Mathematik

Werbung
Mathematik-Vorkus
WS 2015/2016 – 14.09.-18.09.2015
Dilay Sonel
[email protected]
Mathe Online Kurs
Hier mit seinem Namen und
seiner Normalen email Adresse
registrieren
Auf Nachfrage biete ich
Termine an, an denen ich
Probleme bzw. Fragen zu den
Aufgaben/Themen des Mathe
Online Kurses beantworte.
Hierfür bitte anmelden –
entweder online über
Olat/Mathe
Vorkurs/Terminvergabe oder
über folgende Email Adresse:
[email protected]
Themenüberblick I
• Grundrechenarten & -regeln
• Bruchrechnen
• Binomische Formeln
• Rechnen mit Potenzen, Wurzeln und Logarithmus
• Summen- und Produktzeichen
• Folgen und Reihen
• Geometrische Folge / Reihe
• Lineare Gleichungen lösen
• Funktionsbegriff
• Darstellung von Funktionen
Themenüberblick II
• Definitions- und Bildmenge
• Lineare Funktionen
• Quadratische Funktionen lösen
• Quadratische Ergänzung
• Mitternachtsformel
• Umkehrfunktion
• Stück-/ Abschnittsweise definierte Funktionen
• Grenzwert
• Betrag / Betragsfunktion
Grundrechenarten
1)
Beispiel:
Addition
Summand + Summand = Summe
2)
Subtraktion
Minuend – Subtrahend = Differenz
3)
6–2=4
Multiplikation
Multiplikand • Multiplikator = Produkt
4)
6+2=8
6 ∙ 2 = 12
Division (Bruchrechnen)
����
����
= Quotient
=3
Rechenregeln
1)
Punkt- vor Strichrechnung
23 + 14 : 2 = 23 + 7 = 30
2)
Klammern zuerst berechnen
5 • (4 – 2) = 5 • 2 = 10
 Bei geschachtelten Klammern von innen nach außen rechnen:
(4 – (2 • 3) • 5) = (4 – 6 • 5) = 4 – 30 = -26
3)
Ein Produkt ist genau dann null, wenn mindestens ein Faktor null ist.
(x – 4)(x + 2) = 0  x = 4; x = -2
4)
Die Division durch 0 ist in keinem Fall erlaubt!
ist erlaubt, aber
ist strengstens verboten!!!
Grundregeln der Multiplikation
1)
Kommutativgesetz
a•b=b•a
2)
Assoziativgesetz
(a • b) • c = a • (b • c)
3)
Beispiel: 2 • 4 = 4 • 2 = 8
Beispiel: (2 • 4) • 3 = 8 • 3 = 24 ; 2 • (4 • 3) = 2 • 12 = 24
Distributivgesetz (ausmultiplizieren/ausklammern)
a • (b + c) = a • b + a • c
Beispiel:
2 • (3+4) = 2 • 7 = 14 ; 2 • 3 + 2 • 4 = 6 + 8 = 14
 Folgerung:
(a + b)(c + d) = a(c + d) + b (c + d) = ac + ad + bc + bd
Beispiel:
(2 + 5)(3 + 1) = 7 • 4 = 28
2 • 3 + 2 • 1 + 5 • 3 + 5 • 1 = 6 + 2 + 15 + 5 = 28
äℎ��
�����
Bruchrechnen I
1)
Kehrbruch: Zu jedem Bruch gibt es einen Kehrbruch .
Dabei gilt:
2)
Erweitern: Zähler und Nenner werden mit derselben Zahl c ≠ 0 multipliziert.
=
3)
• =1
•
•
Beispiel:
=
•
•
=
Kürzen: Zähler und Nenner werden durch dieselbe Zahl c ≠ 0 dividiert.
•
•
=
Beispiel:
=
•
•
=
Bruchrechnen II
4)
Strichrechnungen:
 Brüche mit gleichem Nenner
± =
±
± =
•
•
+ =
Beispiel:
 Brüche mit unterschiedlichen Nennern
5)
±
•
•
Punktrechnungen:


=
±
Beispiel: + =
+
=
• + •
•
=
+
Multiplikation: „Nenner mal Nenner, Zähler mal Zähler“
• =
•
•
a• =
•
Division: Mit dem Kehrbruch multiplizieren.
: = • =
•
•
=
Bruchrechnen III
6)
7)
Doppelbrüche: Können mit einem Kehrbruch aufgelöst werden.
= : = • =
9
= : = • =
„Differenzen und Summen kürzen nur die Dummen“
�− �
�
8)
Beispiel:
=
�
−�
� �
=
−�
�
, und nicht
�−
!!!
Gemischte Brüche
Problem : Kann als Produkt missverstanden werden!
Beispiel: 3 =
•
+
=
≠
=
Binomische Formeln
1. Binomische Formel: (a + b)² = a² + 2ab + b²
(a + b)²
= (a+b)(a+b) = a(a+b) + b(a+b) = a² + ab + ba + b²
= a² + 2ab + b²
2. Binomische Formel: (a – b) ² = a² - 2ab + b²
(a – b) ²
= (a – b)(a – b) = a(a-b) – b(a-b) = a² - ab – ba + b²
= a² - 2ab + b²
3. Binomische Formel: (a + b)(a – b) = a² - b²
(a + b)(a – b)
= a(a – b) + b(a – b) = a² - ab + ba – b²
= a² - b²
Potenzgesetze I
1)
Potenzen mit gleicher Basis werden multipliziert/dividiert, indem man die
Exponenten addiert/subtrahiert und die Basis beibehält:
•
2)
=
+
=
−
Potenzen mit gleichem Exponenten werden multipliziert/dividiert, indem
man das Produkt/den Quotient der Basen mit dem gemein-samen
Exponenten potenziert:
•
=
•
=
Potenzgesetze II
3)
Eine Potenz wird potenziert, indem man die Exponenten multipliziert
=
und die Basis beibehält:
4)
5)
Sinnvolle Festlegungen bei a ≠ 0:
−
=
•
−
=
=
Die n-te Potenz einer negativen Zahl ist bei geradem Exponenten n
positiv, bei ungeradem Exponenten n negativ:
−
=
1,
-1,
gerades n
ungeraes n
Zusammenfassung Potenzgesetze
Gibt es bei einem Term keine Übereinstimmung von Basis oder Exponent, lässt sich der Term nicht
vereinfachen!
Potenzen können nur addiert werden, wenn Basis und Exponent übereinstimmen!
Wurzeln I
Suche nach der Basis einer Potenz:
� =a⇔x=
Die Wurzel ist die nicht-negative Lösung der Gleichung xn = a.
Beispiel:
� = 16 ⇒ x =±
=±4
→ zweideutiger Rechenausdruck
9+
+
→ Acht Möglichkeiten!
Wurzeln II
Für das Rechnen mit Wurzeln gilt:
Logarithmus
Suche nach dem Exponenten einer Potenz:
= x ⇔ n = log �
Der Logarithmus einer Zahl x zur Basis a ist die Zahl n, mit der man a
potenzieren muss, um x zu erhalten.
Dabei gilt:
Das Argument des Logarithmus muss immer positiv sein!
Für jedes a gilt log
= 0, da
= 1.
Natürlicher Logarithmus
Besondere Basis: e (die eulersche Zahl ≈ 2,718281828)
Dekadischer Logarithmus / Zehnerlogarithmus
Besondere Basis: 10
10n = a → n = log10 a = lg a
Formel zur Umformen des
ZahlenLogarithmus in den
Zehnerlogarithmus :
Beachten zur Eingabe in den
Taschenrechner!
Zusammenhang Potenzen, Wurzeln, Logarithmus
Das Summenzeichen
„Summiere alle Ausdrücke qi auf, wobei der Parameter i alle natürlichen
Zahlen von 0 bis n durchläuft.“
Dabei gilt:
Rechenregeln für Summen
Summen können in
Summanden aufgeteilt
Werden
Faktoren können vor
die Summe gezogen
werden .
Das Produktzeichen
Analog bietet das Produktzeichen die Möglichkeit, ein Produkt
vereinfacht darzustellen:
„Multipliziere alle Ausdrücke ai , wobei der Parameter i alle natürlichen
Zahlen von 1 bis n durchläuft.“
Folgen
Eine Folge (genauer: Zahlenfolge) ist eine Auflistung von Zahlen, deren Reihenfolge
festgelegt ist. Die einzelnen Zahlen der Folge nennt man Glieder. Das erste Glied (d.h.
die erste Zahl) der Folge heißt
, das zweite
, ..., das n-te Glied heißt
.
Beispiel:
(1, 7, 4, 21, 16, …), wobei
=1;
=7;
=4; …
Für einige Folgen kann man die Vorschrift angeben, nach der die einzelnen
Glieder berechnet werden. Für andere Folgen ist das nur schwer möglich oder
unmöglich.
Beispiel: (1, 2, 4, 8, 16, …)
Das zugehörige Bildungsgesetz lautet:
=
−
für n≥ 1
Übung zu Folgen
1.
Schreiben Sie die Werte der nächsten drei Glieder folgender
Zahlenfolgen auf.
a) f(n) = 1; 4; 9; 16;…
b) f(n) = 0; 4; 8; 12; 16;…
2. Finden & formulieren Sie das Bildungsgesetz für die jeweilige
Folge.
Folgen & Reihen
Gegeben sei eine Zahlenfolge
�ℕ .
Die Summe der ersten n Folgenglieder wird mit sn bezeichnet: sn =
Zahlenfolge
�ℕ
heißt nun die (endliche) Reihe zu
Folgenglieder der Zahlenfolge
Folgenglieder der Zahlenfolge
�ℕ .
�ℕ
�=
�.
Die
. Die einzelnen
bestehen also aus Summen über
Beispiel:
n
0
1
2
3
4
5
6
…
an
1
2
4
8
16
32
64
…
sn
1
3
7
15
31
63
127
…
Geometrische Folge / Reihe
Eine geometrische Folge ist durch ein Bildungsgesetz der folgenden Form
�� = � • �� .
charakterisiert:
Beispiel: Für
=2•
= 2 und q=3 ergibt sich:
=2•
=6
= 2 • 9 = 18
=2•
= 2 • 27 = 54
Für die Summe der ersten n Folgenglieder einer geometrischen Folge ergibt
sich:
Die Folge der
Für
�� = � •
��+ −
�−
.
nennt man geometrische Reihe.
= 1 ergibt sich:
�
�=
�� =
��+ −
�−
.
…
Geometrische Reihe
�=
Herleitung der Formel für n = 3:
S=
�=
S= 1 +
S•q=
S•q–S=
S•q–S=
+
+
+
+
+
+
+
+
-1-
-1
S(q-1) =
-1
S=
−1
=>
�
−
�=
�
=
+
−1
−
-
-
�
=
+
−
−
Lineare Gleichungen lösen I
Beispiel:
1)
10x – 2(5x + 7) = -2 • (2-x)
Auf beiden Seiten Klammern & Brüche auflösen:
10x – 10x – 14 = -4 + 2x
2)
Gleichartige Glieder zusammenfassen:
-14 = -4 + 2x
3)
Addiere/Subtrahiere so, dass alle Variablen auf der linken und
alle absoluten Werte auf der rechten Seite stehen und weiter
zusammengefasst werden können:
-2x = 10
Lineare Gleichungen lösen II
4)
Multipliziere/Dividiere so, dass die Variable isoliert wird:
x = -5
Jede auf eine Gleichung angewendete Operation muss auf beide Seiten
der Gleichung angewendet werden!
3 mögliche Fälle:
1. Unendlich viele Lösungen, falls sich 0 = 0 ergibt.
(d.h. Gleichung gilt für alle x � ℝ)
2. Nicht lösbar bei Widerspruch – rechte Seite unterscheidet sich von der linken.
3. Eindeutige Lösung mit x =a.
Zusammenfassung
Schritte zur Lösung einer linearen Gleichung:
1)
Auf beiden Seiten Klammern & Brüche auflösen.
2)
Gleichartige Glieder zusammenfassen.
3)
Addiere/Subtrahiere so, dass alle Variablen auf der linken und alle
absoluten Werte auf der rechten Seite stehen und weiter zusammengefasst werden können.
4)
Multipliziere/Dividiere so, dass die Variable isoliert wird.
Funktionsbegriff
Eine Funktion f(x) ist eine eindeutige Zuordnung der Elemente zweier Mengen. Dabei
wird jedem Element x aus einer Definitionsmenge D genau ein Element y aus der
Wertemenge W zugeordnet.
Mögliche Darstellungen von Funktionen:
1)
Funktionsgleichung f(x)
2)
Graph im Koordinatensystem
3)
Wertetabelle
4)
Pfeildiagramm
Darstellung von Funktionen
Besitzt der Definitionsbereich einer Funktion nur endlich viele Elemente,
kann die Funktion durch eine Wertetabelle festgelegt werden.
Beispiel: D = {1,2,3,4}
Weitere Darstellungen für endliche Definitionsbereiche:
Definitions- und Bildmenge
Die Definitionsmenge D enthält alle Zahlen, die für x eingesetzt werden
dürfen.
Überlegungen zur Definitionsmenge:
Die Bildmenge B beinhaltet alle Zahlen, die beim Einsetzen von Zahlen in x
herauskommen.
Lineare Funktionen I
Dies ist eine Zuordnung, bei der jedem x das
dazugehörige y zugeordnet wird.
Das heißt: Zu jedem beliebigen x-Wert lässt sich der y-Wert ermitteln und
man bekommt einen Punkt(x|y) des Graphen der Funktion.
Lineare Funktionen II
Lineare Funktionen sind eindeutig festgelegt durch:
1)
Gleichung:
y = ax + b
oder
2)
2 Punkte:
P(x 1|y 1) Q(x 2|y 2)
ax1+ b = y1
 2 Gleichungen mit 2 Unbekannten
=> damit liegen a & b fest
ax2+ b = y2
oder
3)
Steigung a und einen Punkt P(x 1|y 1):
ax1+ b = y1
 Gleichung nach b umstellen
Schnittpunkte mit den Achsen:
• Schnittpunkte mit der y-Achse: x = 0
• Schnittpunkte mit der x-Achse („Nullstellen“): y = 0
• Schnittpunkte zweier Geraden: Geraden gleichsetzen und nach x auflösen. Für Schnittpunkt:
x-Wert in eine Geradengleichung einsetzen und y-Wert berechnen
Reinquadratische Gleichungen (a≠0)
Die reinquadratische Gleichung geht durch äquivalente Umformungen
über in:
Beispiel: � - 81 = 0 ⇔ � = 81 ⇔ x1 = 9; x2 = -9
⇒ � - 81 ist also null, wenn x entweder 9 oder -9 ist.
⇒Die Lösungsmenge ist also L = −9; 9
Spezielle Quadratische Gleichungen (a≠0)
Die spezielle quadratische Gleichung geht durch Ausklammern von x über in:
x(ax + b) = 0
Ein Produkt ist null, wenn mindestens ein Faktor null ist!
⇒ x1 = 0; x2 = -
Beispiel: � + 3x = 0 ⇔ x(5x+3) = 0 ⇔ x1 = 0; x2 = -
Allgemein Quadratische Gleichungen
Die allgemein quadratische Gleichung wird durch quadratische Ergänzung gelöst:
Binomische Formel!
Die Mitternachtsformel
Hieraus ergibt sich die Mitternachtsformel/Abc-Formel, mit der
allgemein quadratische Gleichungen gelöst werden können:
Übersicht: Quadratische Gleichungen lösen
Lösung durch:
Die pq-Formel
Zur Lösung von
� + px + q = 0
(a=1)
kann auch (alternativ zur abc-Formel) die pq-Formel angewendet werden:
Diese Formel kann immer angewendet werden. Unter Umständen muss
zunächst durch a geteilt werden:
a� + bx + c = 0
Quadratische Funktionen I
Quadratische Funktionen II
Quadratische Funktionen III
Scheitelform mit Hilfe der quadratischen Ergänzung:
Umkehrfunktion
Eine Funktion ist umkehrbar, wenn jedem y-Wert nur ein
x-Wert zugeordnet ist. Die Umkehrfunktion wird mit f-1
bezeichnet.
Die Gleichung der Umkehrfunktion von f gewinnt man, indem man die
Gleichung y = f(x) nach x auflöst und die Bezeichnungen y und x vertauscht.
Die Graphen der Funktion y = f(x) und ihrer Umkehrfunktion
y = f-1(x) liegen spiegelbildlich zur Geraden y = x.
Stück-/ Abschnittsweise definierte Funktionen
Bisher waren die behandelten Funktionen (abgesehen von Definitionslücken)
auf ganz ℝ definiert.
Funktionen können auch nur für ein bestimmtes Intervall definiert sein
oder stück- bzw. abschnittsweise aus verschiedenen Teilfunktionen
zusammengesetzt sein:
f(x) =
x + 2 für x<-1
2 für -1 ≤ x < 3
3x – 7 für x ≥ 3
Übungsaufgaben
Zeichnen Sie folgende abschnittsweise definierte Funktion in
ein Koordinatensystem ein:
-2x - 1
für x<-1
f(x) =
1
für x ≥ -1
Übungsaufgaben
Zeichnen Sie folgende abschnittsweise definierte Funktion in
ein Koordinatensystem ein:
4 für x<-2
f(x) =
-2x für -2 ≤ x< 0
x für 0 ≤ x< 3
3
für x ≥ 3
Grenzwert
Der Grenzwert einer Funktion an einer bestimmten Stelle bezeichnet
denjenigen Wert, dem sich die Funktion in der Umgebung der betrachteten
Stelle annähert.
Interessante Stellen sind:
 Verhalten Richtung ∞
 Verhalten Richtung –∞
 Verhalten an Definitionslücken
 Wertetabelle spiegelt Kurvenverlauf wider.
 Betrachtung durch Einsetzen naheliegender Werte für x.
Betrag(-sfunktion)
Der absolute Betrag einer reellen Zahl x ist definiert durch:
Den absoluten Betrag einer reellen Zahl erhält man also durch Weglassen des
Vorzeichens. Auf der Zahlengerade bedeutet der Betrag den Abstand der
gegebenen Zahl von Null.
Verlauf der Betragsfunktion y = � auf ℝ:
Fragerunde
Vielen Dank für Eure Aufmerksamkeit
und viel Erfolg im Studium!!!
Herunterladen