GRUNDWISSEN MATHEMATIK 10. JAHRGANGSSTUFE (G8)
I. KREIS UND KUGEL
KREISSEKTOR UND BOGENMAß
b
Für einen Kreissektor mit Radius r und Mittelpunktswinkel gilt:
Bogenlänge:
b 360
2 r
Flächeninhalt:
Der Quotient
b
r
A
360
r 2 12 br
r
r
hängt nur von ab und heißt Bogenmaß des Winkels .
Bezeichnet man mit den Winkel im Gradmaß und mit x denselben Winkel
im Bogenmaß, so gelten folgende Umrechnungen:
x 360
2 ; 2x 360
Beispiele:
1.) Bestimme Radius und Flächeninhalt eines Kreissektors mit Bogenlänge 8cm und
Mittelpunktswinkel 120°.
b 360 8cm 360 12
b
2 r r
cm 3,82cm
360
120 2
2
2
120 12
48 2
r 2
cm
cm 15,28cm 2
A
360
360
2.) Einige Winkel im Gradmaß () und im Bogenmaß (x):
0°
30°
45°
60°
90°
180°
1
1
1
1
0
x
6
4
3
2
270°
3
2
360°
2
VOLUMEN UND OBERFLÄCHENINHALT DER KUGEL
Für eine Kugel mit Radius r gilt:
V 43 r 3
Volumen:
Oberflächeninhalt:
r
S 4r
2
Beispiel:
Gib das Volumen und den Oberflächeninhalt des abgebildeten Körpers in Abhängigkeit von r an.
Der Körper setzt sich aus einem Zylinder mit Radius r und Höhe r und einer
Halbkugel vom Radius r zusammen:
V VZylinder VHalbkugel r 2 r 12 43 r 3 53 r 3
Die Oberfläche besteht aus einem Kreis (Grundfläche), der Mantelfläche des
Zylinders und der Oberfläche der Halbkugel:
S AKreis M Zylinder S Halbkugel r 2 2r r 12 4r 2 5r 2
r
r
2r
II. TRIGONOMETRIE
SINUS UND KOSINUS AM EINHEITSKREIS
Sei P(x|y) ein Punkt auf dem Einheitskreis und der Winkel mit der positiven x-Achse als erstem
und der Halbgeraden [OP als zweitem Schenkel. Man definiert:
sin : y ; cos : x
y
1
y
P(x|y)
0° < < 90°:
sin > 0
cos > 0
cos
–1
P
90° < < 180°:
sin
sin > 0
cos < 0
1 x
sin
cos
x
–1
y
y
180° < < 270°:
sin < 0
cos < 0
270° < < 360°:
cos
sin < 0
cos > 0
x
sin
cos
x
sin
P
P
TRIGONOMETRISCHE FUNKTIONEN
Um die Sinus- und Kosinusfunktion auch für Winkel kleiner als 0 (Drehung im Uhrzeigersinn) und
größer als 2 (mehr als eine vollständige Drehung im Gegenuhrzeigersinn) definieren zu können, legt
man fest:
sin( x k 2) : sin x und cos( x k 2) : cos x für k ZZ
sin( k 360) : sin und cos( k 360) : cos für k ZZ
Die folgende Abbildung zeigt die Graphen der Funktionen sin: x sin x und cos: x cos x.
y
1
Gsin
O
Gcos
-1
x
Den Graphen oder den Abbildungen am Einheitskreis entnimmt man folgende Zusammenhänge:
sin x sin( x) ; sin( x) sin x
cos x cos(2 x) ; cos( x) cos x
Beispiel:
Bestimme alle x [–2 ], für die gilt: sin x
1
2
Am Graphen lässt sich erkennen, dass es vier Lösungen gibt:
y
1
O
–
x4
-1
x3
x1
x
x2
Der Taschenrechner liefert mit 30° die kleinste positive Lösung, also: x1 16
Für die weiteren Lösungen ergibt sich (siehe Graph):
x2 16 56
x3 16 76
x4 2 16 116
DIE ALLGEMEINE SINUSFUNKTION
Die Funktion x a sin(b x c) a sin b ( x bc ) mit a 0, b 0 und x IR heißt allgemeine
Sinusfunktion. |a| heißt Amplitude,
2
b
heißt Periode.
Ihr Graph entsteht aus dem Graphen der Sinusfunktion x sin x durch folgende Schritte:
1. Strecken in x-Richtung mit dem Faktor 1b .
2. Verschieben in x-Richtung um | bc | nach links (c > 0) bzw. nach rechts (c < 0).
3. Strecken bzw. Stauchen in y-Richtung mit dem Faktor |a|.
4. Falls a < 0: Spiegeln an der x-Achse.
Beispiel:
Zeichne den Graphen der Funktion x 2 sin( 32 x 12 ) im Bereich [–; 2].
y
1
1. Schritt:
Strecken in x-Richtung mit
dem Faktor 23
O
x
-1
y
1
2. Schritt:
Verschieben in x-Richtung um
| bc | 3 nach rechts (c < 0)
O
x
-1
y
2
3. Schritt:
Strecken in y-Richtung mit
dem Faktor 2
1
O
x
-1
-2
III. EXPONENTIALFUNKTION UND LOGARITHMUS
DIE EXPONENTIALFUNKTION
Die Funktion x b a x mit b 0, a > 0 und a 1 heißt Exponentialfunktion.
Ist b > 0, so steigt ihr Graph für a > 1 und fällt für 0 < a < 1.
Es gilt stets:
1. Der Graph schneidet die y-Achse im Punkt (0|b): f(0) = b
2. Erhöht man x um 1, so wird der Funktionswert a mal so groß: f(x+1) = af(x)
x 2
1
2
x
12
2
y
4
y
4
2
-3
-2
2
1
-1
O
x
3
3
2
x 12 12
12
2
2
1
1
2
3 x
-3
Beispiel 1:
Auf der Erdoberfläche beträgt der Luftdruck circa 1000hPa
(Hektopascal). Pro Kilometer Höhenzunahme verringert
sich der Luftdruck um etwa 12%.
Gib eine Funktion der Form x b a x an, die die Abnahme
des Luftdrucks mit der Höhe beschreibt. Dabei sei x die
Höhe in km und f(x) der Luftdruck in hPa.
Offensichtlich ist b = 1000, da auf der Erdoberfläche (x = 0)
der Druck 1000hPa herrscht.
Erhöht man x um 1, so fällt der Luftdruck auf 88% seines
vorigen Wertes. Also ist a = 0,88.
Die gesuchte Funktion lautet: x 1000 0,88 x
-2
-1
O
1
2
3 x
y
1000
800
600
400
200
O
2
4
6
8
10 x
Beispiel 2:
Bestimme a und b so, dass der Graph der Funktion x b a x durch die Punkte (2|12) und (5|40,5)
verläuft.
Gleichungssystem:
I) 12 b a 2
b 12
in (II)
a2
II) 40,5 b a 5
a5
II’) 40,5 12
a2
40,5 12 a 3
b 12
112
5, 3
a2
,52
Die Funktion lautet x 5, 3 1,5 x .
a 3 3,375 a 1,5
DER LOGARITHMUS
Die Lösung der Gleichung a x b mit b > 0, a > 0 und a 1 heißt Logarithmus von b zur Basis a.
Schreibweise: x log a b
log a b ist also diejenige Zahl, mit der man a potenzieren muss um b zu erhalten.
Zehnerlogarithmen (Logarithmen zur Basis 10) werden oft mit lg bezeichnet: log10 b lg b
Beispiel:
log 5 125 3, da 53 125
Rechengesetze für Logarithmen:
Es seien a, b, c > 0 und a 1. Dann gilt:
1. log a (b c) log a b log a c
2. log a (b : c) log a b log a c
3. log a b d d log a b
4. log a b
lg b
lg a
Beispiele:
1.) log 4 8 log 4 128 log 4 (8 128) log 4 1024 5, denn 45 1024
2.) lg 4 lg 6 lg 3 lg(4 6) lg 3 lg(24 : 3) lg 8 lg 2 3 3 lg 2 0,9031
3.) log 7 35 1,8271
4.) Löse die folgende Gleichung: log 3 2 x 2 log 3 4 (x +)
log 3 2 x 2 log 3 4 | log 3 4
log 3 2 x log 3 4 2
log 3 24x 2 (2. Gesetz)
log 3 2x 2
x
2
32
x
2
9 | 2
(Definition des Logarithmus)
x 18
EXPONENTIALGLEICHUNGEN
Gleichungen, in denen die Variable als Exponent auftritt, heißen Exponentialgleichungen.
Beispiele:
1.) Löse die folgende Gleichung: 5 32 x 2 6 x 0 (x )
5 32 x 2 6 x 0 | 2 6 x
5 32 x 2 6 x
| lg
lg(5 3 ) lg(2 6 x )
2x
lg 5 lg 32 x lg 2 lg 6 x
lg 5 2 x lg 3 lg 2 x lg 6 | x lg 6 lg 5
2 x lg 3 x lg 6 lg 2 lg 5
x(2 lg 3 lg 6) lg 2 lg 5 |: (2 lg 3 lg 6)
x
lg 2 lg 5
2 lg 3lg 6
2,26
2.) Löse die folgende Gleichung: 32 x 30 3 x 81 0 (x )
32 x 30 3 x 81 0
(3 x ) 2 30 3 x 81 0 | Substitution u : 3 x
u 2 30u 81 0
u 30
u 3
900324
2
30224 15 12
u 27 | Rücksubstitution
3x 3 3 x 27
x 1 x 3
IV. VIERFELDERTAFEL; BEDINGTE WAHRSCHEINLICHKEITEN
VIERFELDERTAFEL
Es seien A und B zwei Ereignisse eines Zufallsexperiments mit der Ergebnismenge .
Es gelten folgende Bezeichnungen und Schreibweisen:
Die Schnittmenge A B enthält alle Elemente, die sowohl in A als auch in B enthalten sind.
Die Vereinigungsmenge A B enthält alle Elemente, die in A oder in B oder in beiden Mengen
enthalten sind.
Die Komplementärmenge A enthält alle Elemente, die in aber nicht in A enthalten sind.
Beispiel:
= {1, 2, 3, 4, 5, 6} ; A = {2, 4, 6} ; B = {1, 6}
A B = {6} ; A B = {1, 2, 4, 6} ; A = {1, 3, 5}
Zwei Ereignisse A und B zerlegen die Ergebnismenge
in vier Teilmengen:
A B, A B , A B und A B (s. Abb.)
Jedes Ergebnis gehört zu genau einer dieser vier
Teilmengen.
Die Anzahlen der Elemente dieser vier Mengen bzw.
die entsprechenden Wahrscheinlichkeiten lassen sich
in einer Vierfeldertafel darstellen:
B
B
A
|A B|
|A B |
|A|
A
| A B|
|A B|
|A |
|B|
|B|
||
A B
A B
A B
AB
B
A
B
B
A
P(A B)
P(A B )
P(A)
A
P( A B)
P( A B )
P( A )
P(B)
P( B )
P()
Beispiel:
Von 250 Personen sprechen 192 Englisch (E), 117 Französisch (F) und 83 sprechen beide Sprachen.
Wie viel Prozent der Personen sprechen keine der beiden Sprachen?
Vierfeldertafel:
F
F
E
83
109
192
E
34
24
58
117
133
250
F
F
E
33,2%
43,6%
76,8%
E
13,6%
9,6%
23,2%
46,8%
53,2%
100%
9,6% der Personen sprechen weder Englisch noch Französisch.
Die Daten einer Vierfeldertafel lassen sich auf zwei Arten in einem Baumdiagramm darstellen:
1. Möglichkeit:
P(A)
P(A)
B
P(AB)
B
P(AB)
P(B)
B
P(AB)
P(B)
B
P(AB)
A
P(AB)
A
P(AB)
P(A)
A
P(AB)
P(A)
A
P(AB)
A
A
2. Möglichkeit:
P(B)
P(B)
B
B
Beispiel:
Mit den Daten aus dem vorherigen Beispiel ergeben sich folgende Baumdiagramme:
76,8%
23,2%
F
33,2%
F
43,6%
46,8%
F
13,6%
53,2%
F
9,6%
E
33,2%
E
13,6%
76,8%
E
43,6%
23,2%
E
9,6%
E
E
oder:
46,8%
53,2%
F
F
BEDINGTE WAHRSCHEINLICHKEITEN
Es seien A und B zwei Ereignisse eines Zufallsexperiments mit P(A) 0.
Die bedingte Wahrscheinlichkeit PA(B) ist dann die Wahrscheinlichkeit für das Eintreten von B,
wenn A bereits eingetreten ist.
B)
Es gilt: PA (B) P(AP(A)
Beim zugehörigen Baumdiagramm stehen die bedingten Wahrscheinlichkeiten an den Zweigen der
zweiten Stufe:
P(A)
P(A)
PA(B)
B
P(AB)
PA(B)
B
P(AB)
PA(B)
B
P(AB)
PA(B)
B
P(AB)
A
A
Beispiel:
Mit den Daten aus dem vorherigen Beispiel ergibt sich das folgende Baumdiagramm:
76,8%
23,2%
Denn:
43,2%
F
33,2%
56,8%
F
43,6%
58,6%
F
13,6%
41,4%
F
9,6%
E
E
PE (F)
P(E F)
P(E)
PE (F)
43, 6%
76 ,8%
56,8%
PE (F)
13, 6%
23, 2%
58,6%
PE (F)
9 , 6%
23, 2%
41,4%
, 2%
33
76 ,8% 0,432 43,2%
Die Wahrscheinlichkeit, dass eine Person, von der man weiß, dass sie Englisch spricht, auch
Französisch spricht, beträgt hier also 43,2%.
V. GANZRATIONALE FUNKTIONEN
POTENZFUNKTIONEN
Die Funktion x a x n mit n heißt Potenzfunktion n-ten Grades.
a > 0, n gerade:
a > 0, n ungerade:
-3
-2
-1
y
3
y
3
2
2
1
1
O
1
2
3 x
-3
-2
O
-1
-1
-2
-1
x 0,5x
x 0,5x3
x 0,5x5
-2
1
2
3 x
x 0,5x2
x 0,5x4
x 0,5x6
-3
-3
Die Graphen für a < 0 entstehen aus den Graphen mit a > 0 durch Spiegelung an der x-Achse.
Beispiel:
Bestimme a und n so, dass der Graph der Funktion x a x n durch (–2|1,6) und (3|–5,4) verläuft.
Gleichungssystem:
I) 1,6 a (2) n
a
1, 6
( 2 ) n
in (II)
II) 5,4 a 3n
II’) 5,4
1, 6
( 2 ) n
3n
5, 4
1, 6
( 32 ) n
3,375 (1,5) n
1,5 n 3,375
n log1,5 3,375 3
a
1, 6
( 2 )3
0,2
Die Funktion lautet x 0,2 x 3 .
GANZRATIONALE FUNKTIONEN
Die Funktion x a n x n a n1 x n1 an2 x n2 ... a1 x a0 mit reellen Koeffizienten und natürlichen
Exponenten heißt ganzrationale Funktion n-ten Grades. Der Funktionsterm heißt Polynom n-ten
Grades.
Das Verhalten einer ganzrationalen Funktion wird für betragsmäßig große x-Werte durch den
Summanden mit dem höchsten Exponenten bestimmt.
Beispiel:
3 x 7 1,4 x 5 10 x 2 4 ist ein Polynom 7. Grades.
x 3 x 7 1,4 x 5 10 x 2 4 ist eine ganzrationale Funktion 7. Grades.
Der höchste Exponent ist ungerade, der zugehörige Koeffizient negativ.
Der Graph verläuft also „von links oben nach rechts unten“.
y
10
5
-2
-1
O
-5
-10
1
2 x
Ist f eine ganzrationale Funktion n-ten Grades und x = a eine Nullstelle von f, also f(a) = 0, so lässt
sich f(x) schreiben als: f ( x) ( x a) g ( x)
Dabei ist g(x) ein Polynom vom Grad n – 1.
g(x) erhält man durch die Polynomdivision f ( x) : ( x a ) .
Eine ganzrationale Funktion n-ten Grades besitzt also höchstens n Nullstellen.
Das Verhalten eines Graphen in der Nähe einer Nullstelle hängt von der Vielfachheit der Nullstelle
ab:
Ist die Nullstelle von ungerader Ordnung, findet ein Vorzeichenwechsel der Funktionswerte statt, bei
Nullstellen von gerader Ordnung nicht.
Beispiele:
1.) Die Funktion x 5( x 4)( x 6) 2 ( x 9) 3 besitzt eine einfache Nullstelle bei x 4 , eine
doppelte Nullstelle bei x 6 und eine dreifache Nullstelle bei x 9 .
2.) Bestimme alle Nullstellen der Funktion x 3 x 3 3x 2 66 x 120
Durch systematisches Probieren findet man die Nullstelle x1 = 2.
Polynomdivision:
(3x3 – 3x2 – 66x + 120) : (x – 2) = 3x2 + 3x – 60
– (3x3 – 6x2)
3x2 – 66x
– (3x2 – 6x)
– 60x + 120
– (– 60x + 120)
0
Die weiteren Nullstellen erhält man, indem man das erhaltene Polynom gleich Null setzt:
3 x 2 3 x 60 0 |: 3
x 2 x 20 0
x 1 2180 129 x2 4; x3 5
Die Funktion lässt sich also so schreiben: x 3( x 2)( x 4)( x 5)
y
3
3.) Bestimme den Funktionsterm der abgebildeten
ganzrationalen Funktion f vierten Grades.
Die Funktion f hat einfache Nullstellen bei
x = 0 und x = 3 und eine doppelte Nullstelle
bei x = –2:
f ( x) a x ( x 3) ( x 2) 2
Es ist f (2) 3,2 :
a 2 (2 3) (2 2) 3,2
32a 3,2
a 0,1
Gf
2
1
-3
-2
-1
O
1
2
3
2
f ( x) 0,1x( x 3)( x 2) 2
-1
-2
-3
(2|–3,2)
-4
4 x
VI. EIGENSCHAFTEN VON FUNKTIONSGRAPHEN
VERSCHIEBUNG
Gf
y
2
Es seien f und g zwei Funktionen mit
g ( x) f ( x a ) b . Der Graph von g entsteht
durch Verschieben des Graphen von f um a in xRichtung und um b in y-Richtung.
b
1
a
-5
-4
-3
-2
-1
Gg
O
1
2
3 x
-1
Beispiel:
f : x 4 x 2 5x 1
Bestimme den Term der Funktion g, deren Graph gegenüber dem Graphen von f um 3 nach links und
2 nach oben verschoben ist.
g ( x) f ( x (3)) 2 f ( x 3) 2 4( x 3) 2 5( x 3) 1 2 4 x 2 24 x 36 5 x 15 3
4 x 2 19 x 24
STRECKUNG
Es seien f, g und h drei Funktionen mit g ( x) f (k x) und h( x) k f ( x) und es sei k 0 . Der
Graph von g entsteht durch Streckung des Graphen von f in x-Richtung mit dem Faktor 1k . Der Graph
von h entsteht durch Streckung des Graphen von f in y-Richtung mit dem Faktor k.
g ( x) f (2 x)
Beispiel:
h( x ) 2 f ( x )
y
2
Gg
y
2
Gf
1
-3
-2
O
-1
Gh
Gf
1
1
2
3 x
-3
-2
-1
O
-1
-1
-2
-2
1
2
3 x
SPIEGELUNG
Es seien f, g und h drei Funktionen mit g ( x) f ( x) und h( x) f ( x) . Der Graph von g entsteht
durch Spiegelung des Graphen von f an der y-Achse. Der Graph von h entsteht durch Spiegelung des
Graphen von f an der x-Achse.
g ( x) f ( x)
Beispiel:
Gg
h( x ) f ( x )
y
Gf
y
3
Gf
1
2
-3
1
-3
-2
-1
O
-2
-1
O
1
2
3 x
-1
1
2
3 x
-2
Gh
SYMMETRIE
Es sei f eine Funktion mit der Definitionsmenge .
Der Graph von f ist genau dann achsensymmetrisch zur y-Achse, wenn für alle x gilt:
f ( x) f ( x)
Der Graph von f ist genau dann punktsymmetrisch zum Ursprung, wenn für alle x gilt:
f ( x) f ( x)
Beispiele:
1.) f : x x( x 3 x)
f ( x) x[( x) 3 ( x)] x( x 3 x) x( x 3 x) f ( x)
Achsensymmetrie zur y-Achse
2.)
f : x x 2 sin x
f ( x) ( x) 2 sin( x) x 2 ( sin x) x 2 sin x f ( x)
Punktsymmetrie zum Ursprung
3.)
f : x 2x3 x 1
f ( x) 2( x) 3 ( x) 1 2 x 3 x 1
Keine Symmetrie zum Koordinatensystem
Eine ganzrationale Funktion heißt gerade (ungerade), wenn im Funktionsterm nur x-Potenzen mit
geraden (ungeraden) Exponenten auftreten.
Die Graphen von geraden Funktionen sind achsensymmetrisch zur y-Achse.
Die Graphen von ungeraden Funktionen sind punktsymmetrisch zum Ursprung.
Beispiele:
1.) f ( x) 4 x 8 3x 2 2 4 x 8 3 x 2 2 x 0
Achsensymmetrie zur y-Achse
2.)
f ( x) 3 x 7 16 x 3 4 x 3 x 7 16 x 3 4 x1
3.)
f ( x ) x 3 4 x 8 x 3 4 x1 8 x 0
Punktsymmetrie zum Ursprung
Keine Symmetrie zum Koordinatensystem
VII. GRENZWERTE IM UNENDLICHEN
Kommen die Funktionswerte f(x) einer Funktion f für beliebig groß werdende x-Werte einem Wert a
beliebig nahe, so heißt a Grenzwert der Funktion f für x gegen unendlich.
Entsprechendes gilt für den Grenzwert für x gegen minus unendlich.
Schreibweisen: lim f ( x) a bzw. lim f ( x) a
x
x
Die Gerade y = a ist waagrechte Asymptote von Gf.
lim f ( x) a
lim f ( x) a
x
x
y
y
a
a
x
x
Wachsen die Funktionswerte f(x) einer Funktion f für wachsende x über alle Grenzen, so existiert
zwar kein Grenzwert für x , jedoch verwendet man die Schreibweise lim f ( x) .
x
Entsprechendes gilt für lim f ( x) , lim f ( x) und lim f ( x) .
x
x
Es existiert kein Grenzwert. Man schreibt:
lim f ( x) und lim f ( x)
x
x
x
Es existiert kein Grenzwert.
y
y
x
x
Besitzt eine Funktion für x oder für x einen Grenzwert, so heißt sie dort konvergent.
Ansonsten heißt die Funktion dort divergent.
Beispiele:
Bestimme, falls möglich, für die folgenden Funktionen die Grenzwerte für x und x .
4x 1
1.) f : x
2x 3
2.) g : x x 5 3 x 4 x 4
3.) h : x 2 sin x
1.)
4 x 1 x(4 1x ) 4 1x
2 x 3 x(2 3x ) 2 3x
Für x nähern sich 1x und
40
lim f ( x) lim f ( x)
2
x
x
20
f ( x)
3
x
dem Wert Null an. Daher gilt:
2.) g ( x) x 5 3 x 4 x 4
Der Funktionsgraph verläuft „von links unten nach rechts oben“.
Es existieren keine Grenzwerte für x .
Man schreibt: lim g ( x) ; lim g ( x)
x
x
3.) h( x) 2 sin x
Die Funktionswerte schwanken zwischen –2 und 2.
Es existieren keine Grenzwerte für x .