a term used for human processors since the early 1700s — to do the painstakingly repetitive work of measuring the brightness, position and colours of these stars. From the 1880s until the 1940s, the Harvard College Observatory amassed half a million photographic glass plates, weighing around 300 tonnes and holding images of tens of millions of stars. A team of women trawled through these photos with nothing more than magnifying glasses — often for little pay and with no scientific training. Williamina Fleming stands in the centre of the Harvard computers as Edward Pickering looks on. HARVARD COLL. OBSERV. The first mass data crunchers were people, not machines. Sue Nelson looks at the discoveries and legacy of the remarkable women of Harvard’s Observatory. Heimcomputer, ca. 1951 t h c a […] all went smoothly until I had to face up to the problem of factoring highorder secular equations. I knew how to do this by hand, but the task was time-consuming, and it was necessary to check and recheck the factoring to make sure no errors were made. It then occurred to me that my mother could help me with some of this work. I had read about the Hartrees how the younger Hartree (Douglas R.) had been aided by his father (William), who was a retired railroad engineer and enjoyed doing sums on a desk calculator. I showed my mother how to set up the OPW secular equations and how to factor them, and she agreed to do some of this in her spare time […] n s t 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R Frank Herman Elephants and mahouts — early days in semiconductor physics Physics Today, June 1984, p.56 Wachstum der Rechenleistung n s t t h c a 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R Wachstum der Rechenleistung t h c a n s t 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R desktop Top 500 Supercomputer (Juni 2010) n s t t h c a 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R Jülicher Supercomputer: Jugene & Juropa n s t t h c a 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R n s t t h c a 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R massiv parallele Algorithmen 16384 n s t 16 sites 18 sites 20 sites 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R 8192 speed up 4096 2048 1024 sites memory 512 16 1 GB 256 18 18 GB 20 254 GB 128 128 256 t h c a 512 1024 2048 4096 8192 16384 # CPU realistische Theorie korrelierter Materialien n s t t h c a 2 f 1 a r h o c v 0 s 1 5 en 20 s . s i ov W N . H T 12 W R