Tumor-associated lymphangiogenesis in conjunctival

Werbung
Aus der Klinik für Augenheilkunde mit Poliklinik
der
Friedrich-Alexander-Universität Erlangen-Nürnberg
Direktor: Prof. Dr. F. E. Kruse
Tumor-associated lymphangiogenesis in conjunctival
malignant melanoma
Inaugural-Dissertation
zur Erlangung der Doktorwürde
der Medizinischen Fakultät
der
Friedrich-Alexander-Universität
Erlangen-Nürnberg
vorgelegt von
Paul Zimmermann
aus
Münchberg
Gedruckt mit Erlaubnis der
Medizinischen Fakultät der Friedrich-Alexander-Universität
Erlangen-Nürnberg
Dekan:
Prof. Dr. J. Schüttler
Referent:
Priv.-Doz. Dr. Claus Cursiefen
Korreferent:
Prof. Dr. F. E.Kruse
Tag der mündlichen Prüfung:
27. Januar 2010 Widmung:
Meine Dissertation widme ich meiner Tochter Paula-Greta.
Tumor-associated lymphangiogenesis in conjunctival malignant
melanoma - Inhaltsverzeichnis:
Zusammenfassung in Englisch (abstract)
Seite 1
Zusammenfassung
Seite 2-3
Einleitung in Englisch (Introduction)
Seite 4-5
Einleitung
Seite 6-7
Titelblatt
Seite 8
(Seite 1 Artikel)
Zusammenfassung/ Abstract
Seite 9
(Seite 2 Artikel)
Einleitung
Seite 10-11
(Seite 3-4 Artikel)
Material und Methoden
Seite 12-14
(Seite 5-7 Artikel)
 Patienten und Bindegewebsschnitte
Seite 12
(Seite 5 Artikel)
 Lymphgefäßfärbung (LYVE-1 and podoplanin)
Seite 12-13
(Seite 5-6 Artikel)
 Ki67 Färbung
Seite 13
(Seite 6 Artikel)
 Mitomycin C Behandlung
Seite 13
(Seite 6 Artikel)
 Mikroskopische und Computer-gestützte Lymphgefäßanalyse
Seite 13-14
(Seite 6-7 Artikel)
 Funktionelle und statistische Analyse
Seite 14
(Seite 7 Artikel)
Resultate/Ergebnisse
Seite 15-17
(Seite 8-10 Artikel)
 Patienten und histopathologische Charakteristika
Seite 15
(Seite 8 Artikel)
 Maligne Melanome der Bindehaut bilden intra- und
peritumoral Lymphgefäße aus
 Maligne Melanome der Bindehaut sind assoziiert mit intraund peritumoraler Lymphangiogenese
 Einfluss des Tumordurchmessers auf die Lymphgefäße
Seite 15
(Seite 8 Artikel)
Seite 16
(Seite 9 Artikel)
Seite 16
(Seite 9 Artikel)
 Effekt der Mitomycin C Therapie auf die Lymphgefäße
Seite 17
(Seite 10 Artikel)
 Analyse der Lymphgefäße in Abhängigkeit der
Tumorlokalisation
Diskussion
Seite 17
(Seite 10 Artikel)
Seite 18-20
(Seite 11-13 Artikel)
Resümee/ Schlussfolgerung
Seite 20
(Seite 13 Artikel)
Competing interests
Seite 20
(Seite 13 Artikel)
Literaturverzeichnis
Seite 21-22
(Seite 14-15 Artikel)
Abbildungsverzeichnis mit Legenden
Seite 23-25
(Seite 16-18 Artikel)
 Abbildung 1: Tumor-assozierte Lymphgefäße des Malignen
Melanoms der Bindehaut
 Abbildung 2: Tumor induzierte Lymphangiogenese:
Signifikant mehr proliferierende Lymphgefäße wurden im
Seite 23
(Seite 16 Artikel)
Seite 23-24
(Seite 16-17 Artikel)
Tumor und in der direkten Umgebung als in der weiter
entfernten Bindehaut (> 300 μm) gefunden
 Abbildung 3: Einfluss des Tumordurchmessers auf die
Lymphgefäße
 Abbildung 4: Einfluss des topischen Mitomycin C auf die
Lymphgefäße
 Abbildung 5: Analyse der Lymphgefäße in Abhängigkeit der
Tumorlokalisation
Seite 24
(Seite 17 Artikel)
Seite 24
(Seite 17 Artikel)
Seite 24-25
(Seite 17-18 Artikel)
Abbildungen:
Seite 26-30
(Seite 19-23 Artikel)
 Abbildung 1
Seite 26
(Seite 19 Artikel)
 Abbildung 2
Seite 27
(Seite 20 Artikel)
 Abbildung 3
Seite 28
(Seite 21 Artikel)
 Abbildung 4
Seite 29
(Seite 22 Artikel)
 Abbildung 5
Seite 30
(Seite 23 Artikel)
Literaturverzeichnis
Seite 31-33
Abkürzungsverzeichnis
Seite 34
Verzeichnis der Vorveröffentlichungen
Seite 35
Anhang
Seite 36
Danksagung
Seite 37
Lebenslauf
Seite 38-39
P.S.: Die Seitenzahlen in Klammern beziehen sich auf die Seitenzahlen der Veröffentlichung
des Orginalartikels im BJO (British Journal of Ophthalmology).
1
Abstract:
Background:
To evaluate whether tumor-associated lymphangiogenesis, i.e. the formation of
new lymphatic vessels (LVs) induced by a tumor, occurs in and around
conjunctival malignant melanoma (MM).
Methods:
Clinical files and conjunctival specimens of 20 patients with histologically
diagnosed conjunctival MM were analyzed. Sections were stained with LYVE-1
and podoplanin antibodies as specific lymphatic endothelial markers and Ki67
as proliferation marker. The tumor area and the area covered by LV (LVA), the
LV number (LVN), and the LV density (LVD) were measured within the tumor
and in the peritumoral area in digital images of the specimen. The LV results
were correlated with the histopathological characteristics, tumor location,
recurrence rate, mitomycin C therapy and presence of metastases.
Results:
LVs were detected in all specimens within the tumor and peritumorally.
Significantly more Ki67+ proliferating lymphatic endothelial cells were detected
in the tumor and in the peritumoral tissue up to 300 μm compared to the
surrounding normal conjunctiva (>300 μm distance). There was a slightly
positive correlation between the tumor size and the LVN and LVA in the 50 μm
zone adjacent to the tumor. We did not find significant correlations between LVs
and histopathological and clinical characteristics (location, shape, relapses,
metastases), possibly due to small sample sizes. Non-limbal tumors with
involvement of tarsus or fornix showed a tendency of higher LVD compared to
limbal tumors.
Conclusion:
Conjunctival MMs display tumor-associated LV within and around the tumor.
The MM seems to induce lymphangiogenesis not only in the tumor, but also in
its proximity.
2
Zusammenfassung:
Hintergrund und Ziele:
Maligne Melanome der Bindehaut sind mit Lymphangiogenese, i.e. die
Ausbildung
neuer
Lymphgefäße,
assoziiert.
Ziel
der
Studie
war
es,
herauszufinden, ob Tumor- assoziierte Lymphangiogenese im Tumor, als auch
in der peritumoralen Region auftritt.
Methoden (Patienten, Material und Untersuchungsmethoden):
Der klinische Casus als auch die histologischen Schnitte der Bindehaut von 20
Patientinnen/-en der Augenklinik Nürnberg-Erlangen wurden analysiert. Die
histologischen Schnitte wurden mit LYVE-1 und Podoplanin Antikörper als
spezifische Lymphendothelmarker und mit Ki67 als Proliferationsmarker
gefärbt. Die Tumorfläche, die Lymphgefäßfläche (LVA= Lymphatic Vessel
Area), die Anzahl der Lymphgefäße (LVN= Lymphatic Vessel Number) und die
Lymphgefäßdichte (LVD= Lymphatic Vessel Density) wurden im Tumor und in
der Tumorumgebung anhand von digitalen Bildern ausgemessen. Die
Ergebnisse
wurden
mit
den
histopathologischen
Eigenschaften,
der
Tumorlokalisation, der Rezidivrate, der Mitomycin C Therapie und dem
Auftreten von Metastasen korreliert.
Ergebnisse:
Lymphgefäße konnten in allen histologischen Schnitten sowohl im Tumor als
auch in der Umgebung des Tumors nachgewiesen werden. Signifikant mehr
Ki67 positive proliferierende Lymphendothelzellen konnten im Tumor und in der
Tumornähe (<300µm) als in der normalen Bindehaut (>300 μm) nachgewiesen
werden. Es zeigte sich eine tendenzielle positive Korrelation zwischen der
Tumorgröße und der Fläche als auch der Anzahl der Lymphgefäße in der 50µm
peritumoralen Zone. Wir konnten keine signifikanten Korrelationen zwischen
den histopathologischen und den klinischen Charakteristika (Lokalisation,
Wachstum, Rezidive und Metastasen) verifizieren, möglicherweise auch
3
aufgrund der geringen Patientenanzahl. Nicht am Limbus lokalisierte Tumoren,
die in den Tarsus oder Fornix vordrangen, zeigten eine tendenziell höhere
Lymphgefäßdichte als Tumoren am Limbus.
Praktische Schlussfolgerung:
Maligne
Melanome
der
Bindehaut
zeigten
Tumor-assozierte
Lymphangiogenese innerhalb und in der Umgebung des Tumors. Das Maligne
Melanom der Bindehaut scheint nicht nur im Tumor, sondern auch in der
näheren Umgebung Lymphangiogenese, i.e. die Lymphgefäßneubildung, zu
induzieren.
4
Introduction:
Malignant melanomas (MMs) of the conjunctiva are associated with significant
morbidity and mortality due to high rates of recurrence and metastasis. The
dissemination of the tumor is linked to regional lymph nodes with subsequent
distant metastasis. Compared to cutaneous MM, conjunctival MM is rare. The
annual age adjusted incidence rates (per million) vary from 0.15 in Asians to 0.5
in non-Hispanic Whites.
Up to date, there are only few features recognized as prognostic factors for
conjunctival MM: Tumor location, expansion, relapse, multifocal location,
involvement of the surgical margins and tumor depth are known prognostic
factors for metastatic disease. Histopathological characteristics seem not to be
consistently associated with the clinical outcome.
The primary treatment of conjunctival MM is surgical: Complete excision with
tumor-cell free margins represents the therapy of choice, but can not be
sufficiently performed in cases of diffuse growth. Topical mitomycin C as
adjunct therapy has been established; cryotherapy, laser ablation, radiation
treatment, and chemotherapy in case of metastasis represent additional
treatment options for conjunctival MM.
Conjunctival MMs are rich in blood vessels, which play a role in systemic
hematogenous metastasis. However, the main route of metastasis of
conjunctival MM is lymphogenic: Ultrasonic examination of the draining lymph
nodes or even surgical removal of the sentinel lymph nodes has been
recommended. Up to now, it was not known, whether conjunctival MMs also
display significant tumor-associated lymphangiogenesis, i.e. whether the tumor
induces formation of new lymphatic vessels.
The extent of lymph node metastasis is supposed to be a major determinant for
prognosis and staging of tumors and it has been shown that tumor-induced
lymphangiogenesis is a strong risk factor for tumor metastasis in different
human cancers. The importance of tumor-induced lymphangiogenesis for
lymphogenic metastasis in cutaneous MM has been shown recently.
5
Purpose of this study was to analyze whether conjunctival MMs also display
tumor-induced lymphangiogenesis, which may represent a possible new
prognostic factor. We used specific lymphatic endothelial markers to analyze
the presence of LVs in the tumor itself and in the adjacent tissue and correlated
these data with the clinical outcome and histopathological characteristics of the
tumors.
6
Einleitung:
Maligne Melanome der Bindehaut sind mit einer signifikanten Morbidität und
Mortalität assoziiert, respektive einer hohen Rezidiv- als auch Metastasenrate.
Die Tumor-dissemination breitet sich zu regionären Lymphknoten aus und setzt
anschließend Fernmetastasen. Im Vergleich zu kutanen malignen Melanomen
ist das konjunktivale maligne Melanom selten. Die jährliche, altersadaptierte,
Inzidenzrate (pro Million Einwohner) variiert zwischen 0,15 bei Asiaten und 0,50
bei der weißen, nicht hispanisch stämmigen, Bevölkerung.
Aktuell
werden
konjunktivalen
nur
wenige
malignen
Charakteristika
Melanomen
Ausdehnung,
Rezidivneigung,
multifokale
chirurgischen
Absetzungsrandes,
und
als
Prognosefaktoren
anerkannt:
Tumorlokalisation,
Lokalisation,
Tumortiefe
bei
Beteiligung
sind
des
bekannt
als
Prognosefaktoren für Metastasierung. Histopathologische Faktoren scheinen
nicht übereinstimmend mit dem klinischen Verlauf assoziiert zu sein.
Der primäre Therapieansatz beim konjunktivalen malignen Melanom ist
chirurgisch: Therapie der Wahl ist die komplette tumorzellfreie Resektion; diese
kann aber bei diffusem Wachstumsmuster nicht suffizient durchgeführt werden.
Als adjuvante Therapie wurde eine topische Mitomycin-C Therapie etabliert;
Kryotherapie, Lasertherapie, Radiatio und Chemotherapie bei Metastasen
stellen alternative Therapieoptionen für konjunktivale maligne Melanome dar.
Konjunktivale maligne Melanome sind reich an Blutgefäßen, welche eine Rolle
bei
der
hämatogenen
Hauptmetastasierungs-Route
Absiedlung
beim
spielen.
konjunktivalen
Dennoch
ist
die
malignen
Melanom
lymphogen: Ultraschalluntersuchung der drainierenden Lymphknoten oder auch
chirurgische Entfernung der Sentinel-Lymphknoten werden empfohlen. Bis
heute ist es nicht bekannt, ob konjunktivale maligne Melanome signifikante
tumor-assoziierte Lymphangiogenese zeigen, d.h. ob der Tumor die Ausbildung
von neuen Lymphgefäßen induziert.
Das Ausmaß der Lymphknotenmetastasierung ist generell ein wichtiges
Kriterium bezüglich der Prognose und des Tumorstagings und es wurde
gezeigt, dass Tumor-assoziierte Lymphangiogenese ein starker Risikofaktor für
Metastasierung bei verschiedenen menschlichen Tumoren ist. Kürzlich wurde
7
die Bedeutung der Tumor-assoziierten Lymphangiogenese für die lymphogene
Metastasierung bei kutanen malignen Melanomen gezeigt.
Ziel der Studie war, zu analysieren, ob konjunktivale maligne Melanome tumorassoziierte Lymphangiogenese induzieren, welche einen neuen prognostischen
Faktor
repräsentieren
könnten.
Wir
benutzten
spezifische
Lymphendothelmarker, um die Präsenz von Lymphgefäßen im Tumor und im
umgebenden Gewebe zu analysieren, und korrelierten diese Daten mit dem
klinischen Verlauf und den histopathologischen Eigenschaften der Tumoren.
8
Tumor-associated lymphangiogenesis in
conjunctival malignant melanoma
Keywords: Lymphangiogenesis, Malignant Melanoma, Conjunctiva
Paul Zimmermann*1, Tina Dietrich*1,2, Felix Bock1, Folkert K. Horn1, Carmen HofmannRummelt1, Friedrich E. Kruse1, Claus Cursiefen1
*both authors contributed equally and should be regarded as first authors
1
Department of Ophthalmology, University Erlangen-Nürnberg, Germany
2
Department of Ophthalmology, University Medical Center Regensburg, Germany
Support: Interdisciplinary Center for Clinical Research (IZKF) Erlangen (A9), SFB 649
TP B10
Abstract: 249 words, text: 2674 words
The Corresponding Author has the right to grant on behalf of all authors and does grant on
behalf of all authors, an exclusive licence on a worldwide basis to the BMJ Publishing Group Ltd
and its Licensees to permit this article (if accepted) to be published in BJO and any other
BMJPGL products to exploit all subsidiary rights, as set out in our licence
(http://bjo.bmj.com/ifora/licence.pdf).
Correspondence: Claus Cursiefen, MD, Dept. of Ophthalmology, University of ErlangenNürnberg, Schwabachanlage 6, 91054 Erlangen, Germany; Tel.: 00499131 85-34141; Fax:
00499131 85-36401; Email: [email protected] 9
Abstract
Background: To evaluate whether tumor-associated lymphangiogenesis, i.e. the
formation of new lymphatic vessels (LVs) induced by a tumor, occurs in and around
conjunctival malignant melanoma (MM).
Methods: Clinical files and conjunctival specimens of 20 patients with histologically
diagnosed conjunctival MM were analyzed. Sections were stained with LYVE-1 and
podoplanin antibodies as specific lymphatic endothelial markers and Ki67 as
proliferation marker. The tumor area and the area covered by LV (LVA), the LV number
(LVN), and the LV density (LVD) were measured within the tumor and in the
peritumoral area in digital images of the specimen. The LV results were correlated with
the histopathological characteristics, tumor location, recurrence rate, mitomycin C
therapy and presence of metastases.
Results: LVs were detected in all specimens within the tumor and peritumorally.
Significantly more Ki67+ proliferating lymphatic endothelial cells were detected in the
tumor and in the peritumoral tissue up to 300 µm compared to the surrounding normal
conjunctiva (>300 µm distance). There was a slightly positive correlation between the
tumor size and the LVN and LVA in the 50 µm zone adjacent to the tumor. We did not
find significant correlations between LVs and histopathological and clinical
characteristics (location, shape, relapses, metastases), possibly due to small sample
sizes. Non-limbal tumors with involvement of tarsus or fornix showed a tendency of
higher LVD compared to limbal tumors.
Conclusion: Conjunctival MMs display tumor-associated LV within and around the
tumor. The MM seems to induce lymphangiogenesis not only in the tumor, but also in
its proximity.
10
Introduction
Malignant melanomas (MMs) of the conjunctiva are associated with significant
morbidity and mortality due to high rates of recurrence and metastasis1,2. The
dissemination of the tumor is linked to regional lymph nodes with subsequent distant
metastasis 3. Compared to cutaneous MM, conjunctival MM is rare. The annual ageadjusted incidence rates (per million) vary from 0.15 in Asians to 0.5 in non-Hispanic
Whites4,5.
Up to date, there are only few features recognized as prognostic factors for
conjunctival MM: Tumor location, expansion, relapse, multifocal location, involvement
of the surgical margins and tumor depth are known prognostic factors for metastatic
disease6, 7. Histopathological characteristics seem not to be consistently associated
with the clinical outcome7.
The primary treatment of conjunctival MM is surgical: Complete excision with
tumor-cell free margins represents the therapy of choice, but can not be sufficiently
performed in cases of diffuse growth. Topical mitomycin C as adjunct therapy has been
established8; cryotherapy, laser ablation, radiation treatment, and chemotherapy in
case of metastasis represent additional treatment options for conjunctival MM.
Conjunctival MMs are rich in blood vessels, which play a role in systemic
hematogenous metastasis. However, the main route of metastasis of conjunctival MM
is lymphogenic: Ultrasonic examination of the draining lymph nodes or even surgical
removal of the sentinel lymph nodes has been recommended. Up to now, it was not
known, whether conjunctival MMs also display significant tumor-associated
lymphangiogenesis, i.e. whether the tumor induces formation of new lymphatic vessels.
The extent of lymph node metastasis is supposed to be a major determinant for
prognosis and staging of tumors9 and it has been shown that tumor-induced
lymphangiogenesis is a strong risk factor for tumor metastasis in different human
11
cancers10; 9; 11-13; 3; 14. The importance of tumor-induced lymphangiogenesis for
lymphogenic metastasis in cutaneous MM has been shown recently10.
Purpose of this study was to analyze whether conjunctival MMs also display
tumor-induced lymphangiogenesis, which may represent a possible new prognostic
factor. We used specific lymphatic endothelial markers to analyze the presence of LVs
in the tumor itself and in the adjacent tissue and correlated these data with the clinical
outcome and histopathological characteristics of the tumors.
12
Material and Methods
Patients and conjunctival sections
Clinical files and histological sections of conjunctival MMs of 20 patients who were
treated at the Department of Ophthalmology of the University Erlangen-Nürnberg,
Germany, between 1987 and 2005 were retrospectively analyzed.
The files were screened and the documented treatment and follow-up was taken into
consideration. The clinical outcome of all patients was re-evaluated at the end of 2006
and again 2008 by interviewing the patients’ general practitioners for any new progress
of the disease since the last visit, especially for systemic metastasis.
Lymphatic vessel staining (LYVE-1 and podoplanin)
For staining of LVs LYVE-1 served as specific marker for lymphatic vascular
endothelium. The preparation of the histological sections of conjunctival MMs was
performed as described previously15. Briefly, tissue was fixed in neutral buffered
formalin, embedded in paraffin and cut in 4 µm sections. After deparaffinization and
rehydration, sections were digested with proteinase K (Dako, Hamburg, Germany),
incubated for 10 minutes with horseradish peroxidase (HRP). Sections of conjunctival
MMs were incubated for 30 minutes with a rabbit polyclonal antibody against human
LYVE-1 (1:100; Dako, Hamburg, Germany) and HRP-conjugated secondary antibody
before development with 3-amino-9-ethylcarbazole (AEC+) substrate (red reaction
product) or 3,3´-diaminobenzidine (DAB; brown product). Sections were counterstained
with Mayer haemalaun (Chroma, Münster, Germany). Positive controls were performed
on corneoscleral ring specimens and negative controls with control IgG.
Since LYVE-1 is also expressed on tissue macrophages16; 17 only clearly identifiable
vessels with an erythrocyte-free vessel lumen were counted as LV and specimens
were double-stained with podoplanin as second lymphatic endothelial marker.
13
For podoplanin immunostaining polyclonal rabbit anti-human antibody against
podoplanin (1:200, Dako, Hamburg, Germany) was used, followed by biotinylated goat
anti-rabbit IgG for 30 minutes and detection by a streptavidin peroxidase complex
(using DAB/AEC+ as the chromogen substrate). Positive controls were performed as
described above.
Ki67 staining
Sections of paraffin embedded specimens were double-stained with LYVE-1 and
monoclonal antibody against Ki67 (clone MIB-1, Dako, Hamburg, Germany) as a
specific marker for proliferating cells. LVs with at least 5 endothelial cells with nuclear
Ki67 positivity were considered to be Ki67 positive.
Mitomycin C treatment
The additional topical mitomycin C treatment of conjunctival MM by eye drops is
standardized in our department as two 14 day cycles with mitomycin C 0.02 % eye
drops five times a day with a 14-day break. Some patients were not treated with
mitomycin C eye drops due to allergy or refusal. To analyze the potential antilymphangiogenic effect of mitomycin C therapy, tumor specimens of patients, who
received mitomycin C treatment and had excisions later on during their clinical course
(because of new suspect lesions) were compared to the specimens obtained before
mitomycin C treatment.
Microscopy and computer-assisted vessel analysis
Histological sections of conjunctival MMs of 20 patients were taken into consideration.
Sections were analyzed with a light microscope (BX51, Olympus Optical Co.,
Hamburg, Germany) and digital color images were taken with a 12-bit CCD camera
(Color-View I, Olympus, Hamburg, Germany; 40x and 100x magnification). Analyses
were performed using Cell^F (Olympus, Hamburg, Germany) and Image J analyzing
program (available via http://rsb.info.nih.gov / ij/download.html). Morphometrical LV
14
analysis was performed for the area of the tumor, the adjacent 50 µm zone, the midperipheral zone (50 -200µm), the peripheral zone (200-300µm) and the conjunctiva
more than 300 µm away from the tumor border (defined as normal conjunctiva). If the
tumor adjacent area was not completely represented on the specimen, we evaluated
the area as far as represented. The tumor size was measured as the area covered by
the tumor in the histological section. We determined the following parameters: 1. the
LV number (LVN), 2. the area covered by LVs (LVA), 3. the LV density (LVD),
determined by measuring the LVN and dividing it by the tumor cross sectional area
(mm2).
Functional and statistical analysis
To determine statistical significance, quantitative analyses of the LVA, LVN, and LVD in
all analyzed areas (intratumoral, 50 µm, 50 - 200 µm, 200 - 300 µm and >300 µm
peritumoral) were performed in a standardized procedure using the statistic program
InStat 3 (GraphPad Software Inc, San Diego, California, USA). Analyses were
performed using the non-parametric test for the Ki67 analysis and the Pearson rank
correlation for the correlation of tumor area to LVN and LVA.
15
Results
Patients and histopathological characteristics
The median age of the patients in the study was 70.4 years (43-100 years). 9
women and 11 men were treated. The MM of 13 patients was based on primary
acquired melanosis (PAM); in 7 patients the origin of the MM remained unclear.
The primary treatment was surgical, 10 patients had an additional topical
mitomycin C treatment. The primary tumor was located in the fornix (2 patients),
the tarsus and the upper lid (5 patients) or at the limbus/epibulbar conjunctiva (7
patients). 6 patients showed a widely disseminated tumor, including some who
have had primary excision outside of our department, so that the primary tumor
location was not known. 10 patients showed a diffuse, 5 patients a nodular, and
5 a mixed growing type of the MM. The histopathological characteristics were:
13 tumors of mixed cell type, 5 tumors of spindle cell type, and 2 tumors of
epitheloid cell type.
8 of the 20 patients showed more than 5 relapses during the clinical course. 5
patients suffered from metastasis: 1 patient was diagnosed for gastric
metastasis 7 years after primary diagnosis, two patients for submandibular and
neck spreading after 2 and 3 years, 1 patient for craniopharyngeal metastasis
after 1 year and 1 patient had parotical metastasis after 14 years.
Conjunctival MMs display intra- and peritumoral LVs
Using LYVE-1 and podoplanin staining, we identified LVs in all included MM
specimens, both within the tumor itself and in the adjacent tissue (Figure 1). There was
a similar staining pattern for both lymphatic vascular endothelial markers in the
conjunctival MM specimens.
16
Conjunctival MMs are associated with intra- and peritumoral lymphangiogenesis
To examine whether conjunctival MMs induce formation of new LVs, Ki67 staining was
performed to detect proliferating lymphatic endothelial cells in the conjunctival MMs
and the adjacent conjunctival tissue. Immunostaining with Ki67 revealed significantly
more proliferating lymphatic endothelial cells in the tumor and in the directly adjacent
conjunctiva compared to the peripheral zones. Non-parametric tests were performed
for each zone separately with the following results concerning the ratio of Ki67-positive
LVs: 1. tumor vs. tumor adjacent conjunctiva (50 µm zone) p=0.063 (not significant), 2.
tumor vs. mid-peripheral zone (50 -200 µm) p=0.021, 3. tumor vs. peripheral zone
(200-300 µm) p=0.031, 4. tumor vs. distant, presumably normal conjunctiva >300 µm
from the tumor border p=0.002 (Figure 2). The results support the hypothesis of tumorassociated active lymphangiogenesis in the tumor and its proximity.
Influence of tumor cross-sectional area on LVs
We analyzed whether the extent of lymphangiogenesis in and around
conjunctival MM was correlated with the tumor area. Therefore analyses of the
LV parameters LVA, LVN, LVD were performed in the tumor and in the tumor
environment (50 µm zone, 50-200 µm zone, 200-300 µm zone). Intratumoral
LVN, LVA and LVD were not positively correlated to the tumor cross-sectional
area (results for LVN and LVA shown as table in Fig. 3). The LVN and LVA in
the 50 µm area directly adjacent to the tumor are positively correlated to the
tumor cross sectional area; the results for the LVN demonstrated as scatter plot
in Fig. 3 (Pearson correlation coefficient r=0.64; p=0.002). There was a slightly
inverse correlation for the LVD in the tumor with the tumor cross-sectional area
(r=-0.257, p=0.237).
17
Effect of mitomycin C therapy on LVs
We analyzed the potential effect of topical mitomycin C treatment on LV formation.
Specimens of patients (n=4) who underwent topical mitomycin C treatment after tumor
excision and had subsequent excisions for tumor recurrence were analyzed for LVD
and LVN (Figure 4). In 3 patients the specimens represented all 5 zones; in one
patient the specimens showed only tumor without surrounding conjunctiva because of
diffuse tumor growth (therefore only the tumor zone was analyzed in this patient).
Because of the limited number of patients, statistical analysis was restricted to
descriptive analyses (Figure 4). Additional LV analysis (LVD, LVN, LVA) of specimens
from mitomycin C treated patients compared with specimens from patients without
mitomycin C treatment did not show statistically significant results.
Analysis of LVs in dependence of tumor location
Analyzing the location of the tumor, 7 patients had limbal/epibulbar tumors, 7 patients
had a MM at the fornix or tarsus and 6 patients had a disseminated MM. The analyses
of LV parameters (LVN, LVA, LVD) did not show statistical significant results in these
small sample sizes. Because of the small number of patients, we performed only
descriptive analyses as scatter plot. Fig. 5 demonstrates the LVD in dependence of the
tumor location: In 4 of 7 patients with non-limbal MMs with involvement of the fornix or
tarsus the LVD was higher than in all limbal tumor specimens (n=7).
18
Discussion
This study on conjunctival MM shows for the first time that conjunctival –
and not only cutaneous– MMs display tumor-associated lymphangiogenesis.
In our study we found LVs in the tumor itself as well as in the peritumoral area.
These erythrocyte-free LVs are stained with two new markers specific for lymphatic
vascular endothelium, which are LYVE-1 and podoplanin. Most remarkably, the degree
of actively proliferating, Ki67 positive lymphatic vascular endothelial cells is significantly
higher within the MM and in the close vicinity of the tumor compared to normal, resting
conjunctival LVs more distant from the tumor site. The ratio of Ki67 positive LVs is
reduced with growing distance from the tumor border which supports the hypothesis of
active tumor-induced formation of new LVs (tumor-associated lymphangiogenesis). It
has been shown recently that lymphangiogenic growth factors, which are secreted by a
primary tumor, can induce lymphangiogenesis20-23.
In our small pilot study there was a no significant correlation between tumor size
(two-dimensional) and LVN and LVA in the tumor. The analyses of the tumor
environment revealed a higher LVN and LVA in the 50 µm zone directly adjacent to the
tumor, possibly being an indicator for active lymphangiogenesis in the tumor
surroundings. We found a slightly inverse correlation between LVD in the tumor and
the tumor cross sectional area. On the one hand that finding might be related to the
two-dimensional calculations of the tumor area based on cross sectional specimens of
the tumor. On the other hand small tumors might show a higher LVD as a signal for
their starting potency of dissemination, possibly related to high secretion rates of
lymphangiogenic growth factors. Another possible aspect is a centrally developing
necrosis in larger tumors which might reduce the rate of lymphangiogenesis and cause
reduced LVD. Furthermore, some studies describe a high interstitial pressure within
tumors that promotes LV collapse13; thus compressed LV in larger tumors might appear
smaller than LV in smaller tumors.
19
We analyzed the putative impact of lymphangiogenesis on recurrence rate and
metastasis, but did not find a significant correlation, possibly related to the small
sample sizes. Larger (prospective) studies now will have to evaluate tumor-associated
lymphangiogenesis as a putative risk factor for tumor metastasis.
Tumor location is one of the clinically most important prognostic predictors of
conjunctival MM: non-limbal tumors show a higher incidence of initial systemic
metastasis and reduced survival rates5; 7. This fact might be due to facilitated access to
blood vessels or to the draining LVs. Our descriptive analysis of the tumor location, i.e.
limbal vs. palpebral/fornix vs. disseminated conjunctival in correlation with parameters
of lymphangiogenesis showed a tendency of higher LVD in non-limbal palpebral/fornix
tumors. We did not find significant differences concerning the lymphangiogenic
parameters in correlation with the different growth patterns i.e. shape of conjunctival
MM. Additional studies are necessary to elucidate these aspects.
Topical mitomycin C treatment might provide an antilymphangiogenic effect as it has
been suggested in several other studies on the treatment of conjunctival MM18; 8. We
performed only descriptive analyses due to the small sample sizes of histological tumor
specimens after mitomycin C treatment: There was a tendency of reduced LVD in
specimens from patients after mitomycin C therapy compared to specimens before
mitomycin C therapy, while LVN and LVA were not reduced. Nevertheless, other
factors as fibrotic tissue-remodeling after surgical excision, the influence of comedications as topical steroids or other causes can not be ruled out and may be of
significant influence.
The prognostic importance of intra- and peritumoral lymphangiogenesis is
becoming more established by a growing number of studies on several human
cancers10; 9; 3. The identification of high risk patients is helpful in order to individually
optimize screening and treatment guidelines. The extent of tumor-associated
lymphangiogenesis in conjunctival MM may be one novel prognostic criterion besides
other known or putative risk factors. Immunostaining for lymphatic markers as LYVE-1
20
and podoplanin in routine histological work-up of tumor samples might be warranted if
future studies reveal a correlation between tumor-induced lymphangiogenesis and
prognosis of the tumor in terms of metastasis and recurrence rate. The histological
analysis of lymphangiogenesis parameters compared with sentinel lymph node biopsy
as a mean of guiding treatment and follow-up is under discussion9; 12; 19.
This study on tumor-associated lymphangiogenesis may pave the road to new
targets for innovative therapeutic approaches and serve as a novel prognostic
parameter in conjunctival MM. Much effort in anti-lymphangiogenic and anti-angiogenic
research has been made to develop new therapeutic approaches to inhibit tumor
spreading. Recently, different assays of selective inhibition of LV growth on the ocular
surface have been shown24;25. In the future anti-lymphangiogenic treatment options
might help to minimize the risk of metastasis in conjunctival MM.
Conclusion
MMs of the conjunctiva display LVs within and around the tumor. There is evidence for
tumor-induced lymphangiogenesis, i.e. formation of newly formed LVs. These LVs may
act as conduits for tumor metastasis. Lymphangiogenesis parameters as LVD and LVN
may become useful novel prognostic indicators for conjunctival MM. Novel antilymphangiogenic therapeutic strategies may contribute to optimize the therapy of
conjunctival MM in the future.
Competing interest: None declared.
21
References
1.
Kurli M, Finger PT. Melanocytic conjunctival tumors. Ophthalmol Clin North Am
2005;18: 15-24.
2.
Brownstein S. Malignant melanoma of the conjunctiva. Cancer Control 2004;11:
310-6.
3.
Shields JD, Borsetti M, Rigby H et al. Lymphatic density and metastatic spread
in human malignant melanoma. Br J Cancer 2004;90: 693-700.
4.
Hu DN, Yu G, McCormick SA et al. Population-based incidence of conjunctival
melanoma in various races and ethnic groups and comparison with other
melanomas. Am J Ophthalmol 2008;145: 418-23.
5.
Tuomaala S, Eskelin S, Tarkkanen A et al. Population-based assessment of
clinical characteristics predicting outcome of conjunctival melanoma in whites.
Invest Ophthalmol Vis Sci 2002;43: 3399-408.
6.
Shields CL. Conjunctival melanoma: risk factors for recurrence, exenteration,
metastasis, and death in 150 consecutive patients. Trans Am Ophthalmol Soc
2000;98: 471-92.
7.
Tuomaala S, Toivonen P, Al-Jamal R et al. Prognostic significance of
histopathology of primary conjunctival melanoma in Caucasians. Curr Eye Res
2007;32: 939-52.
8.
Pe'er J, Frucht-Pery J. The treatment of primary acquired melanosis (PAM) with
atypia by topical Mitomycin C. Am J Ophthalmol 2005;139: 229-34.
9.
Tobler NE, Detmar M. Tumor and lymph node lymphangiogenesis--impact on
cancer metastasis. J Leukoc Biol 2006;80: 691-6.
10.
Detmar M, Hirakawa S. The formation of lymphatic vessels and its importance
in the setting of malignancy. J Exp Med 2002;196: 713-8.
11.
Dadras SS, Paul T, Bertoncini J et al. Tumor lymphangiogenesis: a novel
prognostic indicator for cutaneous melanoma metastasis and survival. Am J
Pathol 2003;162: 1951-60.
12.
Dadras SS, Lange-Asschenfeldt B, Velasco P et al. Tumor lymphangiogenesis
predicts melanoma metastasis to sentinel lymph nodes. Mod Pathol 2005;18:
1232-42.
13.
Jackson DG, Prevo R, Clasper S et al. LYVE-1, the lymphatic system and
tumor lymphangiogenesis. Trends Immunol 2001;22: 317-21.
14.
Straume O, Jackson DG, Akslen LA. Independent prognostic impact of
lymphatic vessel density and presence of low-grade lymphangiogenesis in
cutaneous melanoma. Clin Cancer Res 2003;9: 250-6.
22
15.
Cursiefen C, Schlotzer-Schrehardt U, Kuchle M et al. Lymphatic vessels in
vascularized human corneas: immunohistochemical investigation using LYVE-1
and podoplanin. Invest Ophthalmol Vis Sci 2002;43: 2127-35.
16.
Maruyama K, Ii M, Cursiefen C et al. Inflammation-induced lymphangiogenesis
in the cornea arises from CD11b-positive macrophages. J Clin Invest 2005;115:
2363-72.
17.
Cursiefen C, Chen L, Borges LP et al. VEGF-A stimulates lymphangiogenesis
and hemangiogenesis in inflammatory neovascularization via macrophage
recruitment. J Clin Invest 2004;113: 1040-50.
18.
Khong JJ, Muecke J. Complications of mitomycin C therapy in 100 eyes with
ocular surface neoplasia. Br J Ophthalmol 2006;90: 819-22.
19.
Tuomaala S, Kivela T. Metastatic pattern and survival in disseminated
conjunctival melanoma: implications for sentinel lymph node biopsy.
Ophthalmology 2004;111: 816-21.
20.
Hirakawa S, Kodama S, Kunstfeld R et al. VEGF-A induces tumor and sentinel
lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med
2005;201: 1089-99.
21.
Streit M, Detmar M. Angiogenesis, lymphangiogenesis, and melanoma
metastasis. Oncogene 2003;22: 3172-9.
22.
Skobe M, Hamberg LM, Hawighorst T et al. Concurrent induction of
lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular
endothelial growth factor-C in melanoma. Am J Pathol 2001;159: 893-903.
23.
Harrell MI, Iritani BM, Ruddell A. Tumor-induced sentinel lymph node
lymphangiogenesis and increased lymph flow precede melanoma metastasis.
Am J Pathol 2007;170: 774-86.
24.
Bock F, Onderka J, Dietrich T et al. Blockade of VEGFR3-signalling specifically
inhibits lymphangiogenesis in inflammatory corneal neovascularisation. Graefes
Arch Clin Exp Ophthalmol 2008;246: 115-9.
25.
Dietrich T, Onderka J, Bock F et al. Inhibition of inflammatory
lymphangiogenesis by integrin alpha5 blockade. Am J Pathol 2007;171: 361-72.
23
Figure legends:
Figure 1:
Tumor-associated lymphatic vessels in MMs of the conjunctiva
a) Representative image of LV staining with LYVE-1 antibody as specific marker for
lymphatic endothelium: LYVE-1 positive peritumoral LVs. b) Representative image of
podoplanin stained LVs in the tumor adjacent conjunctiva. c) Intratumoral LYVE-1
positive LVs (magnification x100/x200). Area of primary acquired melanosis is marked
with an asterisk.
Arrows: The LYVE-1/podoplanin stained lymphatic vessels (▬►) Note that erythrocyte
filled blood vessels are not stained with these lymphatic endothelial specific markers.
Figure 2: Tumor-induced lymphangiogenesis: Significantly more proliferating
LVs were found intratumorally and next to the tumor than in distant conjunctiva
(> 300 µm).
Representative images of conjunctival MM specimen stained with LYVE-1 and
proliferation marker Ki67. Ki67 positive cells are marked (arrowhead). a)
Representative image of Ki67 positivity in tumor-associated lymphatic endothelial cells;
red: Ki-67; brown: LYVE-1 (magnification x1000) b) Significantly more proliferating
LVs were found intratumorally as well as in the directly adjacent tumor environment
than in the more distant conjunctiva. Paired t test was performed for each zone
separately with the following results: 1. tumor vs. tumor adjacent conjunctiva (50 µm
zone) p=0.063 (not significant), 2. tumor vs. mid-peripheral zone (50 -200 µm) p=0.021,
3. tumor vs. peripheral zone (200-300 µm) p=0.031, 4. tumor vs. conjunctiva >300 µm
from the tumor border p=0.002; n=20, median is marked; circles mark 3 outliers. The
24
results support the hypothesis of tumor-associated active lymphangiogenesis in the
proximity of the tumor.
Figure 3: Influence of tumor cross-sectional area on LVs
Analyses of the LV parameters LVA, LVN, LVD were performed in the tumor
and in the tumor environment (50 µm zone, 50-200 µm zone, 200-300 µm
zone). Intratumoral LVN, LVA and LVD were not positively correlated to the
tumor cross-sectional area (a). There was a slightly inverse correlation for the
LVD in the tumor with the tumor cross-sectional area (r=-0.257, p=0.237). The
LVN in the 50 µm area directly adjacent to the tumor was positively correlated to
the tumor cross sectional area (Pearson correlation coefficient r=0.64; p=0.002),
demonstrated as scatter plot (b).
Figure 4: Effect of topical mitomycin C on LVs
Scatter plot diagram of the measured LVD in the tumor (0), in the adjacent 50 µm zone
(50), in the 50-200 µm zone (200), in the 200-300 µm zone (300) before and after
mitomycin C therapy. LVD before mitomycin C therapy is marked as ring, LVD after
mitomycin C therapy is marked as asterisk. Sections of 4 patients were analyzed, in
one patient there was no surrounding conjunctiva represented on the specimen and
only the tumor area was analyzed. Because of the limited number of patients
descriptive analyses were performed.
Figure 5: Analysis of LVs in dependence of tumor location
Descriptive scatter plot: In 4 of 7 patients with non-limbal MMs with involvement of the
fornix or tarsus the LVD was higher than in all limbal/epibulbar tumor specimens (n=7).
25
7 patients had limbal/epibulbar MMs, 7 patients had a MM at the fornix or tarsus and 6
patients had a disseminated MM. The analyses of LV parameters (LVN, LVA, LVD) did
not show statistical significant results in these small sample sizes.
Figure 1:
26
Figure 2:
27
Figure 3:
28
Figure 4:
29
Figure 5:
30
31
Literaturverzeichnis:
1. Brownstein S. 2004. Malignant melanoma of the conjunctiva. Cancer
Control; 11: 310-6.(2004)
2. Bock F, Onderka J, Dietrich T, Bachmann B, Pytowski B, CursiefenC.
2008. Blockade of VEGFR3-signalling specifically inhibits lymphangiogenesis in inflammatory corneal neovascularisation. Graefes Arch
Clin Exp Ophthalmol; 246: 115-9.(2008)
3. Cursiefen C, Chen L, Borges LP, Jackson D, Cao J, Radziejewski C,
D´Amore PA, Dana MR, Wiegand SJ, Streilein JW. 2004. VEGF-A
stimulates lymphangiogenesis and hemangiogenesis in inflammatory
neovascularization via macrophage recruitment. J Clin Invest; 113: 104050.(2004)
4. Cursiefen C, Schlotzer-Schrehardt U, Kuchle M,Sorokin L,BreitenederGeleff S, Atitalo K, Jackson D. 2002. Lymphatic vessels in vascularized
human corneas: immunohistochemical investigation using LYVE- 1 and
podoplanin. Invest Ophthalmol Vis Sci; 43: 2127-35.(2002)
5. Dadras SS, Lange-Asschenfeldt B, Velasco P, Nguyen L, Vora A,
Muzikansky A, Jahnke K, Hauschild A, Hirakawa S, Mihm MC, Detmar
M. 2005. Tumor lymphangiogenesis predicts melanoma metastasis to
sentinel lymph nodes. Mod Pathol; 18: 1232-42.(2005)
6. Dadras SS, Paul T, Bertoncini J, Brown LF, Muzikansky A, Jackson DG,
Ellwanger U, Garbe C, Mihm MC, Detmar M. 2003. Tumor lymphangiogenesis: a novel prognostic indicator for cutaneous melanoma
metastasis and survival. Am J Pathol; 162: 1951-60.(2003)
7. Detmar M, Hirakawa S. 2002.The formation of lymphatic vessels and its
importance in the setting of malignancy. J Exp Med; 196: 713-8.(2002)
8. Dietrich T, Onderka J, Bock F, Kruse FE, Vossmeyer D, Stragies R, Zahn
G, Cursiefen C. 2007. Inhibition of inflammatory lymphangiogenesis by
integrin alpha5 blockade. Am J Pathol; 171: 361- 72.(2007)
9. Harrell MI, Iritani BM, Ruddell A. 2007. Tumor-induced sentinel lymph
node lymphangiogenesis and increased lymph flow precede melanoma
metastasis. Am J Pathol; 170: 774-86.(2007)
32
10. Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LE, Detmar M.
2005. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med; 201: 1089-99.
(2005)
11. Hu DN, Yu G, McCormick SA, Finger PT. 2008. Population-based
incidence of conjunctival melanoma in various races and ethnic groups
and comparison with other melanomas. Am J Ophthalmol; 145: 418-23.
(2008)
12. Jackson DG, Prevo R, Clasper S, Banerji. 2001. LYVE-1, the lymphatic
system and tumor lymphangiogenesis. Trends Immunol; 22: 317-21.
(2001)
13. Khong JJ, Muecke J. 2006. Complications of mitomycin C therapy in 100
eyes with ocular surface neoplasia. Br J Ophthalmol; 90: 819-22.(2006)
14. Kurli M, Finger PT. 2005. Melanocytic conjunctival tumors. Ophthalmol
Clin North Am; 18: 15-24.(2005)
15. Maruyama K, Ii M, Cursiefen C, Jackson DG, Keino H, Tomita M, Van
Rooijen N, Takenaka H, D'Amore PA, Stein-Streilein J, Losordo DW,
Streilein JW. 2005. Inflammation-induced lymphangiogenesis in the
cornea arises from CD11b-positive macrophages. J Clin Invest; 115:
2363-72.(2005)
16. Pe'er J, Frucht-Pery J. 2005. The treatment of primary acquired
melanosis (PAM) with atypia by topical Mitomycin C. Am J Ophthalmol;
139: 229-34.(2005)
17. Shields CL. 2000. Conjunctival melanoma: risk factors for recurrence,
exenteration, metastasis, and death in 150 consecutive patients. Trans
Am Ophthalmol Soc; 98: 471-92.(2000)
18. Shields JD, Borsetti M, Rigby H, Harper SJ, Mortimer PS, Levick JR,
Orlando A, Bates DO. 2004. Lymphatic density and metastatic spread in
human malignant melanoma. Br J Cancer; 90: 693-700.(2004)
19. Skobe M, Hamberg LM, Hawighorst T, Schirner M, Wolf GL, Alitalo K,
Detmar M. 2001. Concurrent induction of lymphangiogenesis,
angiogenesis, and macrophage recruitment by vascular endothelial
growth factor-C in melanoma. Am J Pathol; 159: 893-903.(2001)
33
20. Straume O, Jackson DG, Akslen LA. 2003. Independent prognostic
impact of lymphatic vessel density and presence of low-grade
lymphangiogenesis in cutaneous melanoma. Clin Cancer Res; 9: 250-6.
(2003)
21. Streit M, Detmar M. 2003. Angiogenesis, lymphangiogenesis, and
melanoma metastasis. Oncogene; 22: 3172-9.(2003)
22. Tobler NE, Detmar M. 2006. Tumor and lymph node lymphangiogenesisimpact on cancer metastasis. J Leukoc Biol; 80: 691-6.(2006)
23. Tuomaala S, Eskelin S, Tarkkanen A, Kivelä T. 2002. Population-based
assessment of clinical characteristics predicting outcome of conjunctival
melanoma in whites. Invest Ophthalmol Vis Sci; 43: 3399-408.(2002)
24. Tuomaala S, Kivela T. 2004. Metastatic pattern and survival in
disseminated conjunctival melanoma: implications for sentinel lymph
node biopsy. Ophthalmology; 111: 816-21.(2004)
25. Tuomaala S, Toivonen P, Al-Jamal R, Kivelä T. 2007. Prognostic
significance of histopathology of primary conjunctival melanoma in
Caucasians. Curr Eye Res; 32: 939-52.(2007)
34
Abkürzungsverzeichnis:

Lymphatic Vessel Endothelial Hyaluronan Receptor 1 (LYVE1) Seite 9
(Seite 2 Artikel)

Lymphatic vessels (LV) Seite 9 (Seite 2 Artikel)

Malignant melanoma (MM) Seite 9 (Seite 2 Artikel)

Area covered by LV (LVA) Seite 9 (Seite 2 Artikel)

The LV number (LVN) Seite 9 (Seite 2 Artikel)

The LV density (LVD) Seite 9 (Seite 2 Artikel)

Horseradish peroxidase (HRP) Seite 12 (Seite 5 Artikel)

3-amino-9-ethylcarbazole (AEC+) Seite 12 (Seite 5 Artikel)

3,3´-diaminobenzidine (DAB) Seite 12 (Seite 5 Artikel)

Primary acquired melanosis (PAM) Seite 15 (Seite 8 Artikel)

Mitomycin C (MMC) Seite 29 (Seite 22 Artikel)
Die Seitenzahlen in Klammern beziehen sich auf die Veröffentlichung im BJO
(British Journal of Ophthalmology):
Tumor-associated lymphangiogenesis in conjunctival malignant melanoma
Paul Zimmermann, Tina Dietrich, Felix Bock, Folkert K. Horn, Carmen
Hofmann-Rummelt, Friedrich E. Kruse, Claus Cursiefen
35
Verzeichnis der Vorveröffentlichungen:

Zimmermann P, Dietrich T, Bock F, Horn FK, Hofmann-Rummelt C,
Kruse FE, Cursiefen C. 2009. Tumor-associated lymphangiogenesis
in conjunctival malignant melanoma. Accepted for online first in the
British Journal of Ophthalmology on 24. April 2009.
(BJOPHTHALMOL/2008/147355).

Bock F, König Y, Dietrich T, Zimmermann P, Baier M, Cursiefen C.
2007. Inhibition of angiogenesis in the anterior chamber of the eye.
Ophthalmologe; April; 104(4):336-44 (2007)
36
Anhang:
Vergleichen Sie hierzu bitte die Dissertation:
Abbildungsverzeichnis mit Legenden
Seite 23-25
(Seite 16-18 Artikel)
Abbildungen:
Seite 26-30
(Seite 19-23 Artikel)

Abbildung 1
Seite 26
(Seite 19 Artikel)

Abbildung 2
Seite 27
(Seite 20 Artikel)

Abbildung 3
Seite 28
(Seite 21 Artikel)

Abbildung 4
Seite 29
(Seite 22 Artikel)

Abbildung 5
Seite 30
(Seite 23 Artikel)
37
Danksagung:
Für die unermüdliche Unterstützung bei der Erstellung meiner Dissertation in
den letzten 4 Jahren danke ich zum einen meinem Doktorvater PD Dr.med.
Claus Cursiefen und meiner Betreuerin Dr. med. Tina Dietrich und Dr. rer. nat.
Felix Bock, die alle drei stets ein offenes Ohr für meine Probleme hatten und
mich unermüdlich tatkräftig, sei es mit Rat oder Tat, unterstützten.
Zum anderen danke ich meiner Familie, die mir dies alles ermöglichte, mir stets
Mut zusprach und mich auf dem langen Weg durch Studium und Dissertation
begleitete.
Für finanzielle Unterstützung der Arbeit und des Projektes danke ich dem IZKF
Erlangen (Interdisziplinäres Zentrum für klinische Forschung).
38
Curriculum vitae:




Paul Zimmermann, geb. am 29.12.1981
Sohn von Rudolf Zimmermann und Gudrun Zimmermann, geb. Kern
Geschwister: Felix Zimmermann, Lukas Zimmermann
Kind: Paula-Greta Zimmermann, geb. 23.10.2008

1988-1992 Kreuzbergschule Münchberg

September 1992 bis Juni 2001 neusprachlicher Zweig des Gymnasiums
Münchberg mit den Fremdsprachen Englisch, Latein und Französisch

Juni 2001 Abitur in den Leistungskursen Mathematik und Latein

Juli 2001 bis März 2002 Wehrdienst bei der Bundeswehr in Roding und
Weiden

Beginn des Studiums der Humanmedizin Sommersemester 2002 in
Erlangen

März 2004 Physikum

Famulaturen in der Inneren Medizin und Chirurgie im Kreiskrankenhaus
Münchberg, am Lehrstuhl für Präventive und Rehabilitative Sportmedizin
am OSP (Olympia Stützpunkt Bayern; Leistungsdiagnostik) bei Professor
Halle in München

September/Oktober 2005 Start der Promotion im Rahmen des IZKF
(Interdisziplinäres Zentrum für klinische Forschung) an der Augenklinik
Erlangen bei PD Dr. C. Cursiefen mit dem Titel „Tumor-associated
Lymphangiogenesis in conjunctival malignant melanoma“

Posterpräsentation bei der Jahrestagung der
Ophthalomologische Gesellschaft) September 2006

PJ in der Chirurgie im Lehrkrankenhaus Hof (Feb.2007-Juni2007)

Posterpräsentation auf der ARVO (Association in Research in Vision and
Ophthalmology) in Fort Lauderdale/Florida im Mai 2007
DOG
(Deutsche
39

PJ in der Inneren Medizin im Stadtspital Waid in Zürich (Juni2007Sept.2007)

PJ in der Augenklinik der Universität Erlangen-Nürnberg (Okt.2007Jan.2008)

Staatsexamen Humanmedizin April/Juni 2008

Approbation Humanmedizin Juni 2008

Ab August 2008 Klinikum Bamberg Medizinische Klinik I
Herunterladen