der Elektrotechnik Funktionswerkstoffe der Elektrotechn'i und Elektronik Autoren Dr.-Ing. Jürgen Bauch, Dresden (Kap. 4) Prof. Dr.-Ing. habil. Wolfgang Bemhardt, Berlin (Kap. 1, 9) Dr.-Ing. Bemd Findeisen, Berlin (Kap. 1) Dr.-Ing. Klaus Fischer, Dresden (Kap. 1) Prof. Dr.-Ing. habil. Renate Gesemann, Mittweida (Kap. 5) Dr. rer. nat. Peter HopJ Dresden (Kap. 4) Dr. rer. nat. Roland Köhler, Dresden (Kap. 4) Prof. Dr. rer. nat. habil. Ger? Kühn, Leipzig (Kap. 4) Prof. em. Dr.-Ing. habil. Kar1 Nitzsche, Ilmenau (Kap. 1, 2, 3, 5, 7, 8, 9) Dr. rer. nat. Manuel Richter, Dresden (Kap. 0) Dr.-Ing. Holger Straube, Weinböhla (Kap. 1) Prof. Dr. rer. nat. habil. Hans-Jürgen Ullrich, Dresden (Kap. 0, 1, 4) Dr.-Ing. Horst Wibbeler, Dresden (Kap. 6 ) Funktionswerkstoffe der Elektrotechnik und Elektronik Herausgegeben von Prof. em. Dr.-Ing. habil. Kar1 Nitzsche und Prof. Dr. rer. nat. habil. Hans-Jürgen Ullrich 2., stark überarbeitete Auflage Mit 341 Abbildungen und 120 Tabellen Gespendet vom Verein zur Förderung von Studenten der Technischen Universität Dresden e, - gegründet vom Corps Altsachsen - Deutscher Verlag für Grundstoffindustrie, Leipzig . Stuttgart Die Deutsche Bibliothek - CIP-Einheitsaufnahme Funktionswerkstoffe der Elektrotechnik und Elektronik : mit 120 Tabellen / hrsg. von Karl Nitzsche und Hans-Jürgen Ullrich. Autoren: Jürgen Bauch ... - 2., stark überarb. Aufl. Leipzig ; Stuttgart : Dt. Verl. für Grundstoffindustrie, 1993 ISBN 3-342-00524-6 NE: Nitzsche, Karl [Hrsg.]; Bauch, Jürgen Das Werk, einschlieJlich aller seiner Teile, ist urhebemechtlich geschützt. Jede Verwertung ist ohne die Zustimmung des Verlages aqßerhalb der engen Grenzen des Urheberrechtsgesetzesunzulässig und strafbar. Das gilt insbesonderefür Veniie&iltigungen, Übersetzungen, Mikroverfilmungen und die Einspeichemng und Verarbeitung in elektronischen Systemen. 2., stark überarbeitete Auflage 1993 @ Deutscher Verlag für Grundstoffindustrie, Leipzig 1985 Satz und Druck: INTERDRUCK Leipzig GmbH Printed in Germany Vorwort Der in 2. Auflage vorliegende Titel ist ein für die üblichen Lehrprogramme in Universitäten, Hochschulen und Fachhochschulen konzipiertes Lehrwerk über die in der Elektrotechnik und Elektronik verwendeten Werkstoffe. Dafür garantieren die Herausgeber und Autoren, die über Jahrzehnte hinweg diesen Stoff lehren. Die im Buchhandel angebotenen einschlägigen Werke sind entweder für andere Berufsgruppen ausgelegt oder sie berücksichtigen nicht in genügendem Umfang die breite Werkstoffpalette für die Belange der modernen Elektrotechnik und Elektronik ohne Hinweise für künftige Entwicklungen. Unser Lehrbuch soll diese Lücke schließen. Es gibt kaum ein Gebiet der Technik, das auf der Wissenschaft so unterschiedlicher Werkstoffgruppen und ihres optimalen, z. T. im Verbund erforderlichen Einsatzes basiert, wie die Elektrotechnik und die Elektronik: Metalle, Halbleiter, Oxidkeramik, Glaser, Hochpolymere, Verbundwerkstoffe und andere. Diese große Vielfalt von Materialien muß sowohl einzeln betrachtet als auch in zunehmendem Maße zielgerichtet für Einsatzgebiete kombiniert werden, bei denen das Hauptinteresse den elektrischen Parametern gilt, deren Funktion aber durch mechanische, magnetische, thermische, optische, Korrosionsund andere Eigenschaften entscheidend beeinflußt wird. Die Erforschung aller dieser Werkstoffgruppen, auch ihres Verhaltens, z. B. in der Dünnschichtform oder im amorphen Zustand, befindet sich in einer mehr oder weniger stürmischen Entwicklung. Dabei ergeben sich einerseits zahlreiche Wechselwirkungen, andererseits bilden sich auch eigenständige Werkstoffkomplexe heraus, die sich meist einem stark spezialisierten Aufgabengebiet zuordnen lassen. Allen Werkstoffgruppen eigen sind die Beziehungen zu den physikalischen, kristallografischen und chemischen Grundlagen der Werkstoffwissenschaft, die gegenüber der 1.Auflage stark erweitert im Abschnitt 0 und in den einzelnen Abschnitten speziell aufgenommen wurden. Bei Bedarf weiterer Vertiefung der Grundlagenkenntnisse und des Wissens auf spezielleren Anwendungsgebieten wird auf folgende, im gleichen Verlag erschienenen Hochschullehrbücher hingewiesen: - Schatt, W. (Hrsg.): Einführung in die Werkstoffwissenschaft, - Schatt, W. (Hrsg.): Werkstoffe des Maschinen-, Anlagen- und Apparatebaus, - Schatt, W. (Hrsg.): Pulvermetallurgie, Sinter- und Verbundwerkstoffe. Ausschlaggebend für die Aufnahme in die Konzeption dieses Buches war die funktionsbestimmende Anwendung der Werkstoffe in der Elektrotechnik und Elektronik in der Gegenwart und künftig. So findet man neben Abschnitten über die ((klassischen))Werkstoffe für elektrische Leiter, Kontakte, Widerstände, Halbleiter, Isolierstoffe, Dielektrika, Magnetkreise, Konstruktions- und Verbindungselemente auch solche, die die Materialien für Dick- und Dünnfilmelemente, der Mikroelektronik, der Mikromechanik, Lichtleiter, Su- praleiter, elektronischer Speicher und Wandler, die Ferroelektrika, Elektrete, Kohlenstoffwerkstoffe U. a. behandeln. Geringe Überlappungen zwischen Abschnitten sind absichtlich beibehalten worden. Bezüglich der mit der Meßtechnik sich mehr und mehr verbindenden und zunehmend an Einsatzbreite gewinnenden Werkstoffprüfung wird auf das im gleichen Verlag erschienene Lehrbuch Blumenauer. H. (Hrsg.): Werkstoffprüfung verwiesen. Unser Dank als Herausgeber gilt allen, an der Überarbeitung der 2. Auflage beteiligten Autoren und nicht zuletzt den Mitarbeitern des Deutschen Verlags für Grundstoffmdustrie für die tatkräftige und verständnisvolle Zusammenarbeit. Ilmenau und Dresden Die Herausgeber Inhaltsverzeichnis 0 Einführung: Atome. Moleküle. Festkörper . . . . . . 0.1 Atome . . . . . . . . . . . . . . . . . . 0.1.1 Zugang zum Aufbau der Atomhülle: Die Quantenmechanik . 0.1.2 Die SchrödingerGleichung . . . . . . . . . . . . 0.1.3 Das Wasserstoff-Atom . . . . . . . . . . . . . 0.1.4 Pauli-Prinzip und Austausch-Wechselwirkung . . . . . . . . . . . . . . . . 0.1.5 Die Struktur der Atomhülle 0.2 Moleküle . . . . . . . . . . . . . . . . . . 0.2.1 Das H,. Molekül . . . . . . . . . . . . . . . 0.2.2 Die Valenz . . . . . . . . . . . . . . . . . 0.2.3 Bindungstypen . . . . . . . . . . . . . . . . 0.3 Festkörper . . . . . . . . . . . . . . . . . 0.3.1 Ideale Kristalle . . . . . . . . . . . . . . . . Zusammenhang von chemischer Bindung und Kristallstruktur 0.3.1.1 0.3.1.2 Die elektronische Struktur . . . . . . . . . . . . 0.3.1.3 Die magnetische Struktur . . . . . . . . . . . . 0.3.1.4 Anregungen . . . . . . . . . . . . . . . . 0.3.2 Ungeordnete Festkörper . . . . . . . . . . . . Literaturhinweise . . . . . . . . . . . . . . . . . . . . . . . . . . Leitenverkstoffe . . . . . . . . . . . . . . . . . . . . . Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . Elektrische Leitfähigkeit der Metalle . . . . . . . . . . . . . . . Ohmsches Gesetz . . . . . . . . . . . . . . . . . . . . . Temperaturabhängigkeit der elektrischen Leitfähigkeit der Metalle . . . . . Einfluß des Probendurchmessers auf die elektrische Leitfähigkeit . . . . . Kristallbaufehler und elektrische Leitfähigkeit . . . . . . . . . . . Nulldimensionale Kristallbaufehler . . . . . . . . . . . . . . . Eindimensionale Kristallbaufehler . . . . . . . . . . . . . . . Zweidimensionale Kristallbaufehler . . . . . . . . . . . . . . . Dreidimensionale Kristallbaufehler . . . . . . . . . . . . . . . Schlußfolgerungen für die Werkstoffauswahl . . . . . . . . . . . . Leiterwerkstoffe auf Kupferbasis . . . . . . . . . . . . . . . . Reines Kupfer . . . . . . . . . . . . . . . . . . . . . . Binäre Kupferleitlegierungen . . . . . . . . . . . . . . . . . Mehrkomponenten-Kupferleitlegierungen . . . . . . . . . . . . . . . . . . . . . . . . . . . Leiterwerkstoffe auf Aluminiumbasis 15 50 50 53 54 55 57 57 58 62 63 63 66 68 68 70 71 71 Inhaltsverzeichnis Reines Aluminium . . . . . . . . . . . Binäre Aluminiumleitlegierungen . . . . . . Kupferbeschichtetes Aluminium . . . . . . . Leiterwerkstoffe auf Goldbasis . . . . . . . . Leiterwerkstoffe auf Silberbasis . . . . . . . Eindimensionale Leiter . . . . . . . . . . Flächenleiterwerkstoffe . . . . . . . . . . Werkstoffe der Leiterplattentechnik . . . . . . Träger oder Substrat . . . . . . . . . . . . Leiterschicht . . . . . . . . . . . . . Verbindungs- oder Haftschicht . . . . . . . Isolationsschicht . . . . . . . . . . . . Veredlungsschicht . . . . . . . . . . . . Schutz- oder Abdeckschicht . . . . . . . . Leiterplatten-Herstellung . . . . . . . . . Werkstoffe der Dickschichttechnik . . . . . . Werkstoffe für Träger oder Substrat . . . . . . Werkstoffe für Dickschicht-Leitbahnen . . . . . HerstellungderDickschichtelemente . . . . . Werkstoffe der Dünnschichttechnik . . . . . . Substratwerkstoffe . . . . . . . . . . . . Leitbahnwerkstoffe der Dünnschichttechnik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HerstellungderDünnschichtelemente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supraleiter . . . . . . . . . . . . . . . . . . . . . . . Supraleitfähigkeit . . . . . . . . . . . . . . . . . . . . . Supraleiter 1.Art . . . . . . . . . . . . . . . . . . . . . Supraleiter 2 .Art . . . . . . . . . . . . . . . . . . . . . Supraleitende Werkstoffe . . . . . . . . . . . . . . . . . . Supraleitende Elemente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Verformbare supraleitende Legiemngen Supraleitende intermetallische Verbindungen . . . . . . . . . . . . Hochtemperatursupraleiter . . . . . . . . . . . . . . . . . . HerstellungsupraleitenderWerkstoffe . . . . . . . . . . . . . . Herstellung metallischer Supraleiter . . . . . . . . . . . . . . . Herstellung von Hochtemperatursupraleitem . . . . . . . . . . . . AnwendungsupraleitenderWerkstoffe . . . . . . . . . . . . . . Supraleitende Magnete . . . . . . . . . . . . . . . . . . . Supraleitende Kabel . . . . . . . . . . . . . . . . . . . . Anwendung und anwendungsbezogene Eigenschaften von Hochtemperatursu. . . . . . . . . . . . . . . . . . . . . . . praleitem Elektrodenwerkstoffe . . . . . . . . . . . . . . . . . . . . Definition . . . . . . . . . . . . . . . . . . . . . . . Einteilung der Elektrodenwerkstoffe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kohlenstoffwerkstoffe Eigenschaften . . . . . . . . . . . . . . . . . . . . . . Herstellung . . . . . . . . . . . . . . . . . . . . . . . Kennwerte und Anwendungshinweise . . . . . . . . . . . . . . Werkstoffe für dimensionsstabile Anoden (DSA) . . . . . . . . . . . Eigenschaften und Aufbau . . . . . . . . . . . . . . . . . . Herstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anwendungshinweise Inhaltsverzeichnis 9 1.10.5 Entwicklungstendenzen . . . . . . . . . . . . . . . . . . . 127 1.11 Lichtleiter . . . . . . . . . . . . . . . . . . . . . . . 127 1.11.1 Grundlagen . . . . . . . . . . . . . . . . . . . . . . . 128 1.11.2 Werkstoffauswahl und Herstellung . . . . . . . . . . . . . . . 129 1.11.2.1 Anorganische Glaser für Lichtleitfasern . . . . . . . . . . . . . . 129 . . . . . . . . . . . . . . 131 1.11.2.2 Organische Glaser für Lichtleitfasern Literaturhinweise . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Kontaktwerkstoffe . . . . . . . . . . . . . . . . . . . . 2.1 Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Kontakteigenschaften 2.2.1 Kontaktwiderstand . . . . . . . . . . . . . . . . . . . . 2.2.2 Verschleiß elektrischer Kontakte . . . . . . . . . . . . . . . . 2.2.2.1 Mechanischer Verschleiß . . . . . . . . . . . . . . . . . . 2.2.2.2 Elektrischer Verschleiß . . . . . . . . . . . . . . . . . . . 2.2.2.3 Verschleiß durch Korrosion . . . . . . . . . . . . . . . . . . 2.2.3 Schweißverhalten . . . . . . . . . . . . . . . . . . . . . 2.3 Werkstoffe für Kontakte . . . . . . . . . . . . . . . . . . . 2.3.1 Allgemeine Anforderungen an Kontaktwerkstoffe . . . . . . . . . . 2.3.2 Werkstoffauswahlin Abhängigkeit von der Schaltleistung . . . . . . . . 2.3.2.1 Werkstoffe für niedrige Schaltleistungen . . . . . . . . . . . . . 2.3.2.2 Werkstoffe für mittlere Schaltleistungen . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.2.3 Werkstoffe für hohe Schaltleistungen 2.3.3 Auswahl der Werkstoffe nach dem Entladungsverhalten . . . . . . . . 2.3.4 Maßnahmen zum Einsparen von Edelmetall . . . . . . . . . . . . . . . 2.3.5 Werkstoffe für Kontakte in der Computertechnik und Mikroelektronik Literaturhinweise . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Widerstandswerkstoffe . . . . . . . . . . . . . . . . . . . Grundlagen . . . . . . . . . . . . . . . . . . . . . . . Werkstoffe für Drahtwiderstände (DIN 44 185) . . . . . . . . . . . Präzisionswiderstände . . . . . . . . . . . . . . . . . . . Chemisch stabile Widerstände . . . . . . . . . . . . . . . . . Werkstoffe für Schichtwiderstände (DIN 44 050) . . . . . . . . . . . Eigenschaften der Werkstoffe als Schichten . . . . . . . . . . . . Werkstoffe für Dickschichtwiderstände . . . . . . . . . . . . . . WerkstoffefürDü~schichtwiderstände(DIN44061) . . . . . . . . . .Kohlenstoffwerkstoffe für Schichtwiderstände (DIN 44 051 bis 44 054) . . . Werkstoffe für Metalloxid-Schichtwiderstände (DIN 44 063) . . . . . . . Werkstoffe für Massewiderstände . . . . . . . . . . . . . . . . Werkstoffeigenschaften . . . . . . . . . . . . . . . . . . . Massewiderstände auf SiC-Basis . . . . . . . . . . . . . . . . Massewiderstände auf BaTi03-Basis (PTC-Thermistoren; DIN 44 080) . . . Massewiderstände auf Fe203.NiO.Basis (NTC-Thermistoren; DIN 44 070) . . Massewiderstände auf Kohlenstoffbasis (DIN 44 054) . . . . . . . . . Werkstoffe für diffundierte Widerstände auf Halbleiterbasis (Integrierte Widerstände) . . . . . . . . . . . . . . . . . . . . . . . . Widerstandswerkstoffefür Sonderfunktionen . . . . . . . . . . . . Druckabhängige Widerstandswerkstoffe(Dehnmeßstreifen) . . . . . . . Thermisch hochbelastbare Widerstandswerkstoffe (Heizleiter) . . . . . . Magnetfeldabhängige Widerstandswerkstoffe . . . . . . . . . . . . 135 135 135 136 137 137 138 139 140 140 140 141 141 142 146 148 148 149 149