Einführung in die Diskrete Mathematik

Werbung
Einführung in die Diskrete Mathematik
Sommersemester 2014
PD Dr. Nils Rosehr
Inhaltsverzeichnis
I
II
Einleitung
Kombinatorik
1 Grundlagen der Kombinatorik
5
5
6
1.1
Standardbezeichnungen . . . . . . . . . . . . . . . . . . . . . .
6
1.2
Endliche Mengen . . . . . . . . . . . . . . . . . . . . . . . . .
6
1.5
Potenzmenge . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7
1.6
Partitionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
1.8
Schubfachprinzip . . . . . . . . . . . . . . . . . . . . . . . . .
8
1.9
Anwendungen . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
1.10
Prinzip der doppelten Abzählung . . . . . . . . . . . . . . . .
10
1.11
Beispiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10
2 Binomialkoeffizienten
10
2.1
Permutationen und Fakultät . . . . . . . . . . . . . . . . . . .
10
2.3
Stirling-Formel . . . . . . . . . . . . . . . . . . . . . . . . . . .
11
2.6
Näherung von Binomialkoeffizienten . . . . . . . . . . . . . . .
13
2.8
Ungeordnete Summationen und Multimengen . . . . . . . . .
14
2.9
Wege im Gitter . . . . . . . . . . . . . . . . . . . . . . . . . .
15
2.10
Vandermonde-Identität . . . . . . . . . . . . . . . . . . . . . .
15
2.11
Polynommethode . . . . . . . . . . . . . . . . . . . . . . . . .
15
2
VI
Übungsaufgaben
Index
17
20
30.04.2014–19:57
Vorlesung Einführung in die Diskrete Mathematik — 08.04.2014
I
5
Einleitung
Die diskrete Mathematik ist keine Geheimwissenschaft, sondern vielmehr ist
diskret hier als Abgrenzung zu kontinuierlich zu verstehen. Dabei wird der
Begriff unterschiedlich allgemein gefasst. Häufig geht es um mathematische
Probleme oder Theorien die mit endlichen oder abzählbaren Strukturen zu
tun haben. Am besten wird dies vielleicht an einigen Beispielen deutlich.
Beispiel 1. Nehmen wir an, wir wollen eine Treppe mit 11 Stufen besteigen
und können mit einem Schritt entweder eine oder zwei Stufen nehmen. Für
die ersten drei Stufen haben wir drei Möglichkeiten: 3 = 1 + 1 + 1 = 1 +
2 = 2 + 1. Für die gesamte Treppe von 11 Stufen gibt es 144 Möglichkeiten.
Natürlich ist man in der diskreten Mathematik nicht an der Lösung dieses
speziellen Problems interessiert, sondern fragt sich: Gibt es eine Formel für
die Anzahl der Möglichkeiten in Abhängigkeit der Anzahl der Stufen? Kann
man auch ähnliche Probleme lösen, etwa, wenn man es schafft 3 Stufen (oder
alle) auf einmal zu nehmen? Gibt es ein allgemeines Verfahren, zu solchen
Lösungsformeln zu kommen?
Beispiel 2. Wir wollen ein Schachbrett aus 8 mal 8 Feldern mit 8 Farben
so einfärben, dass in keiner Horizontalen oder Vertikalen eine Farbe doppelt
auftritt. Dies ist auf vielerlei Weisen möglich und hängt auch gar nicht von
der Zahl 8 ab. Solche Einfärbungen werden lateinische Quadrate genannt. Nun
stellen wir die Frage, ob es zwei solche Einfärbungen gibt (sogenannte orthogonale lateinische Quadrate), so dass die von entsprechenden Feldern gebildeten
Farbpaare alle 8 · 8 = 64 Farbkombinationen durchlaufen. Eine einfache (bejahende) Antwort lässt sich mit der algebraischen Struktur des endlichen Körpers
mit 8 Elementen geben. Schon 1780 hat Euler die Frage gestellt, ob es auch
orthogonale lateinische Quadrate der Ordnung 6 gibt. Er konnte diese Frage
nicht beantworten und vermutete, dass dies für alle Ordnungen der Form 4k+2
nicht möglich sei. Heute weiß man, dass Euler nur für k = 1 Recht hatte.
Beispiel 3. Viele kennen seit den Kindertagen das Haus vom Nikolaus. Dabei
geht es darum in einem bestimmten Graphen einen Weg zu finden, der alle
oder
. Solch ein Weg heißt übrigens
Kanten genau einmal durchläuft:
Euler-Tour, nach Euler, der sich mit dem ähnlichen Königsberger Brückenproblem beschäftigt hat. Diese Touren haben durchaus eine praktische Relevanz,
denn z.B. für die Müllabfuhr stellt solch eine Tour einen günstigen Weg dar.
Hier ergeben sich viele Fragen: Ist eine solche Tour auch für andere Graphen
möglich? Wenn nicht, gibt es ein Kriterium? Kann man die Touren auch mit
gleichem Anfangs- und Endpunkt wählen?
30.04.2014–19:57
Vorlesung Einführung in die Diskrete Mathematik — 08.04.2014
II
1
6
Kombinatorik
Grundlagen der Kombinatorik
1.1 Standardbezeichnungen. Für die natürlichen Zahlen (ohne Null)
schreiben wir N = {1, 2, 3, . . . }, N0 = {0}∪N und {1, . . . , n} = {k ∈ N : k ≤ n}
für n ∈ N0 . Weiter benutzen wir Z ⊆ Q ⊆ R ⊆ C. Für die Potenzmenge einer Menge X (also die Menge aller Teilmengen von X) schreiben wir
P(X) oder 2X . Wir benutzen die Gaußklammern zum Auf- und Abrunden:
bxc := max{z ∈ Z : z ≤ x} und dxe := min{z ∈ Z : z ≥ x} für x ∈ R.
1.2 Endliche Mengen. Eine Menge A ist endlich, wenn es ein n ∈ N0 und
eine Abzählung, d.h. eine Bijektion f : {1, . . . , n} → A gibt. Die Zahl n ist
eindeutig bestimmt (siehe Übungsaufgabe 1.1) und heißt die Größe, Länge
oder Mächtigkeit von A; wir schreiben |A| für die Mächtigkeit von A und
nennen A eine n-Menge. Falls A nicht endlich ist, setzen wir |A| := ∞ (siehe
Bemerkung nach Satz 1.4) und benutzen ∞ ± x = ±x + ∞ = ∞ + ∞ = ∞
sowie x < ∞ für x ∈ R.
1.3 Lemma. Seien A und B Mengen.
(a) Es gilt |A| = 0 genau dann, wenn A = ∅.
(b) Es ist A ∪ B genau dann endlich, wenn A und B endlich sind.
(c) Es gilt |A ∪ B| + |A ∩ B| = |A| + |B|.
(d) Aus B ( A folgt |B| < |A|, falls A (oder B) endlich ist.
(e) Für eine Abbildung f : A → B gilt |f (A)| ≤ |A|.
Beweis. (a) Die „leere Abbildung“ ∅ → A ist genau dann surjektiv, wenn A
leer ist.
(∗) Seien nun zunächst A und B endlich und disjunkt. Wir zeigen |A ∪ B| =
|A| + |B| per Induktion über |A|: Den Induktionsanfang liefert (a). Für |A| > 0
können wir wieder nach (a) ein a ∈ A wählen. Es folgt |A \ {a}| = |A| − 1, denn
ist f : {1, . . . , |A|} → A ein Abzählung, so ist g : {1, . . . , |A| − 1} → A \ {a}
mit g(x) = f (x) für x 6= f −1 (a) und g(f −1 (a)) = f (|A|), falls f −1 (a) 6= |A|,
eine Abzählung [vertausche a und f (|A|)]. Es folgt |(A \ {a}) ∪ B| = |(A ∪ B) \
{a}| = |A ∪ B| − 1 ebenso, da A und B disjunkt sind, und Induktion liefert die
Behauptung.
(d) In obigem Induktionsbeweis haben wir |A\{a}| = |A|−1 gezeigt für a ∈ A;
daraus folgt die Behauptung per Induktion, wenn wir a ∈ A \ B wählen. [(∗)
lässt sich nicht anwenden, da wir (noch nicht) wissen, dass B und A\B endlich
sind.]
30.04.2014–19:57
Vorlesung Einführung in die Diskrete Mathematik — 10.04.2014
7
(b) Sind A und B endlich, so folgt aus (∗), dass A ∪ B endlich ist. Aus (d) folgt
die andere Implikation, weil A und B Teilmengen von A ∪ B sind.
(c) Wegen (b) müssen wir nur noch den endlichen Fall zeigen: |A ∪ B| =
|A \ (A ∩ B)| + |B| = |A| − |A ∩ B| + |B|.
(e) Für unendliches A ist nichts zu zeigen. Wähle sonst eine Teilmenge A0 ⊆ A,
so dass für jedes b ∈ f (A) die Faser f −1 (b) genau ein Element von A0 enthält
[A0 ist also ein Repräsentantensystem für die Fasern von f .] Da f |A0 injektiv
ist, folgt |f (A)| = |f (A0 )| = |A0 | ≤ |A| nach (d).
2
1.4 Satz. Für endliche Mengen A und B gilt |A| = |B| genau dann, wenn es
eine Bijektion A → B gibt.
Gilt dies, so ist eine Abbildung h : A → B genau dann bijektiv, wenn sie
injektiv oder surjektiv ist.
Beweis. Gilt n := |A| = |B|, so gibt es Bijektionen f : {1, . . . , n} → A und
g : {1, . . . , n} → B, und wir können als Bijektion g ◦f −1 wählen. Ist umgekehrt
eine Bijektion h : A → B gegeben, dann lässt sich diese mit einer Bijektion
f : {1, . . . , |A|} → A verketten zu einer Bijektion h ◦ f : {1, . . . , |A|} → B. Es
folgt |B| = |A|.
Ist h injektiv, so ist h : A → h(A) bijektiv und nach dem schon gezeigten folgt
|h(A)| = |A| = |B| und somit h(A) = B nach 1.3(d). Also ist h surjektiv.
Ist h nicht injektiv, so gibt es ein a ∈ A mit h(A \ {a}) = h(A) und es folgt
|h(A)| = |h(A \ {a})| ≤ |A \ {a}| < |A| = |B| nach 1.3. Also ist h nicht
surjektiv.
2
Die erste Aussage des Satzes ist falsch für unendliche Mengen [die zweite sowieso]. Das liegt daran, dass es verschiedene unendliche Mächtigkeiten gibt,
etwa |N| = ∞ = |R|, aber es gibt keine Bijektion N → R (Cantors zweites
Diagonalargument).
Die Forderung der Existenz einer Bijektion zwischen zwei Mengen macht aber
auch für unendliche Menge Sinn und wir nennen daher zwei Mengen gleichmächtig, wenn es eine Bijektion zwischen ihnen gibt wie im Satz.
Die Endlichkeit von Mengen lässt sich auch noch auf andere Art definieren:
Eine Menge ist genau dann unendlich, wenn es eine Injektion von ihr in eine
echte Teilmenge gibt. Für eine weitere Möglichkeit siehe Übungsaufgabe 1.4.
1.5 Satz (Potenzmenge). Für eine endliche Menge M gilt |2M | = 2|M | .
Beweis. Wir führen Beweis per Induktion nach |M |. Für |M | = 0 haben wir
M = ∅ und daher 2M = {∅}, also |2M | = 1. Sei nun |M | > 0. Wir können also
30.04.2014–19:57
Vorlesung Einführung in die Diskrete Mathematik — 10.04.2014
8
m ∈ M wählen und setzen
A := {X ⊆ M : m 6∈ X}
und
B := {X ⊆ M : m ∈ X}.
Dann gilt 2M = A ∪ B und A ∩ B = ∅. Es folgt |2M | = |A| + |B|. Ferner ist
A = 2M \{m} also |A| = 2|M |−1 per Induktion. Die Abbildung A → B, X 7→
X ∪ {m} ist eine Bijektion mit der Inversen Y 7→ Y \ {m}. Es folgt |A| = |B|
und daher |2M | = 2|A| = 2|M | .
2
1.6 Partitionen. Eine Partition einer Menge M ist eine Menge von paarweise disjunkten Teilmengen von M , deren Vereinigung M ist.
Für eine endliche Partition P einer Menge M gilt
X
|M | =
|X|.
X∈P
Häufige Anwendung:
|M | =
P
b∈B
|f −1 (b)| für eine Abbildung f : M → B.
Beweis. Für |P | = 0, 1 ist die Aussage trivial und für |P | = 2 ist die Aussage
ein Spezialfall von 1.3(c). Die Behauptung folgt damit per Induktion über
|P |.
2
1.7 Korollar. Für endliche Mengen A und B gilt |A × B| = |A| · |B| und
|An | = |A|n für n ∈ N0 (mit 00 = 1).
Beweis. Dies folgt aus 1.6, weil A × B die Partition P := {A × {b} : b ∈ B}
hat und |A × {b}| = |A| sowie |P | = |B| gilt. Die zweite Behauptung folgt dann
per Induktion über n.
2
1.8 Schubfachprinzip. Wenn n Objekte auf weniger als n Fächer verteilt
werden, so finden sich in einem Fach mindestens zwei Objekte. Oder: Wenn
n Objekte mit k < n Farben eingefärbt werden, so haben mindestens zwei
Objekte die gleiche Farbe.
Formal: Sind A und B endliche Mengen mit |B| < |A|, so ist jede Abbildung
f : A → B nicht injektiv, d.h. es existiert ein b ∈ B mit |f −1 (b)| ≥ 2.
Allgemeiner: Für f : A → B mit |B| < ∞ existiert ein b ∈ B mit
|f −1 (b)| ≥
Beweis. Mit 1.6 folgt |A| =
P
b∈B
|A|
.
|B|
|f −1 (b)| ≤ |B| maxb∈B |f −1 (b)|.
2
30.04.2014–19:57
Vorlesung Einführung in die Diskrete Mathematik — 15.04.2014
9
1.9 Anwendungen. Wir werden im Laufe der Vorlesung viele Anwendungen sehen; hier sind ein paar Beispiele dieser wichtigen Beweismethode:
(a) Unter 15 Personen, sind immer mindestens 2 im gleichen Monat geboren,
oder mindestens 3 am gleichen Wochentag. [Es existieren 70.000 Menschen mit
exakt gleichvielen Haaren auf dem Kopf: ca. 7 · 109 Menschen, ca. 105 Haare]
2
(b) Unter 5 Punkten
√ im Einheitsquadrat [0, 1] gibt es immer zwei mit Abstand höchstens 12 2:
Zwei der 5 Punkte liegen in einem der 4 Teilquadrate mit
√
Seitenlänge 1/2 wie im Bild und haben daher Abstand ≤ 12 2
(für Punkte auf den Trennlinien wählen wir willkürlich).
(c) Sind a1 , . . . , an+1 ∈ {1, . . . , 2n}, so gibt es Indices i 6= j, so dass ai ein
Teiler von aj ist:
Wir schreiben ai = 2ei ui mit ei ∈ N0 und ui ∈ N ungerade. Wegen 1 ≤ ui ≤ 2n
gibt es n Möglichkeiten für ui und das Schubfachprinzip liefert i 6= j mit
ui = uj und etwa ei ≤ ej . Es folgt ai = ei ui | ej ui = aj .
Für die n Zahlen n + 1, . . . , 2n ist die Folgerung falsch.
(d) Sei n ∈ N und a1 , . . . , an2 +1 eine Folge von n2 + 1 verschiedenen reellen
Zahlen. Dann gibt es eine monoton fallende oder monoton steigende Teilfolge
der Länge n + 1:
Wir definieren [Erdös und Szekeres folgend] zwei Abbildungen f, g : {1, . . . , n2 +
1} → N. Dabei sei f (i) (bzw. g(i)) die Länge der längsten steigenden (bzw.
fallenden) Teilfolge, die bei ai endet (bzw. beginnt). Wir führen einen Widerspruchsbeweis, und nehmen daher (f (i), g(i)) ∈ {1, . . . , n}2 für alle i an. Das
Schubfachprinzip liefert uns i < j mit (f (i), g(i)) = (f (j), g(j)). Damit können
wir eine der beiden Folgen verlängern, nämlich, falls ai < aj , am Ende um aj ,
also f (j) > f (i), oder, falls ai > aj , am Anfang um ai , also g(i) > g(j). Beides
ist ein Widerspruch zu (f (i), g(i)) = (f (j), g(j)).
Die y-Koordinaten der 17 Punkte im Bild, sortiert von links
nach rechts, enthalten monotone Folgen der Länge 5 (wie
viele?), aber ohne den zentralen Ausnahmepunkt ist dies
falsch.
(e) Approximationssatz von Dirichlet: Für α ∈ R und n ∈ N existieren
k, l ∈ Z mit 0 < k ≤ n und |kα − l| < 1/n.
[(αZ + Z)/Z liegt dicht in R/Z]
[Das Schubfachprinzip wird auch oft als Dirichlet-Prinzip bezeichnet.] Aus
dem Approximationssatz folgt, dass es für irrationale α unendlich viele Brüche
l/k gibt mit 0 < |α − l/k| < 1/k 2 ; für rationale α ist dies falsch.
Beweis. Wir betrachten die n + 1 „Rundungsreste“ ai := iα − biαc ∈ [0, 1[
für i = 0, . . . , n. Nach dem Schubfachprinzip 1.8 liegen also in einem der n
halboffenen Intervalle [r/n, (r + 1)/n[ für r = 0, . . . , n − 1 zwei Reste ai und
30.04.2014–19:57
Vorlesung Einführung in die Diskrete Mathematik — 15.04.2014
10
aj mit i < j. Es folgt 1/n > |aj − ai | = |(j − i)α − (bjαc − biαc)| = |kα − l|
mit k := j − i und l := bjαc − biαc.
2
1.10 Prinzip der doppelten Abzählung. Sei M eine endliche Menge,
und seien P und Q Partitionen von M . Dann liefert 1.6 folgenden Zusammenhang:
X
X
|X| = |M | =
|Y |.
X∈P
Y ∈Q
Häufig besteht M aus Paaren, also M ⊆ A × B. Dann hat man
X
X
|M ∩ ({a} × B)| = |M | =
|M ∩ (A × {b})|.
a∈A
b∈B
1.11 Beispiel. Bei einem Treffen ist die Anzahl der Personen, die einer ungeraden Anzahl von Leuten die Hände schütteln, gerade:
Für die Menge A der Personen betrachten wir die Menge M der Paare (a, b) ∈
A2 von Personen die Hände miteinander schütteln. Wir zählen M auf zwei
Weisen. Einerseits gilt für (a, b) ∈ M auch (b, a) ∈ M und a 6= b, also ist |M | =
2h gerade,
P wobei h die Anzahl der „Händeschüttelungen“ ist. Andererseits folgt
|M | = a∈A na , wobei na := |M ∩ ({a} × A)| die Anzahl der Leute ist, die mit
a die Hände schütteln. Also muss die Anzahl der ungeraden na gerade sein.
2
Binomialkoeffizienten
2.1 Permutationen und Fakultät. Für eine Menge M bezeichnet Sym M
die Menge aller Bijektionen von M nach M , die sogenannte symmetrische
Gruppe auf M . Ihre Elemente werden Permutationen genannt. Für uns ist
die endliche symmetrische Gruppe Sn := Sym{1, . . . , n} auf n ∈ N0 Ziffern
interessant. Ihre Mächtigkeit |Sn | wird als Fakultät von n, in Zeichen n!,
bezeichnet. Man überlegt sich leicht, dass die Rekursionsgleichung n! = n ·
(n − 1)! gilt für n ∈ N und zeigt per Induktion n! = n · (n − 1) · (n − 2) · · · 2 · 1 =
Qn−1
i=0 (n − i); beachte 0! = 1. Für ein Element x eines kommutativen Rings
Qk−1
Qk−1
und k ∈ N definieren wir xk := i=0 (x − i) und xk := i=0 (x + i) sowie
x0 := x0 := 1 (steigende und fallende Faktorielle). Die Produkte xk und
xk bestehen also aus k um 1 absteigende bzw. aufsteigende Faktoren beginnend
mit x. Mit dieser Notation gilt n! = nn und nk = n!/(n − k)! .
Erstaunlicherweise lässt sich die Fakultätsfunktion auf R≥0
R ∞fortsetzen [sogar
noch weiter und holomorph] durch die Definition F (x) := 0 tx e−t dt. Es gilt
F (0) = F (1) = 1 und F (x) = xF (x − 1) (partielle Integration). Durch Γ(x) :=
F (x − 1) wird die Gammafunktion definiert.
30.04.2014–19:57
Vorlesung Einführung in die Diskrete Mathematik — 24.04.2014
11
√
Das Wachstumsverhalten von n! entspricht n( ne )n mit annähernd konstantem
relativen Fehler. Genauer hat man die folgende Abschätzung, die wir ohne
Beweis (mit Gammafunktion) angeben.
√
1
2.2 Satz. Für n ∈ N und an := 2πn( ne )n gilt an ≤ n! ≤ an e 12n .
Die schwächere Abschätzung e( ne )n ≤ n! ≤ en( ne )n lässt sich leicht per Induktion unter Benutzung von 1 + x ≤ ex für x ∈ R zeigen.
2.3 Korollar (Stirling-Formel). Es gilt lim √
n→∞
n!
= 1.
2πn( ne )n
2.4 Definition. Für eine Menge M und k ∈ Z bezeichnen wir mit
M
:= {X ⊆ M : |X| = k}
k
die Menge aller k-Teilmengen von M . Ist |M | = n ∈ N0 , so definieren wir den
Binomialkoeffizient zu n und k durch
M n
.
:= k k
Der Binomialkoeffizient nk hängt nicht von M , sondern nur von n = |M |
ab. Er gibt also
die Anzahl der k-Teilmengen jeder n-Menge an. Daher gilt
n
n
=
1
=
für
n ∈ N0 und nk = 0 für k < 0 und k > n.
0
n
Wir notieren grundlegende Eigenschaften von Binomialkoeffizienten:
2.5 Lemma. Für k, l, n ∈ N0 gilt
n+1
n
n
(a)
k+1 = k + k+1 ,
n
n
(b)
k = n−k ,
Pn
n
n
(c)
k=0 k = 2 ,
Pn
(d)
(x+y)n = k=0 nk xk y n−k für Elemente x, y eines kommutativen Rings
(binomischer Lehrsatz),
n k
n n−l
(e)
k
l = l
k−l für l ≤ n,
k
n(n−1)···(n−k+1)
n
n!
(f)
= nk! = k!(n−k)!
für k ≤ n.
k =
k(k−1)···1
M
Beweis. (a) Sei M eine (n + 1)-Menge und m ∈ M . Dann ist k+1
eine
M \{m}
M
disjunkte Vereinigung von A :=
und B := {X ∈ k+1 : m ∈ X}.
k+1
Weil B → M \{m}
,
X
→
7
X
\
{m}
eine
Bijektion
ist, folgt
k
M n+1
n
n
= |A| + |B| =
= +
.
k+1
k+1 k+1
k
30.04.2014–19:57
Vorlesung Einführung in die Diskrete Mathematik — 24.04.2014
12
(b) Sei nun |M | = n. Die Komplementbildung X 7→ M \ X ist eine Bijektion
M
von M
k auf n−k .
(c) folgt aus 1.5 und 1.6, denn M
k : k ∈ {0, . . . , n} ist eine Partition der
Potenzmenge 2M .
(d) folgt per Induktion aus (a) [oder direkt über die Definition von Binomialkoeffizienten durch Ausmultiplizieren des n-fachen Produktes].
(e) Wir zählen X := {(A, B) ∈ Ml × M
: A ⊆ B} auf zwei Weisen gek
n n−l
n k
mäß 1.10: l k−l = |X| = k l (einerseits wird zuerst A gewählt und dann
durch eine (k − l)-Teilmenge von M \ A zu B ergänzt, und andererseits wird
zuerst B gewählt und darin eine l-Teilmenge gewählt).
n n−1
n
(f) Für l = 1 gilt nach (e) die Gleichung nk k = n n−1
k−1 , also k = k k−1 für
k ∈ N; die Gleichung folgt hieraus per Induktion.
2
Die Rekursionsformel 2.5(a) ist das Bildungsgesetz für das Pascal-Dreieck;
dabei ist jeder Zahl die Summe der beiden Zahlen links und rechts darüber:
1
1
1
1
1
1
3
4
5
1
2
1
3
6
1
4
1
10
1
10 5
1
6
15 20 15
6
1
1
7
21 35 35 21
7
1
1
8
28 56 70 56 28
8
1
1
9
36 84 126 126 84 36
9
1
1
10 45 120 210 252 210 120 45 10
1
..
..
.
.
Lemma 2.5(b) drückt die Spiegel-Symmetrie des Dreiecks aus. Mit 2.5(f) kann
man leicht zeigen, dass die Koeffizienten bis zur Mitte ansteigen (und dann
fallen).
Die Summe der Zahlen in einer Diagonalen (siehe fett gedruckte Zahlen im
Pk
Pk
=
Bild) ist wieder ein Binomialkoeffizient, genauer gilt l=0 n+l
= l=0 n+l
n
l
n+k+1
;
dies
zeigt
man
leicht
per
Induktion.
k
Vermutung von Singmaster: Jede Zahl ab 2 tritt im Pascal-Dreieck höchstens
10 Mal auf.
Singmaster hat 1975 bewiesen, dass unendlich viele Zahlen mindestens 6 Mal
30.04.2014–19:57
Vorlesung Einführung in die Diskrete Mathematik — 24.04.2014
13
auftreten. Die Zahl
3003 =
3003
78
15
14
=
=
=
1
2
5
6
tritt 8 Mal auf; häufigeres Auftreten ist nicht bekannt.
2.6
Näherung von Binomialkoeffizienten. Für m ∈ N gilt
22m
2m
22m
√ <
<√ .
m
2 m
2m
√
√
2m
1
Beweis. Wir betrachten P := 22m
2 zeigen.
m und müssen 1 < 2 mP <
Es gilt
(2m)!
1 · 3 · 5 · · · · · (2m − 1)
P = m
,
=
(2 m!)2
2 · 4 · 6 · · · · · 2m
und daher
2(2m)P 2 =
32
52
(2m − 1)2
·
···
>1
2·4 4·6
(2m − 2)(2m)
|
{z
}
(2m−1)2
= (2m−1)2 −1 >1
sowie
(2m)P 2 < (2m + 1)P 2 =
1·3 3·5
(2m − 1)(2m + 1)
· 2 ···
<1
22
4
(2m)2
{z
}
|
=
(2m)2 −1
<1
(2m)2
2
Die Stirling-Formel liefert etwas genauer
√
2m
m
1
lim
· 2m = √ ,
m→∞
2
m
π
√
√
was zu 2 < π < 2 passt.
Außerdem lässt sich mit Hilfe der Stirling-Formel zeigen, dass
2m
m−t
/
2m
m
2
durch e−t /m approximiert wird, d.h. die normierten Binomialkoeffizienten verhalten sich wie die Gaußsche Glockenkurve.
2.7 Lemma (Erdös-Szekeres 1978). Je zwei Zahlen 6= 1 in einer Zeile des
Pascal-Dreiecks haben einen gemeinsamen Teiler (> 1).
Beweis. Für 0 < l < k < n gilt nk
ist nl ein Teiler von nk kl . Wegen
gemeinsamen Teiler.
k
n n−l
und daher
l = l
k−l nach 2.5(e),
k
n
n
n
l < l haben also l und k einen
2
30.04.2014–19:57
Vorlesung Einführung in die Diskrete Mathematik — 29.04.2014
14
2.8 Ungeordnete Summationen und Multimengen. Auf wie viele Arten kann man 24 gleiche Stücke Schokolade an 5 Kinder verteilen? Allgemeiner
ist dies die Frage nach der Mächtigkeit von
Xn,k := {(s1 , s2 , . . . , sk ) ∈ Nk0 : s1 + s2 + · · · + sk = n}
für k, n ∈ N0 . Wir notieren solche Summen durch Zeichenketten gebildet aus
den Symbolen und (für Schokolade und Trenner). Die Summe 1 + 2 + 3 = 6
und die Summe 0 + 2 + 1 + 0 + 4 = 7 durch
wird etwa durch
dargestellt. Die Elemente aus Xn,k entsprechen eindeutig den Zeichenfolgen der Länge n+k−1 bestehend aus n Einheiten und k−1 Trennsym
bolen . Das bedeutet aber, sie entsprechen den Teilmengen in {1,...,n+k−1}
;
k−1
dabei gibt eine Teilmenge an, an welchen
Stellen
in
der
Zeichenkette
das
Sym
bol steht. Also gilt |Xn,k | = n+k−1
k−1 . Für die Ausgangsfrage gibt es also
24+4
= 28·27·26·25
= 7 · 9 · 13 · 25 = 20475 Möglichkeiten.
4
4·3·2·1
Wir geben noch eine andere Interpretation von Xn,k . Sei A eine Menge. Dann
heißt eine Abbildung M : A → N0 Multimenge über P
A, die Werte M (a)
heißen Häufigkeiten oder Gewichte von a, und |M | := a∈A M (a) wird als
Gesamtgewicht oder Mächtigkeit von M bezeichnet. Dann gibt |Xn,k | =
n+k−1
= n+k−1
die Anzahl der Multimengen über einer k-Menge mit Gek−1
n
samtgewicht n an.
[In unserem Beispiel haben wir also eine Multimenge von Kindern, und die
Häufigkeit jedes Kindes gibt an, wie viel Stücke Schokolade es erhält.]
Jetzt wollen wir etwas gerechter sein und jedem Kind mindestens ein Stück
Schokolade zukommen lassen, wir suchen also |{(s1 , s2 , . . . , sk ) ∈ Nk : s1 + s2 +
· · ·+sk = n}|. Dies führt zu Zeichenketten, die nicht enthalten und bei denen
nicht am Anfang oder Ende steht, d.h. hinter jedem der ersten n − 1 Symbole
kann jeweils höchstens einer der k − 1 Trenner stehen; dies bedeutet das
Doppelzeichen muss (k−1)-mal auf n−1
verteilt werden. Als Anzahl
Stellen
23
23·22·21·20
ergibt sich n−1
und
für
das
Beispiel
=
= 23 · 11 · 7 · 5 = 8855.
k−1
4
4·3·2·1
30.04.2014–19:57
Vorlesung Einführung in die Diskrete Mathematik — 8.05.2012
15
2.9 Wege im Gitter. Viele Formeln für Binomialkoeffizienten lassen sich
auch über Wege in Gittern beweisen. Ein kürzester Weg in einem Gitter der
Größe m × n von (0, 0) nach (m, n) besteht aus m + n Schritten, nämlich m
Schritten nach rechts und n Schritten nach oben.
(m, n)
(0, 0)
Jeder Weg ist eindeutig festgelegt durch die Schritte
nach oben (oder durch
m+n
die Schritte nach rechts). Daher gilt m+n
=
, siehe 2.5(b). Jeder dieser
m
n
Wege läuft
entweder
durch
den
Punkt
(m,
n
−
1)
oder
durch (m − 1, n). Daher
n+m−1
n+m−1
gilt n+m
=
+
für
die
Anzahl
solcher
Wege, siehe 2.5(a).
n
n−1
n
2.10 Satz (Vandermonde-Identität). Für n, m, k ∈ N0 gilt
X
k n+m
n
m
=
k
l
k−l
und insbesondere
l=0
2n
n
=
n 2
X
n
l=0
l
.
1. Beweis. Seien N und M disjunkte
Mengen
mit |N | = n und |M | = m.
M
Die Mengen Sl := {A ∪ B : A ∈ Nl , B ∈ k−l
} für l = 0, . . . , k bilden eine
Pk
m
Pk
n+m
n
Partition von N ∪M
.
Also
folgt
=
|S
l| =
l=0
l=0 l k−l nach 1.6
k
k
und 1.7.
2
2. Beweis. Nach 2.9 ist n+m
die Anzahl der kürzesten Wege im Gitter von
k
(0, 0) nach (n + m − k, k). Jeder der Wege verläuft durch genau einen der
Punkte (n − l, l) mit 0 ≤ l ≤ k wie im Bild [auch für l > n].
(n − k, k)
(n + m − k, k)
(0, 0)
(n, 0)
Es gibt genau nl kürzeste Wege von (0, 0) nach (n − l, l), und von (n − l, l)
m
nach (n + m − k, k) genau (n+m−k)−(n−l)+k−l
= k−l
.
2
k−l
2.11 Polynommethode. Häufig lassen sich für natürliche Zahlen definierte
Funktionen auf allgemeinere Zahlbereiche ausdehnen. Für ein Element z eines
kommutativen Ringes, der Q enthält (also etwa Q, R, C oder C[x]), definieren
wir in Verallgemeinerung von 2.5(f)
z(z − 1) · · · (z − k + 1)
z
zk
:=
=
k
k!
k!
30.04.2014–19:57
Vorlesung Einführung in die Diskrete Mathematik — 8.05.2012
16
für k ∈ N0 . Insbesondere ist xk z.B. ein Polynom in Q[x]. Für alle k ∈ N0 gilt
die Identität
z+1
z
z
=
+
k+1
k
k+1
x
x
z.B. für alle komplexen Zahlen z, denn f := x+1
k+1 − k − k+1 ist ein Polynom
vom Grad höchstens k + 1 in Q[x] mit den unendlich vielen Nullstellen n ∈ N
wegen 2.5(a); und daher folgt f = 0, weil ein solches Polynom sonst höchstens
k +1 Nullstellen hätte. Entsprechend gilt z.B. auch die Vandermonde-Identität
für komplexe Zahlen. Direkt aus der Definition folgt
−z
k z+k−1
= (−1)
.
k
k
Jedes Polynom xk ∈ Q[x] hat an jeder Stelle x = n ∈ Z einen ganzzahligen
Wert (Definition 2.4 und Formel für −n
k ). Hier ist eine Umkehrung:
2.12 Satz (Pólya). Erfüllt ein Polynom f ∈ Q[x] die Bedingung
f (N0 ) ⊆ Z,
so ist f eine ganzzahlige Linearkombination von Polynomen xk mit k ∈ N0 .
Beweis.
Die Polynome xk bilden eine Basis des Q-Vektorraums Q[x]
wegen
Pm
grad xk = k. Daher existieren ak ∈ Q und m ∈ N mit f = k=0 ak xk . Wegen
0
k = 0 für k ∈ N gilt a0 = f (0) ∈ Z. Wir führen Induktion über n und nehmen
an a0 , a1 , . . . , an ∈ Z. Dann folgt
m
X
n+1
n+1
n+1
ak
+ an+1
+
,
ak
Z 3 f (n + 1) =
k
k
n+1
k=0
k=n+2
{z
}
|
{z
}
|
{z
}
|
=1
=0
n
X
∈Z
also an+1 ∈ Z.
2
30.04.2014–19:57
Vorlesung Einführung in die Diskrete Mathematik — 8.05.2012
VI
17
Übungsaufgaben
1.1 Aufgabe. Beweisen Sie die folgende Aussage: Für n, m ∈ N0 existiert
genau dann eine Bijektion f : {1, . . . , n} → {1, . . . , m}, wenn n = m gilt.
1.2 Aufgabe. Die folgende Figur ist aus zwei Quadraten und vier gleichseiten
Dreiecken mit gleicher Seitenlänge zusammengesetzt. Finden Sie eine Zerlegung in 7 kongruente Teile (das sind bis auf Verschiebungen, Drehungen oder
Spiegelungen gleiche Teile).
1.3 Aufgabe. Zwei Spieler spielen folgendes Spiel. Als Vorbereitung werden
sechs Punkte auf ein Blatt Papier gezeichnet, so dass keine drei auf einer Geraden liegen. Jeder Spieler hat eine Farbe, und die Spieler zeichnen abwechselnd
eine Strecke mit ihrer Farbe zwischen zwei noch nicht verbundene Punkte. Verloren hat, wer zuerst ein Dreieck komplett in seiner Farbe fertig stellen muss.
Zeigen Sie, dass ein Unentschieden nicht möglich ist.
1.4 Aufgabe. Zeigen Sie, dass eine Menge M genau dann endlich ist, wenn
es eine Abbildung f : M → M gibt, so dass für jede Teilmenge X ⊆ M die
Inklusion f (X) ⊆ X nur für die offensichtlichen Fälle X = ∅ oder X = M gilt.
2.1 Aufgabe. Zeigen Sie, dass eine endliche nichtleere Menge genauso viele
Teilmengen gerader wie ungerader Länge hat.
2.2 Aufgabe. Endlich viele Personen begrüßen sich mit einem Handschlag.
Zeigen Sie, dass es zu jedem Zeitpunkt zwei Personen gibt, die der gleichen
Anzahl von Leuten die Hände geschüttelt haben.
2.3 Aufgabe. Sei n ∈ N, und seien a1 , a2 , . . . , an ∈ Z. ZeigenP
Sie, dass es eine
nichtleere Teilmenge I ⊆ {1, . . . , n} gibt, so dass die Summe i∈I ai durch n
teilbar ist.
2.4 Aufgabe. In der Ebene sei ein regelmäßiges n-Eck gegeben, n ≥ 3. Dabei
seien R viele Ecken rot und B viele Ecken blau, so dass R + B = n gilt. Eine
Kante sei rot, wenn sie zwischen zwei roten Punkten liegt und blau, wenn
sie zwischen zwei blauen Punkten liegt. Kanten, die zwischen zwei Punkten
verschiedener Farbe liegen, seien farblos. Sei r die Anzahl der roten und b die
Anzahl der blauen Kanten. Zeigen Sie, dass R − B = r − b gilt.
30.04.2014–19:57
Vorlesung Einführung in die Diskrete Mathematik — 8.05.2012
18
3.1 Aufgabe. Das Letzte Lexikon zählt in alphabetischer (lexikographischer)
Reihenfolge alle Wörter auf, welche jeden der 26 Grossbuchstaben genau einmal
enthalten; es beginnt demnach mit dem Wort ABCDEFGHIJKLMNOPQRSTUVWXYZ
und es endet mit dem Wort ZYXWVUTSRQPONMLKJIHGFEDCBA.
(a) Wie lautet das letzte Wort der ersten Hälfte des Letzten Lexikons?
(b) Welches Wort folgt unmittelbar auf den Eintrag
JMZORTXLBPSYWVINGDUEQKHFCA?
3.2 Aufgabe. Erklären Sie wie folgender Trick mathematisch funktioniert:
Die Zauberin benutzt ein französisches Blatt mit 52 Karten (also mit 13 Kartenwerten in jeweils 4 Farben) und fordert eine beliebige Person im Publikum
auf, aus dem Blatt 5 Karten zufällig zu entnehmen und sie verdeckt ihrem
Assistenten zu geben. Dieser wählt nach Inspektion eine Karte aus und gibt
sie verdeckt ins Publikum zurück. Die übrigen 4 Karten deckt er nacheinander
auf und die Zauberin nennt daraufhin Farbe und Kartenwert der Karte, die ins
Publikum zurück ging. Dabei tauschen die Zauberin und ihr Assistent keine
weiteren Informationen aus.
Tipp: Es ist hilfreich, an das Schubfachprinzip und Permutationen von drei
Elementen zu denken.
3.3 Aufgabe. Zeigen Sie, dass das Produkt von n aufeinander folgenden ganzen Zahlen durch n! teilbar ist.
3.4 Aufgabe. Bestimmen Sie für k, n ∈ N die Anzahl alle k-Teilmengen von
{1, . . . , n}, deren verschiedene Elemente mindestens den Abstand 3 haben.
4.1 Aufgabe. Zeigen Sie, dass eine natürliche Zahl n ∈ N genau dann eine
Primzahl ist, wenn alle Binomialkoeffizienten nk mit 1 ≤ k ≤ n − 1 durch n
teilbar sind.
4.2 Aufgabe. Sei M eine endliche n-Menge. Finden Sie einen möglichst einfachen Ausdruck (ohne Summenzeichen) für
(a) die Anzahl der Paare (A, B) ∈ 2M × 2M mit A ∩ B = ∅;
(b) die Anzahl der Teilmengen A von M mit |A| ≡ 0 mod 4.
(Tipp: Setzen Sie in der binomischen Formel (x + 1)n = . . . für x geeignete
komplexe Zahlen ein.)
4.3 Aufgabe. Für n ∈ N0 definieren wir die n-te Catalan-Zahl durch
1
2n
2n
2n
Cn :=
=
−
.
n+1 n
n
n+1
(a) Zeigen Sie, dass Cn die Anzahl der Zeichenketten der Länge 2n bestehend
aus den Zeichen „(“ und „)“ mit korrekter Klammerung ist; diese Zeichenketten haben also n öffnende und n schließende Klammern, und jedes
Anfangsstück enthält höchstens so viele schließende wie öffnende Klammern.
30.04.2014–19:57
Vorlesung Einführung in die Diskrete Mathematik — 8.05.2012
(b) Leiten Sie die Rekursionsgleichung Cn+1 =
n
P
19
Ck Cn−k für n ∈ N0 her.
k=0
4.4 Aufgabe. Sieben Geometer und fünf Algebraiker sollen auf einer Konferenz in einer Reihe mit zwölf Plätzen sitzen. Wie viele Möglichkeiten gibt
es, die Sitzplätze so zu verteilen, dass kein Algebraiker neben einem anderen
Algebraiker sitzt? Wie viele Möglichkeiten der Sitzverteilung gibt es, so dass
kein Geometer neben einem anderen Geometer sitzt?
30.04.2014–19:57
20
Index
Abzählung, 6
Approximationssatz von Dirichlet, 9
Binomialkoeffizient, 11
binomischer Lehrsatz, 11
Dirichlet-Prinzip, 9
doppelte Abzählung, 10
endlich, 6
Faktorielle
fallende, 10
steigende, 10
Fakultät, 10
fallende Faktorielle, 10
Gammafunktion, 10
Gesamtgewicht, 14
Gewicht, 14
gleichmächtig, 7
Größe, 6
Häufigkeit, 14
Länge, 6
Lehrsatz
binomischer, 11
Mächtigkeit, 6, 14
n-Menge, 6
Multimenge, 14
Partition, 8
Pascal-Dreieck, 12
Permutationen, 10
Polynommethode, 15
Potenzmenge, 6
Prinzip der doppelten Abzählung, 10
Schubfachprinzip, 8
Sn , 10
steigende Faktorielle, 10
Stirlings Formel, 11
Sym M , 10
Symmetrische Gruppe, 10
Vandermonde-Identität, 16
30.04.2014–19:57
Herunterladen