Aus der Hautklinik der Friedrich- Alexander- Universität Erlangen-Nürnberg Direktor: Prof. Dr. med. Univ. Gerold Schuler Myeloid-derived suppressor cell activation by combined lipopolysaccharide plus interferon-γγ treatment impairs dendritic cell development Inaugural-Dissertation zur Erlangung der Doktorwürde der Medizinischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg vorgelegt von Verena Greifenberg aus Bamberg Gedruckt mit Erlaubnis der Medizinischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Dekan: Prof. Dr. J. Schüttler Referent: Prof. Dr. M. Lutz Korreferenten: Prof. Dr. Dr. A. Gessner Prof. Dr. N. Romani Prof. Dr. A. Steinkasserer Tag der mündlichen Prüfung: 26. November 2009 Für einen lieben Menschen Für eine Diva Für eine liebe Diva 1 ............................................................................................................... SUMMARY 1 1.1..........................................................................................BACKGROUND AND AIMS 1 1.2...............................................................................................................METHODS 1 1.3................................................................................................................RESULTS 1 1.4....................................................................................... PRACTICAL CONCLUSIONS 2 2 ............................................................................................ ZUSAMMENFASSUNG 3 2.1........................................................................................HINTERGRUND UND ZIELE 3 2.2.............................................................................................................METHODEN 3 2.3........................................................................ERGEBNISSE UND BEOBACHTUNGEN 3 2.4......................................................................PRAKTISCHE SCHLUSSFOLGERUNGEN 4 3 .......................................................................................................INTRODUCTION 5 3.1.............................................. STRUCTURE AND FUNCTIONS OF THE IMMUNE SYSTEM 5 3.1.1.........................................Common introduction into the immune system 5 3.1.2...............................................................Regulation of immune response 6 3.2................................................................... MYELOID-DERIVED SUPPRESSOR CELLS 8 3.2.1.................................................................................................. Overview 8 3.2.2................................................................................... Plasticity of MDSC 9 3.2.3.................................................... MDSC in homeostasis and in diesease 9 3.2.3.1....................................................................................... Murine MDSC 10 3.2.3.2.......................................................................................Human MDSC 11 3.2.4..........................................................................In vitro generated MDSC 12 3.2.5............................................................. Induction of generation of MDSC 12 3.2.5.1......................................Factors for expansion and activation of MDSC 12 3.2.5.2................................................................ Signal transduction in MDSC 14 3.2.6...............................................Strategies of MDSC for T-cell suppression 14 3.2.6.1..................................................Mechanisms of suppression by MDSC 15 3.2.6.1.1 ....................................................................... Nitrogen monoxide 15 3.2.6.1.2 ................................................................L-arginine and arginase 15 3.2.6.1.3 ..............................................................Reactive oxygen species 16 3.2.6.1.4 ........................................................Transforming growth factor β 16 3.2.6.2............................. Mechanisms of suppression of both subpopulations 16 3.2.6.3..................................... Role of antigen-specific suppression by MDSC 17 3.2.7..................................................Integration of MDSC in cellular networks 17 3.2.8.................................................................................................... Outlook 18 2 3.2.9............................................................................................... Hypothesis 19 4 ............................................................................................................ EINLEITUNG 20 4.1....................................................... AUFBAU UND FUNKTIONEN DES IMMUNSYSTEMS 20 4.1.1............................................Allgemeine Einführung in das Immunsystem 20 4.1.2.................................................................. Regulation der Immunantwort 22 4.2....................................................... SUPPRESSORZELLEN DER MYELOISCHEN REIHE 23 4.2.1............................................................................. Allgemeine Einführung 24 4.2.2................................................................................ Plastizität der MDSC 25 4.2.3.................................... MDSC in der Homöostase und bei Erkrankungen 26 4.2.3.1....................................................................................... Murine MDSC 26 4.2.3.2......................................................................... MDSC beim Menschen 27 4.2.4..........................................................................In vitro generierte MDSC 28 4.2.5............................................................. Induktion der Bildung von MDSC 29 4.2.5.1............................. Faktoren zur Expansion und Aktivierung von MDSC 29 4.2.5.2................................................................. Signaltransduktion in MDSC 31 4.2.6.......................................... Strategien der MDSC zur T-Zell-Suppression 31 4.2.6.1........................................Mechanismen der Suppression durch MDSC 32 4.2.6.1.1 ......................................................................... Stickstoffmonoxid 32 4.2.6.1.2 .................................................................L-Arginin und Arginase 32 4.2.6.1.3 ..........................................................Reaktive Sauerstoffspezies 33 4.2.6.1.4 ........................................................Transforming growth factor β 33 4.2.6.2..................... Suppressionsmechanismen der beiden Subpopulationen 34 4.2.6.3............Bedeutung der Antigenspezifität der Suppression durch MDSC 34 4.2.7...............................Integration der MDSC in weitere zelluläre Netzwerke 35 4.2.8................................................................................................... Ausblick 35 4.2.9................................................................................................Hypothese 36 5 .................................................................................... VORVERÖFFENTLICHUNG 37 6 ...................................................................................... LITERATURVERZEICHNIS 38 7 .................................................................................ABKÜRZUNGSVERZEICHNIS 52 8 ........................................................................................................ DANKSAGUNG 55 9 .......................................................................................................... LEBENSLAUF 57 1 1 1.1 Summary Background and aims Dendritic cells (DC) and myeloid-derived suppressor cells (MDSC) are involved in the control of the immune response within tumor diease and infections. Here, MDSC are mainly found in the spleen and bone marrow and barely in lymph nodes. Morphologically, they are divided into monocytic and polymorphonuclear cells. It is not known yet which role MDSC play in healthy, untreated mice. MDSC can be generated from murine bone marrow cells by application of granulocyte/macrophage-colony-stimulating-factor (GM-CSF) and suppress T-cell response in vitro. The cytokine interferon-γ (IFN-γ) and nitrogen monoxide (NO) are required for this process. However, further stimulation of bone marrow cells with GM-CSF generates immature DC. Both DC and MDSC stem from immature myeloid precursor cells. So far, it is not resolved which factors regulate the differentiation of these cells to either DC or MDSC. This dissertation aimed for the identification of different subpopulations of MDSC in splenocytes of healthy mice. In addition, the modes of stimulation, activation and the plasticity of MDSC should be analyzed. 1.2 Methods Therefore, ex vivo isolated splenocytes were characterized with flow cytometry; based on this, different subpopulations were isolated via cell sorting. Their suppressive potential was examined with mixed lymphocyte reaction and measuring of the amount of released NO, cytospins helped to identify their morphology. In vitro generated and ex vivo isolated immature myeloid cells were also characterized with flow cytometry after stimulation of mice and/or cells with different cytokines. 1.3 Results In this dissertation it was shown that the combination of IFN-γ and LPS (bacterial lipopolysaccharide) inhibited further differentiation of in vitro generated MDSC in the most efficient way; in addition, their suppressive activity was induced and enhanced by this treatment. In ex vivo isolated splenocytes of healthy, untreated mice six different subpopulations could be defined regarding surface markers and size/granularity/morphology of the cell; two of them were able to suppress T-cell response: Gr-1high CD11bintermediate cells with ring-shaped nuclei and Gr-1low CD11bintermediate cells with heterogenous morphology. 2 IFN-γ und LPS did not enhance suppressive activity in splenocytes isolated from healthy mice. However, the additional induction of a specific immune response with endogenous or exogenous DC caused an accumulation of Gr-1+CD11b+ cells in the spleen; hereby the proliferation of T-cells in the spleen was reduced. Furthermore, it was shown that injection of IFN-γ and LPS inhibited the in vitro differentiation of ex vivo isolated Gr-1+CD11b+ splenocytes into mature DC. In addition, ex vivo isolated CD11b+ splenocytes lost their ability to suppress T-cell response after application of IFN-γ, LPS and GM-CSF to cell culture. 1.4 Practical conclusions These results suggest that in situations such as chronic inflammation/infection LPS and IFN-γ both activate the immune response and induce the generation of MDSC in the spleen to avoid exaggerating systemic reactions. Obviously, the specific T-cell response in the regional lymph nodes is not influenced by these processes. These data contribute to a better understanding of the activation of MDSC in vivo. A possible clinical application could be the selective induction or the injection of MDSC to avoid chronical inflammation. 3 2 Zusammenfassung 2.1 Hintergrund und Ziele Dendritische Zellen (DZ) und myeloide Suppressorzellen (MDSC) sind an der Kontrolle der Immunantwort im Rahmen von Tumoren oder Infektionen beteiligt. Letztere findet man hierbei vor allem in Milz und Knochenmark und kaum in den Lymphknoten und teilt sie morphologisch grob in monozytäre und polymorphkernige Zellen ein. Inwieweit MDSC in gesunden, unbehandelten Mäusen eine Rolle spielen ist bis dato nicht geklärt. Durch Zugabe von GM-CSF (granulocyte/macrophagecolony-stimulating-factor) kann man aus murinen Knochenmarkszellen MDSC kultivieren. Diese supprimieren in vitro die T-Zell-Antwort; hierbei sind u.a. das Zytokin Interferon-γ (IFN-γ) und Stickstoffmonoxid (NO) involviert. Eine längere Stimulation der Knochenmarkszellen mit GM-CSF führt hingegen zur Bildung reifer DZ. DZ und MDSC stammen von unreifen myeloiden Vorläuferzellen ab. Bisher ist nicht geklärt, welche Faktoren die Differenzierung dieser Zellen zu entweder DZ oder MDSC regulieren. Diese Arbeit hatte zum Ziel, in Milzzellen gesunder Mäuse verschiedene Subpopulationen der MDSC zu identifizieren und deren Stimulierbarkeit, Aktivität und Plastizität näher zu beleuchten. 2.2 Methoden Hierzu wurden ex vivo isolierte Milzzellen mittels Durchflusszytometrie charakterisiert und daraufhin über verschiedene Zellsortiermethoden diverse Subpopulationen isoliert. Diese wurden mit Hilfe der gemischten Lymphozytenreaktion und Messung des NO-Gehalts auf ihr suppressives Potential und mit Cytospins bezüglich ihrer Morphologie untersucht. Es fanden nach Zytokinbehandlung in Zellkultur und im Mausmodell auch durchflusszytometrische Messungen an in vitro generierten und ex vivo isolierten unreifen myeloiden Zellen statt. 2.3 Ergebnisse und Beobachtungen In dieser Arbeit wurde gezeigt, dass die Kombination aus IFN-γ und LPS (bakterielles Lipopolysaccharid) die weitere Differenzierung in vitro generierter MDSC am effektivsten verhindert und zudem deren suppressorische Aktivität induziert und verstärkt. In ex vivo isolierten Milzzellen aus gesunden, unbehandelten Mäusen konnten im Hinblick auf Oberflächenmarker und Zellgröße/-granularität/morphologie sechs verschiedene Subpopulationen charakterisiert werden; davon 4 waren zwei suppressorisch aktiv: Gr-1highCD11bintermediate Zellen mit ringförmigen Kernen und Gr-1lowCD11bintermediate Zellen mit heterogener Morphologie. IFN-γ und LPS führten in gesunden Mäusen zu keinem Anstieg der suppressorischen Aktivität bei isolierten Milzzellen. Die zusätzliche Induktion einer spezifischen Immunantwort mittels endogener oder exogener DZ aber bewirkte eine Akkumulation Gr-1+CD11b+ Zellen in der Milz. Dabei wurde die Proliferation Milzständiger T-Zellen reduziert. Weiterhin wurde gezeigt, dass die Injektion von IFN-γ und LPS die in vitro-Differenzierung ex vivo isolierter Gr-1+CD11b+ Milzzellen zu reifen DZ verhindert. Ex vivo isolierte CD11b+ Milzzellen verlieren zudem ihre Fähigkeit zur Suppression, wenn sie in Kultur IFN-γ, LPS und GM-CSF erhalten. 2.4 Praktische Schlussfolgerungen Diese Ergebnisse lassen vermuten, dass zum Beispiel im Rahmen chronischer Entzündungen/bakterieller Infektionen LPS und IFN-γ mit der Aktivierung des Immunsystems gleichzeitig die Bildung von MDSC in der Milz induzieren, um überschießende systemische Reaktionen zu vermeiden. Die spezifische T-ZellAntwort in den regionalen Lymphknoten wird hierbei wohl nicht beeinflusst. Diese Daten tragen zum besseren Verständnis der Aktivierung von MDSC in vivo bei. Durch gezielte Induktion oder Applikation von MDSC könnte so zum Beispiel bei Patienten die Entstehung chronischer Entzündungen verhindert werden. 5 3 Introduction 3.1 Structure and functions of the immune system The vertebral immune system represents a complex arrangement made of cellular and molecular components as well as organs. It protects the organism from environmental influences and regulates processes within the body, thereby sustaining the creature´s integrity. 3.1.1 Common introduction into the immune system The immune system comprehends two cooperating and partially overlapping compartments: the unspecific mechanisms of defense of the innate (natural) and the specific strategies of defense of the acquired immune system. The first one comprises mechanical (e.g. dermal and mucosal epithelium), microbial (e.g. bacterial colonization of epithelial layers) and chemical (e.g. pH, enzymes) barriers as well as molecular (complement system) and cellular (phagocytes, natural killer cells) components. The innate immune system detects foreign microorganims and molecules via certain surface receptors and then initiates the elimination of the pathogens. Mainly macrophages and neutrophil granulocytes ingest foreign material and trigger an inflammation by secretion of cytokines and chemokines. Immature dendritic cells (DC) also belong to the family of phagocytes and are able to process pathogens. They are activated by microbial ligands or proinflammatory cytokines 68, 125 . Mature DC show processed fragments on surface major histocompatibility complex II (MHC II) molecules and are then called antigen-presenting cells (APC). Additionally to antigen binding via T-cell-receptor and binding of CD4 (CD=cluster of differentiation) to MHC II- molecules, costimulatory molecules on DC are required for an effective activation of T-cells; CD11c can also be found on mature DC 11. After peripheral activation they migrate to regional lymph nodes. There, the acquired immune system consisting of B-lymphocytes (humoral defense) and T-lymphocytes (cellular defense) comes into operation. It is able to specifically recognize presented antigens and also to establish an immunological memory. T-lymphocytes detect processed antigen in a specific way via their T-cell receptor (TCR) 53 . TCR as well as the coreceptors CD4 respective CD8 and costimulatory molecules like CD28-CD80/CD86 or CD40/CD40-ligand are needed for activation of T-cells and thereby for a sufficient and effective immune response. Without this costimulation T-cells can not react on antigen inspite of antigen binding. This phenomenon is called anergy 137. 6 CD8+ cytotoxic T-cells bind complexes of MHC I-molecules and peptides and recognize infected or abnormal cells in this way. By secretion of granzyme, perforin or different cytokines (e.g. interferon γ =IFN-γ) the elimination of pathogens is then induced. APC present ingested and processed exogenous antigen on MHC II-molecules, which are bound by CD4 of T-lymphocytes. Depending on the antigen´s character the secretion of different cytokine patterns is induced. These cytokines regulate the differentiation of naive CD4+ T-lymphocytes and control their involvement in either cell-mediated TH1- or humoral TH2-immune response 106 this process called T-cell-polarization or T-cell-priming 19, 30, 67 . Activated DC take part in . IFN-γ and interleukin- 12 (IL-12) pave the way for TH1-response with activation of macrophages and simultaneously inhibit TH2-response 103. The immunological processes described so far ensure a sufficient elimination of noxes and pathogens. However, a disproportionate and potentially harmful immune response (i.e. allergic reaction, autoimmunity, chronic inflammation) has to be avoided. Another problem is the influence of malignant tumor diseases on the immune system: tumor cells can influence immune cells to that effect that they are not able to recognize degenerated cells anymore and cancer can spread out in the body. Summing up, immunologic processes in the body have to be strictly controlled and regulated and abandoned in time to circumvent structural damage. Diverse mechanisms contribute to the regulation of the immune response. 3.1.2 Regulation of immune response A central function of the specific immune system is to distinguish between foreign antigens and antigens produced naturally in the body. In homeostasis self-antigen is presented in a tolerogenic way to T- and B-lymphocytes, hereby inducing and sustaining immunologic tolerance. Formation of so called central tolerance takes place in the thymus. Here, lymphocytes recognizing self-antigen with their specific TCR are deleted. This is performed either by “clonal deletion” or inactivation of the affected cell. A small percentage of autoreactive T-cells can not be removed in this way and reaches the periphery. In a process called “peripheral tolerance” these remaining, potentially harmful lymphocytes get eradicated. This can also cause suppression of T-cell 7 response against foreign antigens. Peripheral tolerance is induced by several intrinsic and extrinsic mechanisms. Intrinsic processes include for example anergy as described above. The absence of costimulation inspite of antigen-binding abolishes several signal transduction cascades and hence inhibits T-cell activation 136 . Normally, exogenous antigen is presented via MHC II-molecules. Immature DC can induce anergy by ingesting and presenting surrounding self-antigens (e.g. particles of dropping cells) via MHC Imolecules to T-cells without costimulation 3, 72,87, 92, 152 . This process is called “cross- + presentation”. Thereby, CD8 T-cells recognizing self-antigen via MHC I get anergic or even commit apoptosis 73, 124. Additionally, coinhibitory molecules on the surface of T-cells (e.g. cytotoxic T-lymphocyte antigen 4=CTLA-4; programmed death 1=PD-1) can react with their counterparts on the surface of APC (CD80/ CD86; programmed death ligand 1/2= PD-L1/ PD-L2). This interaction can inhibit sufficient contact between TCR and presented self-antigen and hence disturb T-cell activation 165 . Furthermore, kind of application and amount of featured self or foreign antigen and affinity/avidity of TCR influence peripheral tolerance 51. Diverse cell populations complete the intrinsic suppressive mechanisms described above in an extrinsic way. Since the early 70ies tolerogenic suppressor T-cells are known. Nowadays, these cells are called regulatory T-cells (Tregs) 48 . They affect proliferation and differentiation of T- and B-lymphocytes, of natural killer cells (NKcells), but also of monocytes and DC, thereby avoiding excessive immune reactions. This process requires cell-cell-contact and/or soluble factors 150, 168 . At the moment, two subpopulations of Tregs can be distinguished: on the one hand natural CD4+CD25+ Tregs and on the other hand induced respective adaptive Tregs 58, 168 . Natural Tregs recognize self-antigen via their TCR already in the thymus and get activated in this way. In the periphery, naive T-cells can be activated by antigen contact and certain cytokines and differentiate into adaptive Tregs 34, 65 . Within B- cells certain subpopulations are also known to regulate and suppress immune response 20, 104. Cells of the myeloid line, so called myeloid-derived suppressor cells (MDSC), also contribute to the suppression of immune reactions and will be discussed in the following chapters. 8 3.2 Myeloid-derived suppressor cells In the late 70ies a former unknown cell population with suppressive features awakened the scientific opinion. In bone marrow and spleen of tumor-bearing mice and in murine lymphatic tissue myeloid cells were detected being able to suppress T-cell response in vivo and in vitro 126, 148, 154, 155 . These cells were called “natural suppressor cells” and further characterized in the following decades. Later, they were nominated as “immature DC” (IDC). Another term used for a long time was “myeloid suppressor cells” (MSC). Since about 2007, these cells are consistently described as myeloid-derived suppressor cells (MDSC) to avoid confusions 45. 3.2.1 Overview During myelopoiesis in murine bone marrow haematopoietic stem cells are stimulated by different soluble molecules and cell-bound receptors to create common myeloid precursor cells. Amongst others, these cells generate “immature myeloid cells” (IMC) without suppressive features. In healthy individuals, IMC migrate in peripheral lymphatic organs where their differentiation into mature macrophages, DC or granulocytes takes place. Diverse pathologic processes like for example inflammation, malignant tumor diseases or infections inhibit the differentiation of IMC. Thereby, these cells acquire immunosuppressive qualities and are then called MDSC. MDSC represent a very heterogenous cell population consisting of various myeloid precursor cells. Many research groups are interested in their characterization and classification. All MDSC characterized so far express the surface markers CD11b (also called CD11b/CD18-complex or Mac-1) and Gr-1 142 . The CD11b receptor is an αMβ 2-integrin and binds the complement component C3bi. It can be found on monocytes, macrophages, DC and granulocytes as well as on activated B- and Tcells and natural killer cells 83, 99. Binding ICAM 1 (intercellular adhesion molecule 1), CD11b mainly regulates adhesion and extravasation of leucocytes 69 . Gr-1, a glycosyl-phosphatidyl-inositol (GPI)-anchored protein, is a marker of differentiation in the myeloid lineage and can be found on myeloid precursor cells, granulocytes and transiently on monocytes 39, 57 . In the meantime, Gr-1 specific antibodies are known to bind two different epitopes of Gr-1: Ly6G and Ly6C. The application of epitope-specific antibodies revealed two different subpopulations of MDSC in splenocytes of tumor-bearing mice: CD11b+Ly6G+Ly6Clow MDSC morphologically resembling neutrophilic granulocytes (PMN-MDSC) and CD11b+Ly6G-Ly6Chi(gh) MDSC with monocytic character (MO-MDSC) 107, 174 . However, a separation of 9 splenocytes into two different subpopulations was also possible with the convenient Gr-1-antibody in a murine tumor model: Gr-1hi and Gr-1int(ermediate). These two subpopulations differ in their potential to suppress T-cell response and their further differentiation 170 . Depending on the general conditions, further surface markers like CD80 (B-7.1), CD115 (macrophage-colony-stimulating factor=M-CSF) or CD124 (IL-4 receptor α chain) can be characterstic for certain subpopulations of MDSC 47, 59, 173 . However, no consistent pattern of surface markers could be defined so far and it could not be proven that these molecules are directly involved in suppression. MDSC mainly suppress T-cell response using various surface molecules and soluble elements, described subsequently. Beside naive and effector T-cells, they can also influence the function of other cells. They are able to induce the generation of suppressive Tregs 140 . MDSC have also an effect on the function of NK-cells, macrophages and even B-cells 22, 142, 147. 3.2.2 Plasticity of MDSC Many research groups examine the differentiation of MDSC, generating mature myeloid DC. In addition, so called plasmacytoid DC exist from bone marrow 63, 182 , spleen 13, 56 or fetal liver 181 110 . Murine cells isolated can differentiate into myeloid DC after stimulation with certain cytokines like granulocyte/macrophage-colonystimulating-factor (GM-CSF), tumor necrosis factor α (TNFα), IL-4 or Fms-like tyrosine kinase 3 ligand (FLT3-ligand). All-trans-retinoid acid (ATRA) can reduce the amount of MDSC in vivo and in vitro an induce their differentiation into DC, macrophages or granulocytes 44, 79. The application of 1α, 25-dihydroxyvitamin D3, a metabolite of vitamin D3, also activates the differentiation of immature myeloid cells 82, 167 . In tumorous tissue, MDSC can differentiate into F4/80+ tumor-associated macrophages (TAM), which are able to suppress T-cell response secreting certain cytokines. There is evidence, that immature myeloid cells are also involved in angiogenesis in tumor disease, being able to differentiate into endothelial cells 171, 175 . This theory is supported by the fact that Gr-1+/CD11b+ cells of diseased mice express the enzyme matrixmetalloproteinase-9 (MMP-9). 3.2.3 MDSC in homeostasis and in diesease About 20-30% of bone marrow cells in healthy mice are Gr-1+/CD11b+, whereas only 2-4% of nucleated splenocytes and blood cells belong to this population. Without stimulation, no such cells can be found in lymph nodes 76 . Particular 10 conditions effect an augmentation respectively a redistribution of Gr-1+/CD11b+ cells in murine and human organism. 3.2.3.1 Murine MDSC In various murine tumor models, MDSC can be found to a higher degree in spleen and tumor tissue 24, 100, 155, 173, 176 . Interestingly, the amount of mature DC is reduced in tumor diseases, whereas the number of immature precursor cells of DC rises 5, 85 . DC in patients and mice suffering from tumor disease or from microbial infections also show functional defects 14, 28, 43, 60 . Consequently, the immune response against tumor cells is suppressed and they can more or less unhamperedly extend. The mechanisms of suppression will be further described in following chapters. The removal of the tumor reduces the number of Gr-1+/CD11b+ cells and restores tumorrelated immune reaction 134 . This confirms the hypothesis that the increase of suppressive cells is induced by the tumor itself via different mechanisms. The secretion of cytokines, chemokines and other soluble factors is especially remarkable in this process (see in detail in further chapters). The depletion of suppressor cells 144, 158 or their elimination with the chemotherapeutic agent gemcitabine rebuilds an efficient immune response against tumor cells 156. In addition, infection with different microorganisms (e.g. Salmonella typhimurium 2, 50 , Candida albicans Trypanosoma cruzi 101 or Toxoplasma gondii 164 ) enhances the number of myeloid suppressive cells in murine lymphatic organs. Thus, this favours the expansion of pathogens in the organism. Within a polymicrobial sepsis, MDSC can induce the suppression and TH2-polarization of the T-cell response. Amongst others, this activation of MDSC is based on MyD88, an adaptor protein on different toll-like receptors (TLR) 33. The inoculation of certain vaccines or antigens provokes an augmentation of MDSC in the spleen 74, 159 . Using recombinant vaccinia virus, MDSC induce apoptosis in CD8+ T-cells and thereby soften immune response against the vaccine 23 . The application of superantigen also augments the amount of MDSC 25. Within chronic inflammation or autoimmune diseases, the number of MDSC also rises. In the murine model of multiple sclerosis, called experimental autoimmune encephalitis (EAE), MDSC accumulate and migrate to the central nervous system 183 . In experimental induced chronic inflammation in skin 94 , gut 55 and eye 70 an increase of MDSC can be found. This induction of MDSC within chronic 11 inflammation is suspected to facilitate the development of malignant disease. The activation of TLR and the secretion of different interleukines like IL-1β, IL-10 and IL-12 are involved in this process 116. It is assumed that MDSC also take part in the regulation of immune response after radiation or allogenic bone marrow transplantation. MDSC seem to avoid the dangerous “graft-versus-host-disease” after infusion of donor supporting the development of a “graft-versus-leukemia-reaction” lymphocytes 15, 17 . Furthermore, certain medicaments lead to an extension of MDSC and support their suppressive activity. As known, the treatment with the chemotherapeutic agent cyclophosphamide causes severe damage in hematopoietic and lymphatic tissue. This is due to a direct impairment of T-cells as well as the induction of MDSC indirectly suppressing proliferation and reagibility of T-cells 8, 113, 138. 3.2.3.2 Human MDSC Over the years a lot of results argue for the existence of a human counterpart of murine MDSC. Already in 1995 CD34+ cells were found in tumorous and lymphatic tissue of patients with head and neck cancer. These cells were able to inhibit the function of local T-lymphocytes 118 . Later, it was found that patients with tumor diseases in head and neck region, lung and breast showing reduced amount of DC in blood had elevated levels of immature myeloid cells which harmed T-cell function 5, 6 . These cells were mainly CD13+, CD33+, CD34+ and CD15-. Regarding their type of human leukocyte antigen (HLA)-DR and expression of CD11c, these cells can be divided into two subpopulations: immature monocytes/DC and cells belonging to earlier stages of myeloid differentiation. Blood of patients with renal cancer contained myeloid CD11b+/CD15+/CD14- cells also suppressing T-cell response 114, . Recently, CD11b+/CD14+ myeloid suppressor cells were detected in patients 180 suffering from malignant melanoma 38 . After surgery 61 or a severe trauma 122 , patients exhibit diverse T-cell dysfunctions. Traumatic stress results in migration of Gr-1+/CD11b+ cells to the spleen where they affect T-cell function 93. Hence, MDSC are involved in many different immunological processes. Interestingly, there is no definite scheme of suppression, no preassigned “target cell”, no consistent phenotype and no fixed pattern of released cytokines. Depending on manifold influences each immunologic process generates a specific population of MDSC. 12 3.2.4 In vitro generated MDSC Murine bone marrow cells can be stimulated to differentiate into DC of different stages of maturation by application of GM-CSF alone or in combination with IL-4. Depending on concentration of applied cytokines and length of stimulation these cells possess different immunologic abilites 62, 81, 89, 90, 96 . Lutz et al designed a method for the in vitro generation of immature myeloid suppressor cells using GMCSF 90. These cells are Gr-1low, CD11b+, CD31+, ER-MP58+, F4/80+ and CD11c- and exhibit ring-shaped nuclei. Depending on the moment and duration of its application to culture of bone marrow cells, bacterial lipopolysaccharide (LPS) can either stimulate or inhibit their differentiation into mature DC 88 . In vitro generated MDSC are able to suppress immune response of CD4+ and CD8+ T-cells in vitro requiring cell-cell contact and nitrogen monoxide (NO). IFN-γ also seems to be involved in suppression 132 . Pretreatment with in vitro generated MDSC reduces the number of rejections after transplantation of an allogen heart in mice 90 . The application of immature myeloid Gr-1+ precursor cells suppresses development of autoimmune diabetes in so called non-obese-diabetic (NOD)-mice 153 . Thus, these in vitro generated MDSC can be used as model for investigation of in vivo occuring MDSC. 3.2.5 Induction of generation of MDSC Most knowledge of MDSC is recruited from experimental approaches in murine tumor model. As described before, tumor disease leads to an accumulation of MDSC in secondary lymphatic organs (mainly spleen), blood, bone marrow and tumorous tissue of mice. There, they suppress the function of their target cells and thus facilitate existence and dissemination of the tumor by weakening the immune response. The expansion and activation of MDSC is caused by different factors divided into two main groups: on the one hand substances secreted directly by the tumor, which stimulate myelopoiesis and inhibit differentiation of myeloid cells. On the other hand factors secreted from tumor stroma cells or activated T-cells or other components of the immune system. Together with particles of diverse 42 microorganisms these substances are able to activate MDSC in a direct way . 3.2.5.1 Factors for expansion and activation of MDSC As a well-known factor, the cytokine GM-CSF induces differentiation of myeloid precursor cells into granulocytes, macrophages and DC in bone marrow in combination with other substances 63 . GM-CSF acts via the GM-CSF-receptor consisting of two subunits α and β 95. Many murine and human tumors secrete a huge and unphysiological quantity of GM-CSF, thereby generating MDSC. These 13 accumulate in secondary lymphatic organs and in tumor and there suppress T-cell response 24, 40, 102, 141, 149 recombinant GM-CSF . This phenomenon was also observed in mice treated with 24 . Supernatant of cell culture with a variant of Lewis lung cell carcinoma contains GM-CSF. Injection of this supernatant into tumor-bearing mice enhanced tumor growth, whereas application of neutralizing antibodies against GMCSF and also IL-3 abolished this effect 177. IL-3 and also IL-5 bind to β-subunit of the GM-CSF-receptor. However, also activated T-cells 1, NK-cells 105 , NK-T-cells 8 and DC 31 are able to provoke activation of MDSC by secretion of GM-CSF. Hence, GM-CSF can stimulate immune response by induction of generation and differentiation of macrophages, granulocytes and mainly DC in mice. This was also possible in a human model, where GM-CSF was used as vaccine adjuvans 121 . Exceeding physiological limits concerning quantity and length of stimulation GMCSF can effect the exact opposite and induce a suppression of immune response. This facilitates expansion of malignant cells and invading pathogens. Vascular endothelial growth factor (VEGF) is produced by many tumors and stimulates angiogenesis 160 . This assures full supply of tumor cells with nutritive substances. Within tumor disease, VEGF reduces the amount of DC and interferes with their function in vivo and in vitro, whereas the number of immature precursors of DC increases 41, 46. Prostaglandin E2 (PGE2) is involved in inflammatory processes and also in tumor disease. It is assumed that PGE2 secreted by tumors generates a local inflammatory environment, thereby supporting tumorigenesis 26, 146, 151. Generation of MDSC is induced via PGE2-receptors in this process. Cyclooxygenase-2-inhibitors reducing the production of PGE2 diminish accumulation of MDSC and inhibit tumor growth 146. IFN-γ, secreted by many components of the immune system, influences the activity of T-cells as well as MDSC 47, 97, 132. LPS is also involved in induction of MDSC 33. In addition to the cytokines already mentioned, the immunosuppressive cytokine transforming growth factor β (TGF-β) 4, 91, 172, 178 as well as stem cell factor (SCF) 119, IL-1β, IL-4, IL-6, IL-10, IL-12, IL-13, MMP-9, M-CSF (macrophage-colonystimulating-factor) and G-CSF (granulocyte-colony-stimulating-factor=CSF-1) seem to have influence on generation and function of MDSC 42, 120. 14 3.2.5.2 Signal transduction in MDSC The substances mentioned above activate certain signal transduction cascades via cytokine receptors respectively TLR on MDSC. Transmembrane cytokine receptors on MDSC transmit their signal mostly via so called Janus Kinases (JAK), which again bind to transcription factors of the STAT (signal transducer and activator of transcription)-familiy 71 . Regarding MDSC, JAK2 and STAT-3 are known to play an important role. Activation of STAT-3 causes activation and proliferation of MDSC while inhibiting their differentiation into mature DC 111, 112. Recently it was shown that STAT-3 also induces the production of the protein S100A9 (myeloid-related protein 14 respectively Calgranulin B) in myeloid precursor cells; this protein belongs to the huge family of S100-Ca2+-binding proteins 29 . S100A8 (myeloid-related protein 8 respectively Calgranulin A) also is increased and prevents together with its partner S100A9 the differentiation of immature myeloid cells and stimulates their transformation into MDSC. S100A8 and/or S100A9 also seem to be involved in the recruitment of MDSC to regions with dysplasia and inflammatory changes 162 . Both proteins bind to the membrane-bound NAPDH (reduced form of nicotinamideadenine-dinucleotide-phosphate)-oxidase-oxygen-complex and induce the production of reactive oxygen species (ROS) contributing to suppression by MDSC 42 . IFN-γ uses STAT-1 in MDSC; IL-4 and/or IL-13 can activate the transcription factor STAT-6 in MDSC by binding IL-4-receptor α 42 . STAT-1/-6 induce the production of arginase-1 and inducible NO-synthase (iNOS), which both participate in suppression (see 3.2.6). There is evidence that LPS activates the signal transductor NF-κB (nuclear factor “κ-light-chain-enhancer” of activated B-cells) via TLR on MDSC stimulating the production of arginase-1 and iNOS 42. 3.2.6 Strategies of MDSC for T-cell suppression As mentioned above, MDSC suppress the immune response mainly of T-cells which then can not react in an adequate way to immunological stimuli anymore. Depending on species, particular organ system and further individual attributes of the organism, MDSC can use different strategies of suppression. In worst case, apoptosis of T-cells is caused 10, 23, 101 . MDSC cause changes in T-cell receptor (mainly in TCR-ζ-chain) and other surface molecules. This can trigger further reactions, for example the inhibition of activation respectively proliferation of T-cells 80, 93, 101 , the induction of peripheral tolerance cytokines secreted by T-cells 25, 77 and changes in the pattern of 44 . In most cases, an effective suppression requires close cell-cell-contact. The suppressive effect of MDSC can be relieved by separation of cultured MDSC from T-cells using a semi-permeable membrane 44, 64, 15 78, 132 . This suggests that the involved cells interact via certain membran-bound molecules and/or that rapidly degradable soluble factors play an important role. In the following chapter the most important mechanisms of suppression of MDSC detected so far will be described. 3.2.6.1 3.2.6.1.1 Mechanisms of suppression by MDSC Nitrogen monoxide Nitrogen monoxide (NO) is produced by murine DC, macrophages, granulocytes 18 . The inducible NO-synthase iNOS can generate NO from the and also NK-cells amino acid L-arginine; it splits L-arginine into citrulline and NO 54 . Many experimental settings show that T-cell suppression by MDSC depends on NO 8, 37, 97, 132 . The production of iNOS can be induced by the TH1-cytokines IFN-γ, TNFα, IL-1 and endotoxins 27 . An isoform of iNOS, iNOS2, could be detected in myeloid precursor cells. The inhibition of iNOS2 abolished suppression. The generation of NO by MDSC also needs IFN-γ (e.g. from activated T-cells) and cell-cell-contact 7, 9, 50, 97 . NO is known to blockade the IL-2 signal transduction cascade of T-cells: this inhibits the production of IL-2 and proliferation of T-cells 16, 35 . Apoptosis of T-cells induced by NO was also described 52, 133. 3.2.6.1.2 L-arginine and arginase As already described, iNOS requires the amino acid L-arginine to generate NO. Reduction of the concentration of L-arginine in culture medium inhibits the expression of TCR-ζ-chain, disturbs the proliferation of T-cells and influences the production of cytokines by T-cells 127-129, 157 . In addition to iNOS, the enzyme arginase is involved in the metabolism of L-arginine. Arginase catalyzes the conversion of L-arginine to urea and ornithine 169 . In myeloid cells the isoform arginase-1 can be induced by the TH2-cytokines IL-4, IL-10, TGFβ and IL-13 well as by prostaglandines 130 and catecholamines 108 as 12 . Immature myeloid precursor cells also expressing arginase-1 can be found within different diseases 115, 139, 161 . These cells are able to remove L-arginine from the environment using a cationic amino acid transporter (CAT2B), thereby causing the T-cell dysfunctions described above. The application of an inhibitor af arginase-1, nor-NOHA (N -hydroxy-nor-Larginine), abolishes the suppressive effects of MDSC phosphodiesterase-5-inhibitors 143 and also nitroaspirin 131 . The treatment with 32 represents another interesting approach to reduce T-cell suppression. These substances decrease the enzymatic activity of iNOS2 as well as arginase-1 in MDSC and thereby contribute to an augmented immune response against tumor cells. 16 3.2.6.1.3 Reactive oxygen species MDSC isolated from tumor-bearing mice and humans are able to produce huge amounts of ROS 74, 78, 166, first of all hydrogen peroxide (H2O2) and superoxide anion. The secretion of ROS can be induced by TGFβ, IL-3, IL-6, IL-10, plateled-derivedgrowth-factor (PDGF) and GM-CSF 135 . The enzyme katalase degrades H2O2; this leads to an inhibition of proliferation of the immature myeloid cells and stimulates their differentiation into macrophages 74 . Furthermore, ROS secreted by immature myeloid cells can disturb function and proliferation of T-cells 78, 117 . MDSC isolated from tumor-bearing mice lose their suppressive activity after inhibition of the production of ROS in vitro 78 . Together with NO, superoxide can generate peroxynitrites, which nitrify and nitrosylate certain amino acids 163 . This happens mainly in inflammatory or tumorous tissue and causes apoptosis and/or dysfuntion/tolerance of T-cells; changes induced in TCR and in CD8 are responsible for these processes 21, 109 . Apparently, induced tolerance can be abolished again and does not affect the memory function of suppressed T-cells 36. 3.2.6.1.4 Transforming growth factor β Tumor-associated MDSC can cause T-cell dysfuntion by the secretion of TGFβ 158, 179 . Immunization with an oligosaccharide of schistosoma induces a TH2-response in the organism, favoring the survival of the parasite. In this context, Gr-1+, CD11b+, F4/80+ cells secrete the antiinflammatory cytokines TGFβ und IL-10, thereby stimulating TH2-response of T-cells 159. 3.2.6.2 Mechanisms of suppression of both subpopulations Recently, a separation of murine MDSC into two main subpopulations was postulated as described in chapter 3.2.1: PNM-MDSC resembling neutrophilic granulocytes and MO-MDSC with monocytic character 107, 174 . The generation of granulocytic MDSC is mainly induced in tumor disease. These PMN-MDSC produce a high amount of ROS and insignificant levels of NO. The opposite effect can be observed in case of MO-MDSC occuring rather in inflammation. Inspite of different mechanisms both subpopulations are able to suppress T-cell response in a sufficient and antigen-specific way. These data support the hypothesis that the character of pathological processes recruits different subpopulations of MDSC with differing mechanisms of suppression. 17 3.2.6.3 Role of antigen-specific suppression by MDSC Undoubtedly, MDSC can suppress T-cell response in vitro in an antigen-unspecific way 80 . However, results of many in vivo experiments suggest the existence of antigen-specific mechanisms of suppression. In some approaches, only activated T-cells previously having been in contact with antigen could be suppressed by 44, 78 . It was also shown that MDSC are able to pick up and process soluble MDSC antigens and to present them to T-cells 109 . The role of MHC I-molecules in this context is still controversially discussed. MHC I-molecules are found on nearly all 44 MDSC whereas MHC II-molecules can be detected only under certain circumstances 145. This could also explain the fact that T-cell dysfuntion within tumor or infectious diseases can be observed mainly in CD8+ cytotoxic T-cells. The suppressive activity of MDSC can be abolished by blockade of MHC I 44 . In combination with other surface molecules MHC I-molecules may facilitate the close contact between T-cell and MDSC necessitated for a sufficient suppression. Eventually, the specific antigen does not have to be bound on MHC-molecules 47 . + On the other hand, an inhibitory effect of MHC II-negative MDSC CD4 T-cells could be shown 132. This argues against a MHC-dependent, antigen-specific suppression. Depending on the underlying conditions, MDSC can suppress CD4+ and/or CD8+ T-cells. MHC-molecules can, but do not have to be involved. Suppression can take place in an antigen-dependent and an antigen-independent way. 3.2.7 Integration of MDSC in cellular networks In addition to their influence on T-cells MDSC can also interact with other cell types. For instance TGFβ secreted by MDSC can stimulate proliferation of CD4+CD25+ Tregs via TGFβ−receptor and hence further reduce immune response against tumor cells 49 . In vitro, CD115+ MDSC induce expression of Foxp3 in CD4+CD25+ cells. In this context, IFN-γ secreted from activated T-cells seems to stimulate production of IL-10 and TGFβ which leads to an induction of Tregs 59 . Another interesting aspect is the interaction between MDSC and macrophages in murine tumor model. This causes an augmented production of IL-10 by MDSC; IL-12 secretion of macrophages is reduced and M2-macrophages are preferentially generated. The induced type 2-response facilitates tumor progression 147 . MDSC seem also to interfere with NK representing an important link between innate and adaptive immunity. In vivo and in vitro, MDSC can inhibit cytotoxic effects of NK via direct cell-cell-contact 86 . Also NK-T-cells obviously have an influence on generation and function of MDSC 84, 142, 158 . Furthermore, it was shown that Gr-1+ splenocytes 18 isolated from immunized mice are able to stimulate differentiation and proliferation of antigen-specific B-cells via secretion of IL-4 66, 98. 3.2.8 Outlook The heterogeneity of the population of myeloid immature cells called MDSC complicates a classification of these cells. Depending on the disease pattern and initial position of the examined organism manifold subpopulations can be generated. They vary in pattern of surface markers as well as in suppressive mechanisms. It has to be noticed as well that their ability to differentiate and their interaction with other cells can be influenced in many different ways. Therefore an outlook on their effect in organisms is very difficult. Many questions remain to be answered before a therapeutical application of MDSC is possible. For example, MDSC could be switched off in a specific way within tumor diseases or chronic inflammation, thereby intensifying the immune response against degenerated cells respectively pathogens. Reduction, depletion or stimulation of differentiation to mature myeloid stages could be achieved by the application of certain medicaments. MDSC could also be used within autoimmune diseases or chronic inflammation regulating exaggerated immune response. For instance, in vitro generated MDSC could be applicated, eventually loaded with antigen. Another approach is the induction of their generation in organism using different medicaments or growth factors. So far, MDSC were mainly examined and characterized using murine tumor models. However, MDSC are also involved in many other pathological processes. The establishment respectively the further development of animal models for e.g. chronic inflammation, infections and autoimmune diseases is necessary. Only in this way myeloid suppressor cells will be characterized in detail. Getting to know MDSC paves the way for suitable therapeutic strategies. 19 3.2.9 Hypothesis This work is based on the hypothesis that two mechanisms are initiated within infection/inflammation: beside the immune response against pathogens regulatory processes are induced to avoid exaggerating immune reactions. Simultaneously it is assumed that immature precursors of MDSC already exist in the healthy organism being activated under pathologic conditions. This dissertation deals with the identification of different cell populations in the spleen of untreated mice regarding certain surface markers and cell size/granularity/morphology. In addition, the effect of LPS and IFN-γ on MDSC was examined in vitro and in vivo focussing on their potential to differentiate, their suppressive activity and accumulation. 20 4 Einleitung 4.1 Aufbau und Funktionen des Immunsystems Das Immunsystem der Vertebraten stellt ein höchst komplexes Gefüge sowohl aus zellulären und molekularen Bestandteilen als auch aus Organen dar. Es hat zur Aufgabe, den Organismus vor Einflüssen der belebten Umwelt zu schützen und körpereigene Prozesse so zu regulieren, dass die Integrität des Lebewesens erhalten bleibt. 4.1.1 Allgemeine Einführung in das Immunsystem Das Immunsystem umfasst zwei kooperierende und sich teilweise überschneidende Kompartimente: (natürlichen) die und unspezifischen die Abwehrmechanismen spezifischen Abwehrstrategien des angeborenen des erworbenen Immunsystems. Ersteres beinhaltet sowohl mechanische (z.B. Epithelien der Eintrittspforten), mikrobiologische (z.B. epitheliale Bakterienflora) und chemische (z.B. pH, Enzyme) Barrieren als auch molekulare (Komplementsystem) sowie zelluläre (diverse Phagozyten, natürliche Killerzellen) Bestandteile. Das angeborene Immunsystem erkennt Mikroorganismen und Moleküle mit Hilfe bestimmter Oberflächenrezeptoren als fremd und leitet die ersten Schritte zur Elimination des Pathogens in die Wege. Eine große Rolle spielen hierbei Makrophagen und neutrophile Granulozyten. Diese phagozytieren körperfremdes Material und schütten daraufhin Zytokine und Chemokine aus. Sie tragen so zur Entstehung einer entzündlichen Reaktion bei. Ein weiteres wichtiges Mitglied der Phagozyten stellen die unreifen dendritischen Zellen (DZ) dar. Diese prozessieren Fremdmaterial an der Eintrittspforte. Die Interaktion mit mikrobiellen Liganden oder auch der Einfluss proinflammatorischer Zytokine bewirken eine Aktivierung unreifer DZ 68, 125 . Reife DZ können als sogenannte Antigen-präsentierende Zellen (APZ) über Major Histocompatibility Complex (MHC) II Moleküle die prozessierten Fragmente auf ihrer Oberfläche präsentieren und erhöhen die Anzahl kostimulatorischer Moleküle. Diese sind zusätzlich zur Antigenbindung über den T-Zell-Rezeptor und zur Bindung von CD4 an MHCII-Moleküle für eine effektive T-Zell-Aktivierung nötig (siehe weiter unten); auch CD11c ist auf reifen DZ zu finden 11 . Sie wandern nach der Aktivierung aus der Peripherie in den nächstgelegenen Lymphknoten. An dieser Stelle tritt das erworbene Immunsystem in Kraft, das die präsentierten Antigene spezifisch erkennen und auch ein immunologisches Gedächtnis ausbilden kann. Diese komplexe Form der immunologischen Überwachung kann nur durch ein ausgeklügeltes Zusammenspiel verschiedener Zelltypen stattfinden. Diese Aufgabe 21 übernehmen die so genannten Lymphozyten, die man grob in B-Lymphozyten (humorale Abwehr) und T-Lymphozyten (zelluläre Abwehr) unterteilt. T-Lymphozyten tragen auf ihrer Oberfläche den T-Zell-Rezeptor (TZR) erkennt prozessierte Antigene spezifisch und führt unter 53 . Der TZR Mitwirkung der Korezeptoren CD4 bzw. CD8 (CD= cluster of differentiation) und weiterer kostimulatorischer Moleküle (z.B. CD28-CD80/CD86 oder CD40/CD40-Ligand) zur Aktivierung der T-Zelle. Derart stimulierte T-Zellen stellen potente und zur Gedächtnisbildung fähige Abwehrzellen dar. Bleibt die Kostimulation aus, so kann dies trotz Antigen-Bindung dazu führen, dass T-Zellen nicht auf das Antigen reagieren. Man nennt dieses Phänomen Anergie 137. CD8+ zytotoxische T-Zellen erkennen über MHC I-Peptid-Komplexe infizierte oder entartete Körperzellen. Diese zerstören sie mittels bestimmter Mechanismen (Granzym, Perforin) oder sezernieren Zytokine, die indirekt zur Elimination des Pathogens beitragen können (z.B. Interferon-γ bzw. IFN-γ). CD4+ T-Zellen binden an MHC II-Moleküle auf APZ, die einverleibtes und prozessiertes exogenes Antigen auf diesem Wege zur Schau stellen. Art des Pathogens und das dadurch induzierte Zytokinmilieu steuern die Differenzierung der naiven CD4+ Zellen, die dann entweder den Weg einer zellvermittelten TH1- oder einer humoralen TH2Immunreaktion einschlagen 106 . Aktivierte DZ steuern diesen Prozess, der auch T- Zell-Polarisierung oder T-Zell-Priming genannt wird Sekretion von IFN-γ und Interleukin-12 19, 30, 67 (IL-12) . Hierbei begünstigt die die TH1-Antwort mit Makrophagenaktivierung, während die humorale TH2-Immunreaktion dadurch gehemmt wird 103. Die bisher beschriebenen immunologischen Vorgänge sorgen dafür, dass Noxen und Pathogene suffizient eliminiert werden können. Gleichzeitig muss aber gewährleistet werden, dass es hierbei nicht zu einer unverhältnismäßig starken, überschießenden und potentiell gewebeschädigenden Immunantwort kommt (z.B. allergische Reaktionen, Autoimmunerkrankungen, chronische Entzündungen). Zum anderen kann die immunologische Überwachung beispielsweise im Zuge einer malignen Tumorerkrankung partiell außer Kraft gesetzt werden. Entartete Zellen werden dann von verschiedenen Bestandteilen des Immunsystems nicht mehr als fremd erkannt und toleriert, so dass sich der Krebs ungehindert ausbreiten kann. In Zusammenschau dieser Fakten ist es somit sehr wichtig, dass das immunologische Geschehen im Organismus streng kontrolliert und reguliert wird, so 22 dass Immunantworten rechtzeitig und adäquat beendet und körpereigene Strukturen nicht über das normale Maß hinaus in Mitleidenschaft gezogen werden. Hierzu tragen diverse Regulationsmechanismen bei. 4.1.2 Regulation der Immunantwort Eine zentrale Eigenschaft des spezifischen Immunsystems stellt die Fähigkeit der Lymphozyten dar, zwischen körpereigenen und -fremden Antigenen unterscheiden zu können und auf körpereigene Antigene nicht mit einer Immunantwort zu reagieren. In der Homöostase werden Selbstantigene auf tolerogene Weise an T- und B-Zellen präsentiert, so dass hierbei aktiv immunologische Toleranz induziert und aufrechterhalten wird. Hierbei unterscheidet man die zentrale von der peripheren Toleranz. Im Verlauf der zentralen Toleranzbildung im Thymus sollen Lymphozyten unschädlich gemacht werden, die mit ihrem spezifischen Rezeptor Autoantigene erkennen. Dies geschieht entweder durch die so genannte „klonale Deletion“ oder durch Inaktivierung der betroffenen Zelle. Hierbei können jedoch nicht alle autoreaktiven T-Zellen entfernt werden, so dass immer auch derartige Zellen in die Peripherie ausgeschwemmt werden. Dort existieren zusätzliche intrinsische und extrinsische Mechanismen, die zur so genannten „peripheren Toleranz“ führen. Diese kann sich auch auf körperfremde Antigene beziehen und führt dazu, dass T-Zellen in ihrer Funktionsweise eingeschränkt, d.h. supprimiert, werden. Zu den intrinsischen Mechanismen gehört die bereits weiter oben beschriebene Anergie. Durch das Fehlen der Kostimulation können trotz Antigenbindung Signaltransduktionskaskaden in der T-Zelle nicht ablaufen, so dass die T-Zellen kein IL-2 mehr produzieren können und eine Aktivierung ausbleibt 136 Mechanismus sind unreife dendritische Zellen maßgeblich beteiligt . An diesem 87, 92, 152 . Man geht davon aus, dass diese immer wieder körpereigene Antigene aus der Umgebung (z.B. von absterbenden Zellen) aufnehmen und den T-Zellen ohne Kostimulation über MHC I-Moleküle präsentieren 3, 72 . Diesen Mechanismus nennt man „Kreuzpräsentation“, weil exogene Antigene normalerweise über MHC IIMoleküle präsentiert werden. Dadurch wird in den CD8+ T-Zellen, die Selbstantigen erkennen, entweder Apoptose oder Anergie ausgelöst 73, 124. Des weiteren kann die Interaktion diverser koinhibitorischer Moleküle auf der T-Zelle (z.B. cytotoxic T-lymphocyte antigen 4=CTLA-4; programmed death 1=PD-1) mit den entsprechenden Pendants auf der APZ (CD80/CD86; programmed death ligand 1/2= PD-L1/ PD-L2) dazu führen, dass der T-Zell-Rezeptor eventuell dargebotenes 23 Autoantigen nicht mehr suffizient binden kann und eine Aktivierung verhindert wird 165 . Einfluss auf die periphere Toleranz haben ebenso die Applikationsart und die Menge des dargebotenen Fremd- oder Eigenantigens und die Stärke der Bindung des T-Zell-Rezeptors 51. Die T-Zell-Antwort kann zusätzlich zu den bereits beschriebenen Mechanismen auch extrinsisch durch bestimmte Zellen supprimiert werden. Seit den 70er Jahren ist die Existenz sogenannter Suppressor T-Zellen oder neuerlich als regulatorische T-Zellen bezeichnete (Tregs) tolerogener T-Zellen bekannt 48 . Diese beeinflussen die Proliferation und Differenzierung von T- und B-Lymphozyten, von Natürlichen Killer (NK)-Zellen, aber auch von Monozyten und DZ. Dies geschieht sowohl über Zell-Zell-Kontakt als auch über lösliche Faktoren 150, 168 . Hierdurch tragen sie dazu bei, überschießende Immunreaktionen zu verhindern. Zum jetzigen Zeitpunkt unterscheidet man verschiedene Subpopulationen: hierzu gehören die natürlichen CD4+CD25+ Tregs, zum anderen die induzierten bzw. adaptiven Tregs 58, 168 . Natürliche Tregs erkennen bereits im Thymus über ihren T-Zell-Rezeptor Selbstantigen und werden so aktiviert. Adaptive Tregs entstehen erst in der Peripherie aus naiven T-Zellen. Für diese Differenzierung wird Antigenkontakt im Rahmen eines bestimmten Zytokinmilieus benötigt 34, 65. Ebenso wurden unter den B-Zellen Populationen entdeckt, die zur Regulation und Suppression der Immunantwort fähig sind 20, 104. Auch der myeloischen Linie entstammen Suppressorzellen, sogenannte myeloidderived suppressor cells, auf die im Folgenden genauer eingegangen wird. 4.2 Suppressorzellen der myeloischen Reihe Ende der 70er Jahre begannen sich Hinweise auf eine bisher unbekannte suppressiv aktive Zellpopulation zu häufen. In Knochenmark und Milz von Mäusen mit Tumorerkrankungen, im lymphatischen Gewebe von neugeborenen Mäusen und im experimentell manipulierten Lymphgewebe adulter Mäuse wurden myeloische Zellen gefunden, die die T-Zell-Antwort in vivo und in vitro unterdrücken konnten 126, 148, 154, 155 . Man nannte diese Zellen natürliche Suppressor-Zellen. Im Rahmen jahrzehntelanger Forschung auf diesem Gebiet wurden die natürlichen SuppressorZellen näher charakterisiert. Man bezeichnete diese im Folgenden dann fälschlicherweise auch als immature DC oder unreife DZ. Später verwendete man für diese Zellpopulation hauptsächlich die Bezeichnung myeloid suppressor cells 24 (MSC). Um eine eindeutige wissenschaftliche Nomenklatur zu schaffen und Verwechslungen auszuschließen, wird seit etwa 2007 der Terminus myeloid-derived suppressor cells (MDSC) verwendet 45. 4.2.1 Aus Allgemeine Einführung murinen hämatopoietischen Stammzellen entstehen im Rahmen der Myelopoese im Knochenmark durch eine komplexe Interaktion bestimmter löslicher Moleküle und zellständiger Rezeptoren gemeinsame myeloische Vorläuferzellen. Aus diesen gehen unter anderem so genannte unreife myeloische Zellen (immature myeloid cells bzw. IMC) hervor, die keine suppressiven Eigenschaften besitzen. Letztere wandern im gesunden Individuum in periphere lymphatische Organe und differenzieren dort zu reifen Makrophagen, DZ oder Granulozyten. Diverse pathologische Prozesse wie z.B. Entzündung, maligne Tumorleiden oder Infektionen verhindern über verschiedene Mechanismen die Ausreifung der IMC. Stattdessen erlangen diese Zellen immunsuppressive Eigenschaften und werden nun als MDSC bezeichnet. MDSC stellen eine sehr heterogene Zellpopulation aus diversen myeloischen Vorläuferzellen dar, deren Charakterisierung und Klassifikation seit Jahren Gegenstand der Forschung ist. Gemeinsam ist den MDSC jedoch die Koexpression der Oberflächenmarker CD11b (auch CD11b/CD18-Komplex oder Mac-1 genannt) und Gr-1 142 . Der CD11b- Rezeptor gehört zu den αMβ 2-Integrinen und bindet das Komplementfragment C3bi. Er ist sowohl auf Monozyten, Makrophagen, DZ und Granulozyten als auch auf aktivierten B- und T-Zellen und natürlichen Killerzellen zu finden 83, 99 . CD11b reguliert über die Bindung an ICAM 1 (intercellular adhesion molecule 1) unter anderem Leukozytenadhäsion und Extravasation 69. Gr-1, ein Glycosyl-Phosphatidyl-Inositol (GPI)-verankertes Protein, repräsentiert einen Differenzierungsmarker der myeloischen Linie und kann auf myeloischen Vorläuferzellen, Granulozyten und transient auch auf Monozyten nachgewiesen werden 39, 57 . Es ist mittlerweile bekannt, dass Gr-1-spezifische Antikörper zwei verschiedene Epitope von Gr-1 binden: Ly6G und Ly6C. Die Verwendung Epitopspezifischer Antikörper führte zur Identifizierung zweier MDSC-Subpopulationen in Milzzellen aus Tumor-befallenen Mäusen: CD11b+Ly6G+Ly6Clow MDSC, die morphologisch neutrophilen Granulozyten ähneln (PMN-MDSC) und CD11b+Ly6GLy6Chi(gh) MDSC, die monozytären Charakter besitzen (MO-MDSC) 107 174 . Jedoch gelang in einem murinen Tumormodell auch mittels des herkömmlichen Gr-1- 25 Antikörpers eine Differenzierung der Milzzellen in zwei verschiedene Populationen: Gr-1hi und Gr-1int(ermediate). Diese beiden Subpopulationen unterscheiden sich in ihrem Potential zur T-Zell-Suppression und zur weiteren Differenzierung 170. Weitere Oberflächenmarker wie zum Beispiel CD80 (B7-1), CD115 (macrophagecolony-stimulating-factor=M-CSF) oder CD124 (IL-4R α-Kette) können, abhängig von den jeweiligen Rahmenbedingungen, Subpopulationen der MDSC sein charakteristisch für bestimmte 47, 59, 173 . Jedoch konnte diesbezüglich bisher kein einheitliches Muster definiert und auch nicht nachgewiesen werden, dass diese Marker direkt an der Suppression beteiligt sind. MDSC sind hauptsächlich bekannt für ihre Eigenschaft, die T-Zell-Antwort zu supprimieren. Dies geschieht über eine Vielzahl von Oberflächenmolekülen und löslichen Elementen, auf die weiter unten eingegangen wird. MDSC können jedoch neben naiven und Effektor-T-Zellen auch andere Zellen beeinflussen. So kann die Bildung ebenfalls suppressorisch aktiver Tregs durch MDSC induziert werden 140 . Auch die Funktion von NK-Zellen, Makrophagen oder auch B-Zellen können MDSC beeinflussen 22, 142, 147. 4.2.2 Plastizität der MDSC Von großem Interesse ist die Fähigkeit der MDSC, zu reifen myeloischen DZ zu differenzieren. Neben diesen existieren noch so genannte plasmazytoide DZ Murine Zellen aus Knochenmark 63, 182 13, 56 , Milz oder fetaler Leber 181 110 . können in vitro mit Hilfe bestimmter Zytokine wie granulocyte/macrophage-colony-stimulatingfactor (GM-CSF), Tumornekrosefaktor α (TNFα), IL-4 oder Fms-Like TyrosineKinase 3 Ligand (FLT3-Ligand) zu reifen DZ der myeloischen Reihe differenzieren. All-trans-Retinoidsäure (ATRA) kann in vivo und vitro die Zahl der MDSC reduzieren und deren Differenzierung zu DZ, Makrophagen oder Granulozyten bewirken 44, 79 . Die Applikation von 1α, 25-Dihydroxyvitamin D3, einem Metaboliten von Vitamin D3, induziert ebenfalls die Differenzierung unreifer myeloischer Zellen82, 167 . Weiterhin + können MDSC in Tumorgewebe zu F4/80 Tumor-assoziierten Makrophagen (TAM) differenzieren, die über die Sekretion diverser Zytokine ebenfalls die T-Zell-Antwort supprimieren 75, 123, 133. Es gibt Hinweise darauf, dass unreife myeloische Zellen auch an der Angiogenese im Rahmen von Tumorerkrankungen beteiligt sind bzw. sogar selbst zu Endothelzellen differenzieren können 171, 175 . Hierfür spricht zum Beispiel, dass Gr-1+/CD11b+ Zellen aus erkrankten Mäusen das Enzym Matrixmetalloproteinase-9 (MMP-9) exprimieren. 26 4.2.3 MDSC in der Homöostase und bei Erkrankungen Etwa 20-30% der Zellen im gesunden murinen Knochenmark sind Gr-1+/CD11b+ , in der Milz und im Blut gehören dazu nur 2-4% der kernhaltigen Zellen, in den Lymphknoten sind ohne Stimulation keine derartigen Zellen zu finden 76 . Bestimmte Bedingungen führen zu einem Anstieg bzw. einer Umverteilung der CD11b+Gr-1+ Zellen im murinen und auch humanen Organismus. 4.2.3.1 Murine MDSC MDSC lassen sich vermehrt in Milz, Knochenmark und Tumorgewebe von Mäusen mit verschiedensten Tumorleiden nachweisen 24, 100, 155, 173, 176 . Interessanterweise nimmt die Zahl reifer DZ im Rahmen der Tumorerkrankungen ab und verschiebt sich zu Gunsten unreifer Vorstufen dendritischer Zellen 5, 85. DZ in Patienten und Mäusen mit Tumorerkrankungen, aber auch mikrobiellen Infektionen weisen zudem funktionelle Defekte auf 14, 28, 43, 60. Die Immunantwort gegen die Tumorzellen wird so mit Hilfe unterschiedlicher, im Folgenden näher beschriebener, Suppressionsmechanismen durch die MDSC unterdrückt; der Tumor kann sich somit mehr oder weniger ungehindert ausbreiten. Eine Entfernung des Tumors ist vergesellschaftet mit einer Abnahme der CD11b+/Gr-1+ Zellen und einer Wiederherstellung der tumorbezogenen Immunantwort 134 . Dies gibt Hinweis darauf, dass der Tumor selbst durch bestimmte Mechanismen die Bildung der Suppressorzellen induziert. Hierbei ist vor allem an von den Tumorzellen sezernierte Zytokine, Chemokine und andere lösliche Faktoren zu denken (siehe weiter unten). Die Depletion der Suppressorzellen Chemotherapeutikum Gemcitabin 156 144, 158 oder deren Elimination mit dem lässt die Immunantwort gegen den Tumor wieder aufleben. Auch Infektionen mit Mikroorganismen wie zum Beispiel Salmonella typhimurium 2, Trypanosoma cruzi 50 , Candida albicans 101 oder Toxoplasma gondii 164 bewirken einen Anstieg myeloischer suppressiv aktiver Zellen in murinen lymphatischen Organen. Dies begünstigt über die darauf folgende Unterdrückung der Immunantwort die Ausbreitung der Erreger im Organismus. Im Rahmen einer polymikrobiellen Sepsis können MDSC eine Suppression und TH2-Polarisierung der T-Zell-Antwort induzieren. Diese Aktivierung der MDSC basiert unter anderem auf MyD88, einem Adaptorprotein an verschiedenen Toll-like Rezeptoren (TLR) 33. Die Inokulation bestimmter Vakzine bzw. Antigene löst eine Vermehrung der MDSC in der Milz aus 74, 159. Im Falle vom rekombinanten Vakzinia-Virus induzieren diese in 27 CD8+ T-Zellen Apoptose und mildern somit die Immunantwort gegen die Vakzine ab 23 . Auch die Applikation von Superantigen führt zu einem Anstieg von MDSC 25. Der Anteil an MDSC nimmt auch im Rahmen von chronischen Entzündungen bzw. Autoimmunerkrankungen zu. Im murinen Modell der Multiplen Sklerose, der experimentellen Autoimmunenzephalitis (EAE), findet sich ein signifikanter Anstieg der MDSC gepaart mit einer Migration ins zentrale Nervensystem experimentell induzierte chronisch-entzündliche Prozesse an Haut Auge 70 183 94 . Auch , Darm 55 und führen zu einer Zunahme der MDSC in Mäusen. Es mehren sich zudem Hinweise, dass chronische Entzündungen über die Induktion von MDSC der Entstehung maligner Prozesse den Weg ebnen. Dies hängt unter anderem von der Aktivierung von TLR und verschiedenen Interleukinen wie IL-1β, IL-10 und IL-12 ab116. Man geht davon aus, dass MDSC ebenso an der Regulation der Immunantwort nach Bestrahlung und allogener Knochenmarktransplantation beteiligt sind. Sie scheinen die Entwicklung einer für den Organismus schädlichen „graft-versus-hostdisease“ nach einer Infusion von Donor-Lymphozyten zu Gunsten einer „graftversus -leukemia“-Reaktion zu verschieben 15, 17. Weiterhin können bestimmte Medikamente die Bildung von MDSC induzieren und deren suppressive Aktivität fördern. Bekanntermaßen führt eine Behandlung mit dem Chemotherapeutikum Cyclophosphamid zu schweren Schäden in hämatopoietischen und lymphatischen Geweben. Man weiß mittlerweile, dass diese Therapie nicht nur eine direkte T-Zell-Schädigung bewirken, sondern ebenso die Expansion von CD11b+/Gr-1+ Zellen induzieren und somit indirekt Proliferation und Reagibilität der T-Zellen unterdrücken kann 8, 113, 138. 4.2.3.2 MDSC beim Menschen Auch beim Menschen häufen sich Hinweise auf ein Pendant zu den murinen MDSC. Bereits 1995 wurde beschrieben, dass in Tumor- und Lymphgewebe von Patienten mit Karzinomen im Kopf- und Halsbereich vermehrt CD34+ Zellen auftreten, die inhibierend auf die Funktion der ansässigen T-Lymphozyten wirken 118 . Im Folgenden fand man heraus, dass die verminderte Zahl von DZ im Blut von Patienten mit Tumorerkrankungen im Kopf-Hals-Bereich und in Brust und Lunge mit einer Akkumulation unreifer myeloischer Zellen einhergeht, welche zusätzlich die T-Zell-Funktion beeinträchtigen 5, 6 . Diese Zellen sind größtenteils CD13+, CD33+, 28 CD34+ CD15- und und lassen sich anhand ihres HLA (humanes Leukozytenantigen)-DR-Typs und der CD11c-Expression in 2 Subgruppen einteilen: unreife Monozyten/DZ und Zellen früherer myeloischer Differenzierungsstadien. Im Blut von Patienten + + mit Nierenzellkarzinom wurden ebenfalls myeloische - CD11b /CD15 /CD14 Zellen nachgewiesen, die die T-Zellantwort unterdrücken 114, . Bei Patienten mit malignem Melanom fand man vor kurzem CD11b+/CD14+ 180 myeloische Suppressorzellen, die im Stande waren, T- Zellen zu supprimieren 38. Weiterhin leiden Menschen auch nach einem chirurgischen Eingriff schweren Trauma + 122 61 oder einem unter diversen T-Zell-Dysfunktionen. Hierbei wandern + CD11b /Gr-1 Zellen nach traumatischem Stress in die Milz und beeinträchtigen dort T-Zellen in ihrer Funktion 93. MDSC spielen also in vielen verschiedenen immunologischen Prozessen eine entscheidende Rolle. Interessanterweise kann man MDSC kein eindeutiges Schema der Suppression, keine festgelegte „Zielzelle“, keinen einheitlichen Phänotyp und kein starres Muster an freigesetzten Zytokinen zuteilen. Abhängig von vielfältigen Einflüssen generiert jedes immunologische Geschehen spezifische MDSC. 4.2.4 In vitro generierte MDSC Man weiß, dass GM-CSF allein oder in Kombination mit IL-4 in vitro abhängig von der eingesetzten Menge und der Dauer der Stimulation murine Knochenmarkszellen zu DZ in verschiedenen Reifestadien und mit unterschiedlichen immunologischen Fähigkeiten differenzieren lässt 62, 81, 89, 90, 96 . Lutz et al entwickelten eine Methode, mit der in vitro GM-CSF-abhängig unreife myeloische Suppressorzellen generiert werden können 90 . Diese CD11c- Zellen weisen ringförmige Kerne auf und sind unter anderem Gr-1low, CD11b+, CD31+, ER-MP58+ und F4/80+. Je nach Zeitpunkt und Dauer der Zugabe zu den kultivierten Knochenmarkszellen kann bakterielles Lipopolysaccharid (LPS) deren Differenzierung zu reifen DZ stimulieren oder diese 88 . In vitro generierte MDSC können die Immunantwort sowohl CD4+ als verhindern auch CD8+ T-Zellen unterdrücken. Hierfür sind Zell-Zell-Kontakt und Stickstoffmonoxid (NO) nötig. Auch IFN-γ scheint eine Rolle bei der Suppression zu spielen 132 . Eine Vorbehandlung mit in vitro generierten MDSC verringert bei Mäusen den Prozentsatz der Abstoßungen nach Transplantation eines allogenen Herzens 90 . In so genannten non-obese-diabetic (NOD)-Mäusen kann die Behandlung mit unreifen myeloischen Gr-1+ Vorläuferzellen die Entwicklung von Autoimmundiabetes unterdrücken 153 . Die in vitro generierten MDSC können somit 29 als Modell zur Erforschung der in vivo vorkommenden MDSC herangezogen werden. 4.2.5 Induktion der Bildung von MDSC Die meisten experimentellen Ansätze haben sich bisher mit MDSC im murinen Tumormodell beschäftigt, so dass sich viele Erkenntnisse über die Wirkung der MDSC aus diesem Ressort rekrutieren. Wie bereits weiter oben beschrieben, führen Tumorerkankungen in der Maus zur Akkumulation von MDSC in sekundären lymphatischen Organen (vor allem der Milz), im Blut, Knochenmark und Tumorgewebe. Dort üben sie suppressive Wirkung auf die Zielzellen aus und fördern somit über eine Schwächung der Immunantwort den Fortbestand des Tumors. Die Expansion und Aktivierung der MDSC wird durch verschiedene Faktoren bewirkt. Diese kann man in zwei Hauptgruppen einteilen: zum Einen direkt von den Tumorzellen sezernierte Substanzen, die die Myleopoiese anregen und die Differenzierung der myeloiden Zellen hemmen. Zum Anderen Faktoren, die entweder von Tumorstromazellen oder aktivierten T-Zellen bzw. anderen Komponenten des Immunsystems ausgeschüttet werden und MDSC direkt aktivieren 42. Hierzu zählen auch Bestandteile von diversen Mikroorganismen. 4.2.5.1 Faktoren zur Expansion und Aktivierung von MDSC Einen der bekanntesten Faktoren stellt GM-CSF dar. Dieses Zytokin induziert im Zusammenspiel mit anderen Faktoren im Knochenmark die Differenzierung von Granulozyten, Makrophagen und DZ aus myeloischen Vorläuferzellen 63 . GM-CSF agiert über den GM-CSF-Rezeptor, der aus einer α- und einer β-Untereinheit besteht 95. Viele murine und auch humane Tumorarten sezernieren GM-CSF in großer, unphysiologischer Menge. Sie stimulieren damit die Bildung von MDSC, die in sekundären lymphatischen Organen und im Tumor selbst akkumulieren und dort jeweils die T-Zell-Antwort gegen den Tumor unterdrücken 24, 40, 102, 141, 149 . Dieses Phänomen konnte auch in Mäusen beobachtet werden, die mit rekombinantem GM-CSF behandelt wurden 24. Wurde der GM-CSF-haltige Zellkulturüberstand einer Variante des Lewis Lungenzellkarzinoms in Mäuse gespritzt, denen Tumorgewebe implantiert wurde, so förderte dies das Tumorwachstum. Die Injektion neutralisierender Antikörper gegen GM-CSF und auch IL-3 hob dieses Phänomen wieder auf 177 . IL-3 bindet ebenso wie IL-5 an die β-Untereinheit des GM-CSF-Rezeptors. 30 Aber auch aktivierte T-Zellen 1, NK-Zellen 105, NK-T-Zellen 84 und dendritische Zellen 31 können GM-CSF sezernieren und somit im Rahmen ihrer Aktivierung die Bildung von MDSC auslösen. GM-CSF kann somit die Immunantwort anregen, indem es die Bildung und Differenzierung von Makrophagen, Granulozyten und vor allem DZ induziert. Dies ist in einigen Fällen auch im humanen Modell gelungen, in denen GM-CSF als VakzinAdjuvans verabreicht wurde 121 . Überschreitet die GM-CSF-Menge bzw. die Dauer der Stimulation im Organismus jedoch die physiologische Grenze, kann sich der immunologische Abwehrprozess ins Gegenteil kehren. Es kommt zu einer Unterdrückung der Immunantwort. Dies fördert die Expansion maligne entarteter Zellen und eindringender Pathogene. Vascular endothelial growth factor (VEGF) wird von vielen Tumoren produziert und regt die Angiogenese an, damit der Tumor ausreichend mit Nährstoffen versorgt werden kann 160 . Man hat in vitro und in vivo beobachtet, dass VEGF im Rahmen von Tumorerkrankungen die Zahl der DZ reduziert und diese in ihrer Funktion einschränkt, während die unreife Vorstufen der DZ vermehrt auftreten 41, 46. Prostaglandin E2 (PGE2) spielt ebenfalls eine große Rolle sowohl bei entzündlichen Geschehen als auch bei Tumorerkrankungen. Man geht davon aus, dass von Tumoren sezerniertes PGE2 ein lokales inflammatorisches Umfeld erzeugt, das wiederum die Tumorgenese unterstützt 26, 146, 151 . Über PGE2-Rezeptoren wird die Bildung von MDSC induziert. Die Unterdrückung der PGE2-Bildung durch einen Cyclooxygenase-2-Hemmer reduziert die Akkumulation von MDSC und inhibiert das Tumorwachstum 146. Auch das von verschiedenen Komponenten des Immunsystems sezernierte IFN-γ beeinflusst neben der Aktivität von T-Zellen die von MDSC 47, 97, 132 . LPS spielt ebenfalls eine Rolle bei der Induktion von MDSC 33. Neben den genannten Zytokinen scheinen sowohl das immunsuppressive Zytokin transforming growth factor β (TGF-β) 4, 91, 172, 178 als auch stem cell factor (SCF) 119 , IL-1β, IL-4, IL-6, IL-10, IL-12, IL-13, MMP-9, M-CSF (macrophage-colonystimulating-factor) und G-CSF (granulocyte-colony-stimulating-factor ; auch CSF-1) die Bildung und Funktion von MDSC beeinflussen zu können 42, 120. 31 4.2.5.2 Signaltransduktion in MDSC Die oben genannten Substanzen setzen über Zytokinrezeptoren bzw. TLR auf den MDSC bestimmte Signaltransduktionskaskaden in Gang. Transmembrane Zytokinrezeptoren auf MDSC vermitteln ihr Signal in der Regel über so genannte Janus Kinasen (JAK), die wiederum an Transkriptionsfaktoren der STAT (signal transducer and activator of transcription)-Familie binden 71 . Bei MDSC spielen bekanntermaßen JAK2 und STAT-3 eine große Rolle. Im murinen Tumormodell fand man im Vergleich zu den Zellen unbehandelter Mäuse stark erhöhte STAT-3Werte. Die Aktivierung von STAT-3 führt zur Aktivierung und Proliferation von MDSC und verhindert gleichzeitig deren Differenzierung zu reifen DZ 111, 112 . Jüngst wurde gezeigt, dass STAT-3 in myeloiden Vorläuferzellen auch die Bildung des Proteins S100A9 (myeloid- related protein 14 bzw. Calgranulin B) aus der großen Familie der S100-Ca2+-bindenden Proteine induziert 29 . Zusammen mit seinem ebenfalls vermehrt gebildeten Partner S100A8 (myeloid-related protein 8 bzw. Calgranulin A) verhindert S100A9 die Differenzierung der unreifen Zellen und forciert deren Umwandlung in MDSC. Auch eine Rekrutierung der MDSC in Regionen mit Dysplasien und inflammatorischen Veränderungen scheint durch S100A8 und/oder S100A9 bewirkt zu werden 162 . Über einen membranständigen NADPH (reduzierte Form von Nikotinamid-Adenin-Dinucleotid-Phosphat)-OxidaseKomplex vermitteln S100A8 und S100A9 die Bildung reaktiver Sauerstoffspezies (ROS), die zur Suppression durch MDSC beitragen 42. IFN-γ vermittelt seine Wirkung in MDSC über STAT-1; IL-4 und/oder IL-13 können auf MDSC durch Bindung an den IL-4-Rezeptor α den Transduktionsfaktor STAT-6 aktivieren 42 . Hierbei wird über STAT-1/-6 die Bildung von Arginase-1 und induzierbarer NO-Synthase (iNOS) induziert, welche bei der Suppression eine große Rolle spielen (siehe 4.2.6). Es gibt Hinweise, dass LPS über die Bindung an TLR auf MDSC den Signaltransduktor NF-κB (nuclear factor “κ-light-chainenhancer” of activated B-cells) aktiviert und somit Arginase-1 und iNOS vermehrt gebildet werden 42. 4.2.6 Strategien der MDSC zur T-Zell-Suppression Wie bereits erwähnt, supprimieren MDSC hauptsächlich die Immunantwort von T-Zellen, so dass diese nicht mehr adäquat auf immunologische Stimuli reagieren können. MDSC können je nach Spezies, Organsystem und weiteren individuellen Merkmalen des Organismus verschiedene Suppressionsstrategien anwenden. Dies führt dann im schlimmsten Fall zur Apoptose der T-Zellen 10, 23, 101 . Über durch MDSC induzierte Veränderungen am T-Zell-Rezeptor (vor allem an der TZR-ζ- 32 Kette) und an anderen Oberflächenmolekülen können weitere Reaktionen ausgelöst werden: hierzu gehört neben der Inhibierung der T-Zell-Aktivierung bzw. –proliferation 80, 93, 101 auch die Induktion peripherer Toleranz Veränderung des Zytokinsekretionsmusters der T-Zellen 25, 77 und die 44 . Eine effiziente Suppression erfordert, wie bereits erwähnt, in den meisten Fällen engen Zell-ZellKontakt. So kann die suppressive Wirkung der MDSC aufgehoben werden, wenn man sie in Kultur mit Hilfe semipermeabler Membranen von den T-Zellen trennt 44, 64, 78, 132 . Dies gibt Hinweis darauf, dass die beteiligten Zellen über bestimmte membrangebundene Moleküle interagieren müssen bzw. schnell degradierbare, sezernierte Faktoren eine Rolle spielen. Im Folgenden sollen die wichtigsten bisher charakterisierten Suppressionsmechanismen von MDSC dargestellt werden. 4.2.6.1 4.2.6.1.1 Mechanismen der Suppression durch MDSC Stickstoffmonoxid Stickstoffmonoxid (NO) wird von murinen DZ, Makrophagen, Granulozyten und auch NK-Zellen produziert 18 . NO kann aus der Aminosäure L-Arginin unter anderem durch die induzierbare NO-Synthase (iNOS) generiert werden; diese spaltet L-Arginin zu Citrullin und NO 54 . In einer Vielzahl experimenteller Settings wird NO für die Suppression durch MDSC benötigt 8, 37, 97, 132 . Stimuli, die zu einer Induktion von iNOS führen, sind unter anderem die TH1-Zytokine IFN-γ, TNFα, IL-1 und Endotoxine 27 . Eine Isoform der iNOS, iNOS2, konnte in myeloischen Vorläuferzellen nachgewiesen werden. Die Ausschaltung der iNOS2 führt zur Aufhebung der Suppression. Für die Produktion von NO in MDSC werden zudem IFN-γ (z.B. aus aktivierten T-Zellen) und Zell-Zell-Kontakt benötigt 7, 9, 50, 97 . Man weiß mittlerweile, dass NO mit dem IL-2-Signalweg der T-Zelle interferiert. Die Blockierung der intrazellulären Signaltransduktionskaskaden durch NO verhindert IL-2-Produktion und somit Proliferation der T-Zelle Apoptose der T-Zellen wurde beschrieben 4.2.6.1.2 16, 35 . Auch NO-induzierte 52, 133 . L-Arginin und Arginase Wie oben erwähnt benötigt iNOS für die Produktion von NO die Aminosäure L-Arginin. Es ist bekannt, dass die Reduktion des L-Arginin-Gehalts im Kulturmedium die Expression der TZR-ζ-Kette hemmt, die T-Zell-Proliferation beeinträchtigt und die Zytokinproduktion der T-Zellen beeinflusst 127-129, 157 . Neben iNOS ist das Enzym Arginase am Metabolismus von L-Arginin beteiligt. Arginase katalysiert die Umwandlung von L-Arginin zu Harnstoff und Ornithin 169 . In myeloischen Zellen kann die Isoform Arginase-1 durch die TH2-Zytokine IL-4, IL-10, 33 TGFβ und IL-13 108 , aber auch durch Prostaglandine 130 und Katecholamine 12 induziert werden. Das Auftreten myeloischer unreifer Vorläuferzellen, die ebenfalls Arginase-1 beschrieben exprimieren, 115, 139, wurde im Rahmen verschiedenster Erkrankungen 161 . Diese Zellen können mittels eines kationischen Aminosäuretransporters (CAT2B) L-Arginin aus der Umgebung entfernen, intrazellulär mittels Arginase-1 abbauen und somit die oben beschriebenen T-ZellDysfunktionen bewirken. Durch die Applikation des Arginase-1-Inhibitors nor-NOHA (N -hydroxy-nor-L-arginine) aufgehoben werden kann die supprimierende Wirkung der MDSC 131 . Ein weiterer interessanter Ansatz zur Reduktion der T-Zell- Suppression durch MDSC ist die Applikation von Phosphodiesterase-5-Inhibitoren 143 und auch Nitroaspirin 32 . Man konnte zeigen, dass diese die enzymatische Aktivität von sowohl iNOS2 als auch Arginase-1 in MDSC reduzieren und somit zu einer vermehrten Immunantwort gegen den Tumor beitragen. 4.2.6.1.3 Reaktive Sauerstoffspezies MDSC aus Mäusen und auch Menschen mit Tumorerkrankungen können große Mengen an reaktiven Sauerstoffspezies (ROS) produzieren 74, 78, 166 , hierbei vor allem Wasserstoffperoxid (H2O2) und Superoxidanion. Dies geschieht unter anderem nach der Applikation von TGFβ, IL-3, IL-6, IL-10, plateled-derived-growthfactor (PDGF) und auch GM-CSF 135 . Man fand heraus, dass der Abbau von H2O2 durch das Enzym Katalase die Proliferation der unreifen myeloischen Zellen hemmt und deren Differenzierung zu Makrophagen anregt 74 . Des Weiteren wurde gezeigt, dass ROS aus unreifen myeloischen Zellen Funktion und Proliferation von T-Zellen beeinträchtigen können 78, 117 . Aus Tumor-befallenen Mäusen isolierte MDSC verlieren in vitro ihre suppressive Aktivität nach Inhibierung der ROS-Produktion 78 . Superoxid kann mit NO Peroxynitrite bilden, welche diverse Aminosäuren nitrieren und nitrosylieren 163 . Dies geschieht vor allem in entzündlichem oder Tumorgewebe und führt zu Apoptose und/oder Dysfunktion in Form von Toleranzbildung in der T-Zelle, hauptsächlich aufgrund von Veränderungen am T-Zell-Rezeptor und an CD8 21, 109. Anscheinend kann die induzierte Toleranz unter Umständen wieder aufgehoben werden und affiziert nicht die Gedächtnisbildung der supprimierten T-Zellen 36. 4.2.6.1.4 Transforming growth factorβ Tumor-assoziierte MDSC bewirken eine T-Zell-Dysfunktion unter anderem über die Sekretion von TGFβ 158, 179 . Die Immunisierung mit einem Schistosoma- Oligosaccharid führt im Organismus zu einer TH2-Antwort, die den Fortbestand des 34 Parasiten im Wirt begünstigt. Man fand heraus, dass Gr-1+, CD11b+, F4/80+ Zellen über die Sekretion der antiinflammatorischen Zytokine TGFβ und IL-10 naive T-Zellen zu einer TH2-Antwort anregen können 159. 4.2.6.2 Suppressionsmechanismen der beiden Subpopulationen Wie bereits in Absatz 4.2.1. beschrieben, wurde kürzlich eine Einteilung muriner MDSC in zwei Hauptgruppen postuliert: PNM-MDSC, die neutrophilen Granulozyten 107, 174 . Die Bildung ähneln und MO-MDSC, die monozytären Charakter besitzen granulozytärer MDSC wird vor allem durch Tumore induziert. Diese PMN-MDSC produzieren in hohem Maße ROS, während NO nur spärlich gebildet wird. Den umgekehrten Fall kann man bei MO-MDSC beobachten, die man eher in entzündlichen Geschehen finden kann. Beide Populationen waren trotz unterschiedlicher Mechanismen zu einer suffizienten und Antigen-spezifischen Suppression der T-Zell-Antwort fähig. Diese Daten unterstützen die Hypothese, dass je nach Art des Krankheitsgeschehens im Körper bestimmte Subpopulationen der MDSC mit unterschiedlichen Suppressionsmechanismen rekrutiert werden. 4.2.6.3 Bedeutung der Antigenspezifität der Suppression durch MDSC Unbestritten ist, dass MDSC die T-Zell-Antwort in vitro Antigen-unspezifisch supprimieren können 80 . Jedoch mehren sich vor allem bei in vivo-Versuchen Hinweise auf die Existenz Antigen-spezifischer Suppressionsmechanismen. In einigen experimentellen Ansätzen werden nur aktivierte T-Zellen, die vorher Antigenkontakt hatten, durch MDSC supprimiert 44, 78 . Es wurde auch gezeigt, dass MDSC zur Aufnahme und Prozessierung löslicher Antigene fähig sind und sie diese den T-Zellen präsentieren 109. Die Bedeutung der MHC-Moleküle in diesem Rahmen wird noch kontrovers diskutiert. So sind MHC I-Moleküle auf nahezu allen MDSC zu finden 44, während MHC II-Moleküle nur unter bestimmten Bedingungen detektierbar sind 145 . Dies könnte auch erklären, warum Dysfunktionen im Rahmen von Tumor- oder Infektionserkrankungen bis dato fast ausschließlich bei CD8+ zytotoxischen T-Zellen detektiert wurden. Es wurde gezeigt, dass eine Blockade des MHC IMoleküls die suppressive Aktivität von MDSC aufheben kann 44 . Zusammen mit anderen Oberflächenmolekülen könnten MHC-Moleküle den engen Kontakt zwischen T-Zelle und MDSC begünstigen, der für eine suffiziente Suppression nötig ist. Das spezifische Antigen auf MHC-Molekülen muss unter Umständen hierfür aber nicht gebunden werden 47 . Andererseits konnte eine inhibitorische Wirkung MHC II- negativer MDSC auf CD4+ T-Zellen nachgewiesen werden 132 . Dies wiederum spricht gegen eine MHC-abhängige, Antigen-spezifische Suppression. 35 Somit können MDSC abhängig von den Rahmenbedingungen entweder CD4+ und/oder CD8+ T-Zellen supprimieren. MHC-Moleküle können, müssen aber nicht beteiligt sein. Eine Suppression kann Antigen-abhängig und Antigen-unabhängig ablaufen. 4.2.7 Integration der MDSC in weitere zelluläre Netzwerke Bisher wurde nur der Einfluss der MDSC auf T-Zellen geschildert. Es ist jedoch bekannt, dass MDSC auch mit anderen Zellarten interagieren können. So kann TGFβ aus MDSC über den TGFβ-Rezeptor auf CD4+CD25+ regulatorischen T-Zellen deren Proliferation anregen und somit die Immunantwort gegen den Tumor weiter reduzieren 49 . CD115+ MDSC induzieren in vitro die Expression von Foxp3 in CD4+CD25+ Zellen. IFN-γ aus aktivierten T-Zellen scheint hierbei MDSC zur Produktion von IL-10 und TGFβ anzuregen und auf diesem Wege die Induktion der Tregs in die Wege zu leiten 59. Einen weiteren interessanten Aspekt stellt die Interaktion zwischen MDSC und Makrophagen im murinen Tumormodell dar. Diese führt über vermehrte Produktion von IL-10 durch MDSC zu einer Reduktion der IL-12-Sekretion aus Makrophagen und fördert die Bildung von M2-Makrophagen. Die Typ-2-Antwort wiederum begünstigt die Tumorprogression 147. Auch mit NK, die einen wichtigen Mediator zwischen angeborener und erworbener Immunität darstellen, scheinen MDSC zu interferieren. So können MDSC in vivo und in vitro über direkten Zell-Zell-Kontakt die zytotoxische Wirkung natürlicher Killerzellen inhibieren 86. Es gibt des Weiteren Hinweise darauf, dass NK-T-Zellen die Bildung und Funktionsweise von MDSC beeinflussen können 84, 142, 158. Zudem wurde gezeigt, dass Gr-1+ Milzzellen aus immunisierten Mäusen über die Sekretion von IL-4 Differenzierung und Proliferation Antigen-spezifischer B-Zellen stimulieren können 66, 98. 4.2.8 Die Ausblick Heterogenität der als MDSC beschriebenen myeloischen, unreifen Zellpopulation macht es schwer, diese in ein bestimmtes Schema einzufügen. Je nach Krankheitsbild und Ausgangslage des untersuchten Organismus können unterschiedlichste Subpopulationen generiert werden. Diese unterscheiden sich sowohl im Muster der Oberflächenmarker als auch in den angewandten Suppressionsstrategien. Ebenso muss beachtet werden, dass deren Differenzierungsfähigkeit und die Interaktion mit anderen Zellen auf vielfältige Art 36 und Weise beeinflusst werden kann und somit eine Vorhersage über deren Wirkung im Organismus erschwert. Viele offene Fragestellungen müssen somit geklärt werden, bevor man MDSC auch therapeutisch anwenden kann. So könnte man MDSC zum Beispiel im Rahmen von Tumorerkankungen oder chronischen Infektionen gezielt ausschalten und so die Immunantwort gegen entartete Zellen bzw. Pathogene verstärken. Dies könnte durch medikamentöse Reduktion, Depletion oder Anregung der Differenzierung zu reifen myeloischen Stadien bewirkt werden. Ein anderer denkbarer Ansatz wäre der Einsatz von MDSC bei Autoimmunerkrankungen oder chronischen Entzündungen. Hierbei könnten diese die überschießende Immunantwort regulieren. Es ist vorstellbar, sowohl in vitro generierte, eventuell Antigen-beladene, MDSC zu applizieren als auch deren Bildung im Organismus durch Medikamente oder Wachstumsfaktoren zu induzieren. Bisher wurden MDSC hauptsächlich anhand muriner Tumormodelle charakterisiert. Jedoch sind MDSC wie oben beschrieben auch in zahlreiche andere pathologische Geschehen involviert. Die Etablierung bzw. der weitere Ausbau von Tiermodellen für z.B. chronische Entzündung, Infektionen und autoimmunologische Prozesse ist notwendig, um die Natur der Suppressorzellen aus der myeloischen Reihe genauer erforschen und daraus geeignete Therapiestrategien ableiten zu können. 4.2.9 Hypothese Die vorliegende Arbeit geht von der Hypothese aus, dass im Rahmen einer Infektion/Entzündung neben der Immunantwort gegen die Pathogene gleichzeitig ein regulatorischer Mechanismus in Gang gesetzt wird, der eine überschießende Immunreaktion verhindert. Gleichzeitig wird angenommen, dass bereits im gesunden Organismus unreife Vorstufen von MDSC vorhanden sind, die erst unter pathologischen Konditionen aktiviert werden. In dieser Dissertation sollen anhand diverser Oberflächenmarker und der Zellgröße/granularität/-morphologie verschiedene Zellpopulationen in der Milz unbehandelter Mäuse identifiziert und auf deren suppressorisches Potential untersucht werden. Einen weiteren Schwerpunkt stellt die Untersuchung des Effekts von LPS und IFNγ auf Differenzierungspotential, suppressorische Aktivität und Akkumulation von MDSC sowohl in vitro als auch in vivo dar. 37 5 Vorveröffentlichung Eur. J. Immunol. 2009 Oct;39(10):2865-76. Myeloid-derived suppressor cell activation by combined lipopolysaccharide plus interferon-γγ treatment impairs dendritic cell development Verena Greifenberg1*, Eliana Ribechini2*, Susanne Rößner1, Manfred B. Lutz2,# 1 Department of Dermatology, University Hospital Erlangen, Germany, 2 Institute for Virology and Immunobiology, University of Würzburg, Germany Comment in: Eur. J. Immunol. 2009 Oct;39(10):2670-2. * these authors contributed equally to the study # correspondence: [email protected] Abbreviations: BM, bone marrow; DC, dendritic cells; LPS, lipopolysaccharide; MDSC, myeloid-derived suppressor cells; Running title: Myeloid-derived suppressor cell activation Keywords: myeloid-derived suppressor cells, interferon, lipopolysaccaride, dendritic cells Eur. J. Immunol. 2009. 39: 2865–2876 DOI 10.1002/eji.200939486 Immunomodulation Myeloid-derived suppressor cell activation by combined LPS and IFN-c treatment impairs DC development Verena Greifenberg1, Eliana Ribechini2, Susanne Rößner1 and Manfred B. Lutz2 1 2 Department of Dermatology, University Hospital Erlangen, Erlangen, Germany Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany Myeloid-derived suppressor cells (MDSC) and DC are major controllers of immune responses against tumors or infections. However, it remains unclear how DC development and MDSC suppressor activity both generated from myeloid precursor cells are regulated. Here, we show that the combined treatment of BM-derived MDSC with LPS plus IFN-c inhibited the DC development but enhanced MDSC functions, such as NO release and Tcell suppression. This was not observed by the single treatments in vitro. In the spleens of healthy mice, we identified two Gr-1lowCD11bhighLy-6ChighSSClowMo-MDSC and Gr-1highCD11blowPMN-MDSC populations with suppressive potential, whereas Gr-1highCD11bhigh neutrophils and Gr-1lowCD11bhighSSClow eosinophils were not suppressive. Injections of LPS plus IFN-c expanded these populations within the spleen but not LN leading to the block of the proliferation of CD81 T cells. At the same time, their capacity to develop into DC was impaired. Together, our data suggest that spleens of healthy mice contain two subsets of MDSC with suppressive potential. A two-signal-program through combined LPS and IFN-c treatment expands and fully activates MDSC in vitro and in vivo. Key words: DC . IFN . LPS . Myeloid-derived suppressor cells See accompanying commentary by Bronte Introduction Under steady state conditions myeloid/monocytic (Mo) precursor cells expressing the Gr-1 and CD11b markers have the capacity to differentiate into neutrophils, macrophages or DC in the presence of GM-CSF or other myeloid growth factors [1]. This can be also mimicked in vitro [2]. The resulting immature or semi-mature DC present self-antigens in a tolerogenic fashion, which results in protection from autoimmunity [3]. After microbial or inflammatory activation, DC can induce T-cell immune responses by presenting the foreign antigens in a different context, i.e. by upregulating costimulatory molecules and releasing proinflammatory cytokines [4, 5]. The termination or prevention of these Correspondence: Dr. Manfred B. Lutz e-mail: [email protected] & 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim immune responses is controlled by various mechanisms including the modulation of mature DC functions, such as by Foxp31 or IL-10-producing regulatory T cells [3, 6]. Also myeloid-derived suppressor cells (MDSC) have been described to control immune responses and their major role in modulating CD81 T-cell responses against tumors is well established [7–9]. However, little is known about the mechanisms that regulate MDSC activation versus DC development from the same myeloid precursors. MDSC function is mostly associated with the splenic expansion of Gr-11 CD11b1 cells and is suggested to result from a specific activation of such myeloid precursor cells [1]. Data from tumor-bearing mice and infection models indicate that MDSC require activation to exert their suppressor function [8–10]. Proinflammatory cytokines, such as IL-1b, IL-6 and These authors contributed equally to this work. www.eji-journal.eu 2865 2866 Eur. J. Immunol. 2009. 39: 2865–2876 Verena Greifenberg et al. Prostaglandin E2 have been described to mediate accumulation of MDSC at tumor sites, despite the fact that it still occurred in their absence [11–16]. More recently, the inflammatory mediators S100A8 and S100A9 proteins have been identified as the major MDSC attractants at tumor sites [17, 18]. Furthermore, the combination of S100A8/S100A9 is also effective in blocking myeloid differentiation into macrophages and DC [18]. The expansion and activation of MDSC has also been described after surgical trauma [19] and in polymicrobial sepsis, where LPS injection alone could expand Gr-11 CD11b1 cells in the spleen [20]. IFN-g has been demonstrated to promote MDSC activity by inducing NO production and to interfere with DC development in vitro [2, 21]. We have shown before that LPS is able to interfere with DC in vitro where it blocks not only DC maturation, but also DC development, when added throughout the DC cultures [22]. How bacterial LPS or inflammatory IFN-g either alone or in combination can influence MDSC expansion versus suppressive activity has not been investigated. More recent data indicate that two subsets of MDSC can be distinguished in tumor-bearing mice [23, 24]. While both subsets suppress T-cell proliferation, one subset resembled monocytes and was thus termed Mo-MDSC, while the other had more similarities with PMN granulocytes and was therefore called PMN-MDSC [23]. Recently, we identified two similar populations in the BM of healthy normal mice (ER and MBL, unpublished observations); however, whether both subsets of MDSC can be isolated and activated from spleens of healthy mice is not known. Here, we report that combined LPS/IFN-g treatment further enhances the suppressive function of in vitro generated MDSC. We identify MO-MDSC and PMN-MDSC in the spleens of healthy mice and show that, after isolation, they bear the capacity to suppress T cells in vitro. Injection of LPS/IFN-g into healthy mice led to the activation of MO-MDSC and PMN-MDSC suppressor activity in the spleen blocking CD81 T cell proliferation. We also show that injection of LPS/IFN-g leads to the expansion of splenic myeloid precursors, blocking their development into DC. Together, we provide evidence for a dual activation program for MDSC in vitro and in vivo, which can be elicited by a microbial LPS signal in conjunction with IFN-g. Results Treatment of day 3 BM-MDSC with LPS/IFN-c induces NO production and impairs DC development The development of DC from BM precursor cells in vitro is impaired in the presence of LPS [22]. Since MDSC are also early products within BM-DC cultures and their suppressive function through NO release depends on IFN-g [2], we wondered how LPS and IFN-g in combination affects MDSC function and DC development. Day 3 BM cultures, known to suppress T-cell proliferation in vitro, were treated with various cytokines or LPS alone or in combination. After 24 h, neither TNF, IL-6 nor IL-1b induced NO release. However, NO production was induced by either LPS or IFN-g, but LPS and IFN-g in combination elicited the highest release (Fig. 1A). In addition, the same combination dramatically affected the subsequent DC development. The cultures were treated on day 3 with IFN-g, LPS or LPS/IFN-g, further cultured with GM-CSF until day 8, and then analyzed for the surface expression of CD11c, MHC class II and CD86 molecules. Whereas IFN-g did not influence the development of immature MHC class IIlowCD86neg DC or spontaneously matured MHC class IIhighCD86pos DC in the cultures, LPS showed the expected inhibition and the LPS/IFN-g combination completely blocked MHC Figure 1. Combined treatment of BM cells with LPS/IFN-g induces high NO production and blocks DC development. Day 3 MSDC generated from C57BL/6 mice were cultured in 24 well plates using 1 106 cells/well and stimulated over night with LPS, TNF, IL-1b or IL-6 either alone or in combination with IFN-g. (A) On day 4 the cell supernatants were tested for NO production by Griess reaction. (B) Replicate wells were further cultured to develop into DC. On day 8 cells were analyzed for MHC class II, CD86 and CD11c by flow cytometry to determine the percentage of DC using mAb against MHC class II, CD86 and CD11c. Data are representative of three independent experiments with similar results. & 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.eji-journal.eu Eur. J. Immunol. 2009. 39: 2865–2876 class II and CD86 expression, despite the surprising fact that the proportion of CD11c1 cells was the same under all conditions (Fig. 1B). Taken together, our data show that combined LPS/IFN-g treatment of day 3 BM-MDSC cultures greatly induces NO release and blocks DC development. Combined LPS/IFN-c treatment enhances the suppressive capacity of in vitro generated MDSC Next, we wanted to examine the effect of LPS/IFN-g on the suppressive capacity of day 3 BM-GM-CSF cultures. For this purpose, we stimulated day 3 BM-GM-CSF cultures with IFN-g, LPS or the LPS/IFN-g combination overnight or left them untreated. Then, the cells were titrated into an allogeneic MLR Immunomodulation (allo-MLR) to test their suppressive potential. The untreated cells served as controls and suppressed the T-cell proliferation as described before [2], while day 4 cells had a stronger suppressive capacity (Fig. 2A). Cells stimulated with IFN-g alone partially, and cells treated with LPS alone completely lost their suppressive function. In contrast, cells stimulated with LPS/IFN-g dramatically increased their suppressive potential as compared with the control day 3 or day 4 MDSC (Fig. 2A). To test whether this activation of suppressor function by LPS/IFN-g would be maintained, we cultured the LPS/IFN-g treated cells for another 5 days with GM-CSF and then used them as suppressors in an allo-MLR. The results indicated that cultures treated with LPS/IFN-g completely lost their suppressive potential (Fig. 2B). Thus, LPS/IFN-g treatment of MDSC activates their suppressive potential transiently. Further, culture in GM-CSF led to impaired DC development and does not maintain the suppressive function. Characterization of six spleen cell subsets differentially expressing Gr-1 and CD11b Figure 2. Only the LPS/IFN-g combined treatment enhances the suppressive capacity of in vitro generated day 3 MDSC. Day 3 BM cells of C57BL/6 mice were stimulated overnight with IFN-g, LPS or combined LPS/IFN-g. As positive suppressive controls the MDSC of days 3 or 4 were left untreated. (A) Capacity of stimulated and control cells to suppress allo-MLR. Proliferation was tested after 3 days by [3H]Thymidine incorporation. (B) The LPS/IFN-g-treated cells were washed at day 4 and further cultured until day 8. Suppressive capacity was tested by titrating the cells into an allo-MLR. Proliferation was tested after 3 days by [3H]-Thymidine incorporation. Data are representative of four independent experiments with similar results. & 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Previous reports indicated that the MDSC activity of Gr-11 CD11b1 cells could only be measured with cells isolated from tumor-bearing mice or animals with infections. In the following, we wanted to elucidate whether Gr-11 CD11b1 cells from healthy mice already have MDSC potential. From our previous experiments, we knew that BM-derived MDSC represent Gr-1low, CD11b1, CD11cneg and F4/801 myeloid cells with ring-shaped nuclei [2]. More recent results from others obtained using the spleens of tumor-bearing mice [23, 24], and our own results from the BM (ER and MBL, unpublished observations), indicate that there are at least two MDSC subsets with differential suppressive capacity present in mice. To identify the putative suppressive cell populations in the spleens of healthy mice, we stained fresh splenocytes with mAb against Gr-1 and CD11b and isolated different fractions by magnetic bead technology or cell sorting. For analysis forward scatter (FSC) and side scatter (SSC), and the morphological analysis of cytospin preparations were also used. Spleens of healthy mice consisted of at least six different subpopulations (Fig. 3). Gr1high cells with an SSCint profile can be divided into Gr-1highCD11bint cells with ring-shaped nuclei (Fig. 3, population P1), with similarities to the BM-derived MDSC, and Gr-1highCD11bhigh cells with PMN shape (P2), indicative for neutrophils. Gr-1lowCD11bint CD1151 splenocytes comprise two different subpopulations with respect to their granularity. Within these, we found SSChigh (P3) and SSClow (P4) cells, which consisted of eosinophils as indicated by their red granular staining by eosin in the cytoplasm (Fig. 3, P3, arrows labelled E), cells with myelomonocytic morphology (Fig. 3, P3, arrows labelled M) and small non-granular cells with a lymphocyte-like morphology (Fig. 3, P4, arrows labelled L). Gr1neg CD11blowCD1151 SSClow cells represent the fifth splenic subpopulation that also showed a myelomonocytic morphology (P5) and Gr-1pos CD11bneg CD115neg SSClow cells the sixth (P6) with a lymphocyte-like morphology. www.eji-journal.eu 2867 2868 Verena Greifenberg et al. Eur. J. Immunol. 2009. 39: 2865–2876 Figure 3. Splenocytes of C57BL/6 mice can be divided into six different subpopulations with regard to their surface markers CD11b and Gr-1, granularity and morphology. Freshly isolated spleen cells of C57BL/6 mice were stained with mAb against CD11b and Gr-1 and analyzed by flow cytometry. The dot plot shows the pattern of distribution of spleen cells regarding Gr-1 versus CD11b. Gated subsets are further shown as FSC versus SSC profiles or were sorted and cytospin preparations were stained with H&E dye. The resulting six different populations are termed P1-P6. In the cytospin preparation of P3/P4 cells with various morphologies appear as eosinophils (E), myelomonocytic cells (M) or lymphoid-like cells (L). Data are representative of three independent experiments with similar results. The six different subpopulations assigned P1–P6 in Fig. 3 were further analyzed for their expression of a selected panel markers (Fig. 4). As expected the P1 and P2 expression patterns were consistent with early myeloid cells (Ly-6C1 F4/801), while the P3 population expressed CCR3, which is characteristic for eosinophils. Within the P4 gate fractions of CD11c1 DC and Ly-6Chigh monocytes could be detected. In the subpopulation P5, a few cells expressed not only CD11c, but also MHC class II, NK 1.1 and DX5 (data not shown, a remarkable profile that could represent the NK cell subset with DC features that was originally named NK-DC or IK-DC [25]. The Gr-11 CD11bneg splenocytes within gate P6 expressed the B-cell marker CD45-R/B220 (data not shown) and a small subset the PDCA-1 marker, and therefore constituted a mixture of B cells and plasmacytoid DC [26]. Having addressed the morphology and surface marker profile of these subpopulations, we wanted to assess the suppressive capacities of these subsets. Two subsets of suppressive spleen cells in healthy mice Since suppression of T-cell proliferation is the best functional evidence for MDSC, we separated the spleen subpopulations by & 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim magnetic beads or cell sorting and tested their capacity to suppress T-cell proliferation in an allo-MLR. In vitro generated day 3 BM-MSDC served as control suppressor cells. In a first step, we sorted fresh spleen cells into Gr-1pos or CD11bpos splenocytes by magnetic bead separation (MACS) and utilized them in titrated numbers as potential suppressor cells. While the Gr-1pos fraction could not suppress T-cell proliferation substantially, the CD11bpos cells were strongly suppressive (Fig. 5A). In the next step, we isolated different subpopulations with a cell sorter to examine their suppressive potential. First, we compared Gr-1highCD11bint (P1, ‘‘ring’’ cells) with Gr-1highCD11bhigh cells (P2, granulocytes). As expected, the Gr-1highCD11bint subpopulation P1 was able to suppress T-cell proliferation, while splenic granulocytes (P2) did not influence T-cell proliferation (Fig. 5B). The latter was expected but has not been appreciated so far because usually all Gr-11 CD11b1 spleen cells have been considered to have MDSC function. This, however, does not exclude that neutrophils may exert suppressive functions in other assays or experimental settings in vivo. In the next step, we wanted to know whether there were any differences regarding suppressive potential between the MDSC (P1) and the Gr-1lowCD11bint fraction (P31P4) comprising cells of the myeloid lineage in diverse differentiation stages (Fig. 5C). Both subpopulations were able to suppress T-cell proliferation as www.eji-journal.eu Eur. J. Immunol. 2009. 39: 2865–2876 Immunomodulation Figure 4. Surface marker expression of the individual splenic Gr-11 CD1b1 subsets P1-P6. Spleen cells were triple stained on their cell surface for Gr-1, CD11b and the indicated markers or the respective isotype controls. Analysis gates were set according to their differential Gr-1 and CD11b expression as indicated in Fig. 3 and designated P1–P6. The mAb-stained (solid line) or the respective isotype control (filled graph) histograms are shown for the indicated populations. Data are representative of three independent experiments with similar results. efficiently as control day 3 BM-MDSC. Additional separation of the P3 and P4 subsets by their FSC/SSC profiles as shown in Fig. 3 indicates that the P4 subset is responsible for the suppressive effect within the Gr-1lowCD11bint fraction (Fig. 5D). When we used Gr-1negCD11blow splenocytes (P5; presumed NKDC) as a potential suppressor population (Fig. 5E), no reduction of T-cell proliferation was obtained in this setting. In addition, Gr-1pos CD11bneg cells (P6) also did not show suppressive activity in this type of assay (data not shown). To summarize, we identified two suppressive subpopulations in the spleens of healthy mice by their differential expression of CD11b and Gr-1, FSC, SSC and morphology. The suppressive populations found here correlate with previous descriptions of such cells in the spleens of tumor-bearing mice [23, 24] and BM of healthy mice (ER and MBL, unpublished observations). The ring-shaped Gr-1highCD11bint MDSC correlate with the described PMN-MSDC and the morphologically more heterogeneous Gr-1lowCD11bint myeloid cells resemble the MO-MDSC [23]. Accumulation and activation of MDSC after injection of LPS/IFN-c Since LPS/IFN-g enhanced the MDSC potential in vitro, the question remained how it would affect the suppressive activity & 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim of the MDSC subsets in vivo. To investigate this, mice were left untreated or injected at days 0, 2 and 4 with LPS/IFN-g. On day 7 splenic Gr-11 CD11b1 cells were sorted from spleens of these mice and tested for their potential to inhibit an allo-MLR in vitro. To our surprise, the suppressive capacity of all isolated subsets in the inhibition of an allo-MLR in vitro remained comparable and was not enhanced by LPS/IFN-g treatment (data not shown) as we had observed using the BM-derived MDSC. To analyze the suppressive capacity after LPS/IFN-g injection in vivo, mice were injected with LPS/IFN-g and then immunized s.c. with OVA-loaded and CpG-matured DC (exogenous DC) or OVA and CpG in incomplete Freund’s adjuvant (IFA; endogenous DC). Control mice were left untreated or received only LPS/IFN-g or the immunizations alone. To monitor specific T-cell suppression, all mice received CFSE-labeled OVA-specific, TCR-transgenic CD81 OT-I cells. Injection of LPS/IFN-g led to higher frequencies of both Gr-11 CD11b1 cells in the spleens but not LN (Fig. 6A). Both Gr1highCD11bint (P1) and Gr-1lowCD11bint (P3/4) MDSC splenic subsets, and also Gr-1highCD11bhigh granulocytes (P2) were increased by this treatment, while immunization by exogenous or endogenous DC alone led to only minor increases of the MDSC subpopulations (Fig. 6A). Further subgating of the Gr1lowCD11bint cells by their FSC/SSC profiles into P3 and P4 populations after LPS/IFN-g injection indicated a drop in P3 cell www.eji-journal.eu 2869 2870 Verena Greifenberg et al. Eur. J. Immunol. 2009. 39: 2865–2876 Figure 5. Gr-1highCD11bint and Gr-1lowCD11bint splenocytes are able to suppress T-cell proliferation in vitro. Freshly isolated spleen cells of C57BL/6 mice were stained with mAb against CD11b and Gr-1 and sorted (A) by magnetic beads using Gr-1 or CD11b mAb or (B-D) by FACS for the indicated antibodies and for their FSC/SSC profile for the populations P3 and P4 to isolate the different splenic subpopulations. As suppressive positive control cells, day 3 BM-MDSC were used. Cells were then added as potential suppressor cells in triplicates at graded concentrations into an alloMLR. Proliferation was tested after 3 days by [3H]-Thymidine incorporation. Data show mean7SEM (n 5 3) and are representative of 8 independent experiments. numbers from 29.276.7% (n 5 2) in untreated animals to 9.073.0% (n 5 3) in LPS/IFN-g treated animals (n 5 3) and thereby an increase of P4 cells from 56.6715.2% (n 5 2) to 81.371.5% (n 5 3). This may indicate a specific expansion of myelomonocytic P4 cells but not the eosinophils within P3. Analysis of the injected OT-I T cells revealed that vigorous proliferation was induced after both types of immunizations, but preinjections with LPS/IFN-g inhibited the proliferation of OT-I cells in the spleens (Fig. 6B). Correlated with the absence of MDSC in the LN, the proliferation of OT-I cells in these organs was largely unaffected (Fig. 6B). These data indicate that MDSC accumulation in lymphoid organs after LPS/IFN-g injection was associated with impaired CD81 T-cell proliferation in the same organ. To further investigate whether the depletion of Gr-11 cells would reconstitute CD81 T-cell proliferation, we injected Gr-1 antibodies into the immunized control mice and mice injected with LPS/IFN-g. Unfortunately, the adoptively transferred OT-I cells were depleted after Gr-1 injection (data not shown), similar as described for CD81 memory T cells [27]. investigated the splenic CD11c1 DC frequency 6, 9 or 12 days after LPS/IFN-g treatment. The total number of spleen cells increased after this treatment until day 9 (Fig. 7A), similar to the absolute numbers of splenic DC, which resulted in a stable percentage of DC during the whole period investigated (Fig. 7B). This would indicate that the splenic DC populations are not affected by LPS/IFN-g injections. However, since the turnover of spleen DC is very high with half-lifes of 1.5–2.9 days [28], and the splenic DC pool may not be recruited from BM precursors but a splenic precursor pool [29], potential effects of the LPS/IFN-g treatment may be rapidly corrected for in the splenic DC pool. In order to test the capacity of the Gr-11 CD11b1 cells regarding their potential to differentiate into DC, these cells were sorted from mice injected with LPS, IFN-g, LPS/IFN-g or untreated animals. After in vitro culture with GM-CSF for 3 days the animals injected with LPS or LPS/IFN-g generated far fewer CD11c1 CD86neg immature DC as compared with the control or IFN-g injection alone (Fig. 7C), similar to that which we observed in vitro. Thus, activation by LPS/ IFN-g blocks the capacity of splenic MDSC to develop into DC. Impaired capacity of Gr-11 CD11b1 cells to develop into DC after LPS/IFN-c injections GM-CSF culture modulates the suppressive capacity of LPS/IFN-c treated Gr-11 CD11b1 cells To evaluate whether LPS/IFN-g activation would affect the potential of Gr-11 CD11b1 cells to develop into DC, we The question remained whether LPS/IFN-g activated Gr-11 CD11b1 cells would lose their suppressive capacity after further & 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.eji-journal.eu Immunomodulation Eur. J. Immunol. 2009. 39: 2865–2876 Figure 6. LPS/IFN-g injections accumulate Gr-11CD11b1 MDSC subsets in the spleen but not LN leading to suppression of CD81 T-cell proliferation only in the spleen. Mice were injected with a combination of LPS/IFN-g i.p. at days 0, 2 and 4 or remained untreated. At day 10, they were immunized s.c. into the footpads with IFA/CpG/OVA peptide or mature OVA peptide-loaded DC. CFSE1 OT-I cells were transferred i.v. at the same day 10. The animals were sacrificed 4 days after the immunization/OT-I-cell transfer. LN and spleen were removed and analyzed for the subsets P1 and P3/P4 of Gr-11 CD11b1 cells (A) and Vb51 OT-I-cell proliferation (B). The data are representative of two independent experiments. culture in GM-CSF. To test this, the same experimental setting as shown above (Fig. 7C) was used to obtain Gr-11 CD11b1 cells from spleens of mice that were injected with LPS, IFN-g, LPS/IFN-g or PBS as a control. These cells were then cultured for 3 days in GM-CSF and then tested for their capacity to suppress an allo-MLR (Fig. 8A). While cells from control mice and IFN-g treated mice remained suppressive, the Gr-11 CD11b1 cells from the other two groups seemed to be less suppressive. Given that, for this experiment, the high turnover of cells in the spleen may influence the populations, we directly tested the effect of GM-CSF on the splenic Gr-11 CD11b1 cells ex vivo. CD11b1 cells were sorted with magnetic beads from spleens of untreated mice and cultured for 24 h with GM-CSF only or in addition with LPS, IFN-g, LPS/IFN-g before they were titrated into an allo-MLR to test their suppressive potential. Only the control cells retained suppressive capacity but the LPS, IFN-g, LPS/IFN-g plus GM-CSF treated cells completely lost this function (Fig. 8B). These data indicate that pretreatment with GM-CSF and more strongly simultaneous treatment of splenic Gr-11 CD11b1 cells conteracts their suppressive potential. & 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Discussion Here, we showed that two specific subsets of splenic Gr-11 CD11b1 cells of healthy naive mice bear the potential to become MDSC and suppress T-cell proliferation. The combined LPS/IFN-g signaling but none of the single components led to the activation of myeloid precursors into functionally suppressive MDSC, which impaired their developmental potential into DC. Additional exposure to GMCSF counteracted the LPS/IFN-g effects. Our earlier findings indicated that LPS signals on myeloid precursor cells interfered with DC development in vitro. This LPS blocking generated CD11c1 cells that expressed only little surface MHC class II and no costimulatory molecules. Consequently, these immature DC were functionally tolerogenic and induced T-cell anergy in vitro [22]. Here, we extended our findings in vitro by showing that combined LPS/IFN-g treatment enforced this effect, while IFN-g alone showed no changes. After injection of LPS, Gr-11 CD11b1 cells accumulated in the spleen as reported before [20] and, similar to our in vitro findings, these cells showed reduced capacity to develop into CD11c1 DC. These data www.eji-journal.eu 2871 2872 Verena Greifenberg et al. Eur. J. Immunol. 2009. 39: 2865–2876 Figure 7. In vivo activation of Gr-1/CD11b cells by LPS or LPS/IFN-g impairs their capacity to develop into DC. Mice were injected i.p. with LPS/IFN-g or with PBS at days 0, 2 and 4. At days 6, 9 and 12 the spleen cell numbers were counted (A), stained for CD11c and analyzed by flow cytometry (B). In another experimental setting the mice were injected i.p. with LPS, IFN-g, the combination, or with PBS at days 0, 2, and 4 and at day 7 the splenic Gr-11CD11b1 cells from individual mice of each group were isolated by cell sorting and cultured in the presence of GM-CSF. At day 10 FACS analyses were performed with the indicated markers (C) to analyze their precursor/granulocyte by Gr-1/CD11b or immature/mature DC phenotype by CD86/CD11c. The data are representative dot plots of duplicate mice per experiment. Three experiments with similar results for all individual mice have been performed. indicated that LPS could expand Gr-11 CD11b1 cells and block DC development, but not whether LPS alone is sufficient to activate their suppressor function. NO has been shown to be one of the suppressive tools secreted by MDSC [1]. Here, LPS transiently induced the NO production in our BM-MDSC cultures. However, when the NO was washed off from the cells they lost their suppressive potential after continued culture in GM-CSF. These findings indicate that LPS treatment of myeloid precursors leads to a partial activation as indicated by NO release that allows a transient suppressive activity. This also may indicate that the suppressive mechanism that could be observed in the allo-MLR by using LPS plus IFN-g for MDSC stimulation could be mediated through a mechanism other than NO production or involve a second wave of NO production that may, however, depend on IFN-g. IFN-g is the major cytokine released by CD41 Th1 cells and CD81 CTL and has been also shown to control MDSC activity [1, 30]. Our results with in vitro generated MDSC indicated that & 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim their suppressive activity could be partially abrogated by blocking IFN-g [2], similar to that which others observed in vivo [30]. Treatment of BM-MDSC cultures with IFN-g led to low NO production, but after washing, the blocking activity in an alloMLR was reduced when compared with untreated cells. Injections of IFN-g did not induce T-cell suppression in vivo and did not increase the number of myeloid cells in the spleen. Thus, these data indicate that neither myeloid cell accumulation in the spleen nor MDSC activity could be induced by IFN-g alone. The combined in vitro treatment or in vivo injection of LPS/ IFN-g led to an accumulation of myeloid cells in culture or in the spleen but with an impaired capacity to develop into DC. When LPS/IFN-g-treated day 3 BM cell cultures were further propagated with GM-CSF they not only showed an impaired capacity to develop into DC, but also lost their suppressive potential. This GM-CSF effect was also observed with splenic MDSC ex vivo. At this point, it is speculative whether activated MDSC may further undergo a special myeloid development toward tolerogenic DC, www.eji-journal.eu Eur. J. Immunol. 2009. 39: 2865–2876 Immunomodulation Figure 8. GM-CSF counteracts the suppressive potential of LPS/IFN-g activated MDSC. (A) In analogy to the experimental setting shown in Fig. 7C, mice were injected i.p. with LPS, IFN-g, the combination, or as a control with PBS at days 0, 2 and 4. At day 7 the splenic Gr-11 CD11b1 cells from individual mice of each group were isolated by cell sorting and cultured in the presence of GM-CSF. At day 10 cells were harvested, counted and their suppressive function was tested by titrating them into an allo-MLR. (B) Freshly isolated and magnetic bead-sorted CD11b1 cells from spleens of untreated mice were simultaneously treated with GM-CSF plus either LPS, IFN-g or the combination or remained untreated for 24 h. Capacity to suppress allo-MLR was tested by adding graded doses of the cells. Data show mean7SD (n 5 3) and are representative of three independent experiments. since they acquire the CD11c marker without leading to fully functional immunogenic DC, similar to that observed with LPS treatment alone [22]. Only the simultaneous presence of LPS plus IFN-g activated MDSC suppression in vitro. During the course of a bacterial infection, LPS will be detectable to immune cells at the earliest time points, initiating an anti-microbial immune response. Subsequently, as a result of the adaptive immune response IFN-g producing T cells will be generated, which produce IFN-g only locally when they are restimulated by antigens at the infection site. The simultaneous treatment of mice with LPS/IFN-g may reflect a chronic infection [31–33] or sepsis [20], where pathogens carrying LPS or other immunostimulatory molecules are systemically present, together with high levels of IFN-g. In this situation, MDSC activation may occur as a beneficial mechanism to control immunopathology in the host. We can only speculate why the single treatments with either LPS or IFN-g have opposing effects as compared with the combination of both. However, the single detection of either LPS or IFN-g by MDSC also results in useful mechanisms. Recognition of pathogen alone requires an immune response and should not be associated with increased suppression. Similarly, detection of IFN-g by MDSC is just part of a normal ongoing immune response where suppression would also be counter-productive. The suppression of T cells in the spleen but not in the LN would further support this model, as only the systemic T-cell activation is blocked in the spleen but not in the local tissuedraining LN where T-cell activation may continue. Although increased frequencies of MDSC in LN have been observed by others using models for sepsis, or tumors, the percentages & 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim remained low around 2–4% as compared with about 20% in the spleens [20, 34]. Under the conditions tested here, there was clearly no induction of Gr-11 CD11b1 cell in the LN. The slightly lower rate of CD81 T-cell proliferation detected in the LN of our mice must therefore reflect the reduced recirculation of T cells from the spleen. Together, this may indicate that the major site of suppression in mice is the spleen rather than the LN. It is a matter of debate whether MDSC exist in the steady state. Our ex vivo and in vivo data demonstrate that two subsets of Gr-11 CD11b1 cells with suppressive potential exist within the spleen, indicating preformed MDSC in the steady state. However, our previous findings indicated that blocking IFN-g within the alloMLR that is undergoing suppression by BM-derived MDSC limited NO production and partially reconstituted T-cell proliferation [2]. Similar data have been acquired in vivo [27]. This clearly indicates that during the allo-MLR, factors such as IFN-g plus presumably others are instantly produced to activate MDSC function. We could observe this especially at high antigen doses during the in vitro stimulation of TCR-transgenic T cells [2]. Enhancing the doses of IFN-g in vivo by injection in combination with the presence of tumor-derived or microbial factors such as LPS then may further unfold the full potential of MDSC and increase their numbers in the spleen. Thus, MDSC suppressor activity requires activation, which may have more than one activation level. However, Gr-11 CD11b1 cells isolated from mice that were pre-injected with LPS/IFN-g and tested ex vivo for suppression did not show an elevated suppressive potential as compared with untreated mice (data not shown). The reasons for this discrepancy are unclear but could also be related to the high cellular www.eji-journal.eu 2873 2874 Eur. J. Immunol. 2009. 39: 2865–2876 Verena Greifenberg et al. turnover within the spleen. Particularly, the LPS/IFN-g injections impaired the OT-I-cell proliferation, indicating that MDSC activity increased. Taken together, we observed the increased OT-I T-cell suppression in the spleen after LPS/IFN-g injections without a higher intrinsic suppressive potential of the splenic MDSC, but increased frequencies of the two splenic MDSC subsets. These data indicate that MDSC activity in vivo may be predominantly regulated by their number in the spleen. The elimination of MDSC would be a tool to investigate their role in vivo. However, injecting Gr-1 antibody to deplete MDSC in the steady state was not successful in our hands since the antibody depleted activated CD81 OT-I T cells, similar to that which has been described before for memory CD81 T cells by others [27]. Genetic models to specifically ablate MDSC or their functions will clarify this point in the future. Finally, it is of note that here we identified the Gr-1high CD11bhigh expressing neutrophils and the Gr-11 CD11blowSSChigh eosinophils as non-suppressive populations in the spleen of healthy mice. This fact is worth mentioning since many reports generalize all Gr-11 CD11b1 cells in the spleen as candidates for MDSC activity. However, differentiated neutrophilic granulocytes and eosinophils do not seem to have suppressive potential in this type of assay. In conclusion, our data indicate that healthy mice contain two splenic subsets of Gr-11 CD11b1 cells with suppressive capacity. Their full activation requires two simultaneous signals such as LPS/IFN-g. This activation by the simultaneous presence of these factors resembles chronic infections or sepsis and is triggered to inhibit immunopathology. Materials and methods Mice C57BL/6 and BALB/c mice between 4–12 wk of age were used for generating single cell suspensions of BM, spleen and LN as well as for the in vivo experiments (C57BL/6 mice). Animals were purchased from Charles River, Germany, or obtained from our internal breeding facilities in Erlangen or Würzburg, Germany. All experiments were performed according to the animal protection laws and under control and with permission of the local authorities (Regierung von Mittelfranken AZ: 621.2531.3206/02, TS-99/14; Regierung von Unterfranken AZ: 54-2531.0108/07). Media and reagents For cell culture R10 medium was used consisting of RPMI 1640 (Lonza) supplemented with 100 U/mL penicillin (Sigma), 100 mg/mL streptomycin (Sigma), 2 mM L-glutamine (Sigma), 50 mM b-mercaptoethanol (Sigma) and 10% heat-inactivated FBS (PAA, Cölbe, Germany). & 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Isolation and preparation of cells and treatments in vitro To generate single cell suspensions of spleens, LN or BM organs were removed under sterile conditions and the popliteal, inguinal, axillary, cervical and mesenteric LN were disrupted with glass slides and resuspended in PBS (Lonza) as described in detail before [35]. Stimulation of MDSC were performed over night with 0.1–1 mg/mL LPS (Sigma), 500 U/mL TNF, 200 U/mL IL-1b or 200 U/mL IL-6 either alone or in combination with 100 U/mL IFN-g (all from Preprotech). BM-derived MDSC and DC cultures The culture of BM cells from C57BL/6 mice to generate d3 MSDC or DC was performed as described previously [2]. Shortly, fresh BM cells were cultured in 10 mL R10 medium with 10% culture supernatant of a murine GM-CSF transfected cell line (equivalent to 4200 U/mL). After 3 or 4 days of culture MSDC could be harvested as non-adherent cells. Flow cytometry and cell sorting for MDSC Cells were stained with PerCP-conjugated mAb against Gr-1 and either PE- or FITC-CD11b or FITC- or PE-conjugated mAb against CD11c, F4/80, CD45R/B220, DX5, NK1.1, MHC class II (I-A; M5/114), or CCR3-AlexaFluor647 (all BD Pharmingen, Hamburg, Germany) or for Ly-6C (ER-MP20, AbD Serotec), or CD115-APC, PDCA-1-AlexaFluor647 (eBiosciences) or the appropriate fluorochome-conjugated mAb or supernatants as isotype controls at 2–5 mg/mL in PBS containing 0.1% sodium azide and 5% FBS for 30 min on ice in the dark. Samples were washed once in staining buffer, measured and analyzed with a FACScan (Becton Dickinson, Heidelberg, Germany). For some experiments fresh spleen cells were sorted either by MACS technology (Miltenyi, Bergisch-Gladbach, Germany) or with a Mo-Flo highspeed sorter (Cytomation, Freiburg, Germany) or a FACS-Vantage (BD). The purity of sorted cells was generally above 90%. Sorted cells were then cultured as indicated. Allo-MLR The different Gr-11 CD11b1 splenocyte populations from C57BL/ 6 mice were sorted and cultured as triplicates in a 96 well flatbottomed plate (Falcon) in R10 medium at titrated numbers. In vitro generated untreated day 3 or 4 BM-derived MDSC served as positive control. LN cells from BALB/c mice (4 105 well) were used as responder population. Mature day 9 DC from C57BL/6 mice were used as stimulator cell population (1 104 well). After 3 days of culture cells were pulsed with 1 mCi [3H]-thymidine (Amersham) in HL-1 medium for 16 h and harvested onto www.eji-journal.eu Immunomodulation Eur. J. Immunol. 2009. 39: 2865–2876 filtermats with an ICH-110 harvester (Inotech, Dottikon, Switzerland). Filters were counted in a 1450 microplate counter (Wallac, Turku, Finland). Measurement of NO as nitrite production NO was measured as nitrite production using the Griess reaction [36]. Briefly, 50 mL of cell culture supernatant were put into a 96 well ELISA-plate (Corning) as duplicates with titrated NaNO2 (Sigma) in R10 medium serving as a standard. An aqueous solution of 0.1% naphtylethylendiamine dihydrochloride (Sigma) and 1% sulfanilamide (Sigma) in 5% conc. H3PO4 (Merck, Darmstadt, Germany) in water were mixed 1:1 and 50 mL of this solution were added to 50 mL of the samples. The evoked color reaction was measured after 10 min in the ELISA reader (Molecular Devices) at 492 nm and nitrite concentrations were calculated from the sodium nitrite standard curve. Cytospins Sorted splenocytes (2 105) were resuspended in 200 mL R10 medium and centrifuged onto a microscope slide using a Cytospin-3 (Shandon, Life Sciences International, Astmoor, UK). Then, slides were stained with hematoxylin/eosin dye according to standard protocols. 10 mM OVA peptide for 4 h. For preparation of OT-I cells, a single cell suspension from spleens and LN was prepared, lysed for erythrocytes with 0.8% ammoniumchloride, washed and then labeled with CFSE (5 mM in PBS for 15 min, RT; Molecular Probes). OT-I cells (1.3 107 cells per mouse) were transferred i.v. at the same day 10. The animals were sacrificed at day 14 and the single cell suspensions of spleens and LN used for flow cytometry analysis with biotinylated mAb against Vb5 detected by an streptavidin-PerCP conjugate (both BD Pharmingen). Acknowledgements: We thank Gerold Schuler for his continuous support, Thomas Hünig for support and helpful discussions, Gudrun Schell for expert technical assistance and Christian Linden for cell sorting. This work was supported by the Interdisciplinary Centre for Clinical Research (IZKF) Erlangen for VG, DFG through LU851/4-1 for SR and MBL and the Collaborative Research Centre SFB479 for ER and MBL. Conflict of interest: The authors declared no financial or commercial conflict of interest. References Ex vivo analysis of spleen cells after injection of LPS/IFN-c 1 Gabrilovich, D. I. and Nagaraj, S., Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 2009. 9: 162–174. 2 RöXner, S., Voigtländer, C., Wiethe, C., Hänig, J., Seifarth, C. and Female C57BL/6 mice received 1 mg IFN-g and 10 mg LPS i.p. per mouse on day 0. IFN-g- and, where indicated, LPS injections were repeated on day 2 and 4. At 6, 9 and 12 days after first injection spleens of the different test groups were removed and analyzed by FACS staining. Fractions of the sorted cells at day 6 after the LPS/IFN-g injections were cultured for another 4 days in saturating doses GM-CSF. mAb against Gr-1 and CD11b were used to determine the amount of potential suppressor cells in the spleen; mAb toward CD11c should reveal the effect of IFN-g/LPS on the percentage of splenic DC. In addition their suppressive capacities was tested by titrating the cells into an allo-MLR. Lutz, M. B., Myeloid dendritic cell precursors generated from bone marrow suppress T cell responses via cell contact and nitric oxide production in vitro. Eur. J. Immunol. 2005. 35: 3533–3544. 3 Lutz, M. B. and Schuler,G., Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol. 2002. 23: 445–449. 4 Banchereau, J. and Steinman, R. M., Dendritic cells and the control of immunity. Nature 1998. 392: 245–252. 5 Steinman, R. M. and Nussenzweig, M. C., Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc. Natl. Acad. Sci. USA 2002. 99: 351–358. 6 Hänig, J. and Lutz, M. B., Suppression of mature dendritic cell function by regulatory T cells in vivo is abrogated by CD40 licensing. J. Immunol. 2008. In vivo analysis of CD8 T-cell suppression Mice were injected with a combination of 1 mg IFN-g and 10 mg LPS i.p. at days 0, 2 and 4 or remained untreated. At day 10, they were immunized s.c. into the footpads with 50 mL of a 1:1 mixture of IFA (Sigma) : PBS containing 6 mg CpG oligonucleotides (MWG biotech AG, Ebersberg, Germany) and 100 mg OVA peptide (SIINFEKL) or 4 106 matured and OVA peptide (10 mM)-loaded DC. Mature DC were generated after 8 days of culture in GMCSF-supernatant as described [35] and by 1 mg/mL CpG and & 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 180: 1405–1413. 7 Sinha, P., Clements, V. K., Miller, S. and Ostrand-Rosenberg, S., Tumor immunity: a balancing act between T cell activation, macrophage activation and tumor-induced immune suppression. Cancer Immunol. Immunother. 2005. 54: 1137–1142. 8 Marigo, I., Dolcetti, L., Serafini, P., Zanovello, P. and Bronte, V., Tumorinduced tolerance and immune suppression by myeloid derived suppressor cells. Immunol. Rev. 2008. 222: 162–179. 9 Serafini, P., Borrello, I. and Bronte, V., Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin. Cancer Biol. 2006. 16: 53–65. www.eji-journal.eu 2875 2876 Eur. J. Immunol. 2009. 39: 2865–2876 Verena Greifenberg et al. 10 Serafini, P., De Santo, C., Marigo, I., Cingarlini, S., Dolcetti, L., Gallina, G., Zanovello, P. and Bronte, V., Derangement of immune responses by myeloid suppressor cells. Cancer Immunol. Immunother. 2004: 64–72. lymphocytes after immunization: induction of a suppressive population of Mac-11/Gr-11cells. J. Immunol. 1998. 161: 5313–5320. 28 Kamath, A. T., Pooley, J., O’Keeffe, M. A., Vremec, D., Zhan, Y., Lew, A. M., 11 Song, X., Krelin, Y., Dvorkin, T., Bjorkdahl, O., Segal, S., Dinarello, C. A., D’Amico, A. et al., The development, maturation, and turnover rate of Voronov, E. and Apte, R. N., CD11b1/Gr-11immature myeloid cells mouse spleen dendritic cell populations. J. Immunol. 2000. 165: 6762–6770. mediate suppression of T cells in mice bearing tumors of IL-1betasecreting cells. J. Immunol. 2005. 175: 8200–8208. 12 Bunt, S. K., Sinha, P., Clements, V. K., Leips, J. and Ostrand-Rosenberg, S., Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J. Immunol. 2006. 176: 284–290. 13 Bunt, S. K., Yang, L., Sinha, P., Clements, V. K., Leips, J. and OstrandRosenberg, S., Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res. 2007. 67: 10019–10026. 14 Sinha, P., Clements, V. K., Fulton, A. M. and Ostrand-Rosenberg, S., Prostaglandin E2 promotes tumor progression by inducing myeloidderived suppressor cells. Cancer Res. 2007. 67: 4507–4513. 15 Bunt, S. K., Clements, V. K., Hanson, E. M., Sinha, P. and Ostrand-Rosenberg, S., Inflammation enhances myeloid-derived suppressor cell cross-talk by signaling through Toll-like receptor 4. J. Leukoc. Biol. 2009. 85: 996–1004. 29 Naik, S. H., Metcalf, D., van Nieuwenhuijze, A., Wicks, I., Wu, L., O’Keeffe, M. and Shortman, K., Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nat. Immunol. 2006. 7: 663–671. 30 Sercan, Ö., Hämmerling, G. J., Arnold, B. and Schüler, T., Cutting Edge: Innate Immune Cells Contribute to the IFN--Dependent Regulation of Antigen-Specific CD81T Cell Homeostasis. J. Immunol. 2006. 176: 735–739. 31 Brys, L., Beschin, A., Raes, G., Ghassabeh, G. H., Noel, W., Brandt, J., Brombacher, F. and De Baetselier, P., Reactive oxygen species and 12/15lipoxygenase contribute to the antiproliferative capacity of alternatively activated myeloid cells elicited during helminth infection. J. Immunol. 2005. 174: 6095–6104. 32 Goni, O., Alcaide, P. and Fresno, M., Immunosuppression during acute Trypanosoma cruzi infection: involvement of Ly6G (Gr1(1))CD11b(1)immature myeloid suppressor cells. Int. Immunol. 2002. 14: 1125–1134. 33 Marshall, M. A., Jankovic, D., Maher, V. E., Sher, A. and Berzofsky, J. A., 16 Dolcetti, L., Marigo, I., Mantelli, B., Peranzoni, E., Zanovello, P. and Mice infected with Schistosoma mansoni develop a novel non-T- Bronte, V., Myeloid-derived suppressor cell role in tumor-related inflam- lymphocyte suppressor population which inhibits virus-specific CTL mation. Cancer Lett. 2008. 267: 216–225. 17 Sinha, P., Okoro, C., Foell, D., Freeze, H. H., Ostrand-Rosenberg, S. and induction via a soluble factor. Microbes Infect. 2001. 3: 1051–1061. 34 Watanabe, S., Deguchi, K., Zheng, R., Tamai, H., Wang, L. X., Cohen, P. A. and Srikrishna, G., Proinflammatory S100 proteins regulate the accumulation Shu, S., Tumor-induced CD11b1Gr-11myeloid cells suppress T cell sensiti- of myeloid-derived suppressor cells. J. Immunol. 2008. 181: 4666–4675. zation in tumor-draining lymph nodes. J. Immunol. 2008. 181: 3291–3300. 18 Cheng, P., Corzo, C. A., Luetteke, N., Yu, B., Nagaraj, S., Bui, M. M., 35 Lutz, M. B., Kukutsch, N., Ogilvie, A. L., Rossner, S., Koch, F., Romani, N. Ortiz, M. et al., Inhibition of dendritic cell differentiation and accumula- and Schuler, G., An advanced culture method for generating large tion of myeloid-derived suppressor cells in cancer is regulated by S100A9 quantities of highly pure dendritic cells from mouse bone marrow. protein. J. Exp. Med. 2008. 205: 2235–2249. J. Immunol. Methods 1999. 223: 77–92. 19 Makarenkova, V. P., Bansal, V., Matta, B. M., Perez, L. A. and Ochoa, J. B., 36 Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S. and CD11b1/Gr-11myeloid suppressor cells cause T cell dysfunction after Tannenbaum, S. R., Analysis of nitrate, nitrite, and [15N]nitrate in traumatic stress. J. Immunol. 2006. 176: 2085–2094. biological fluids. Anal Biochem. 1982. 126: 131–138. 20 Delano, M., Scumpia, P., Weinstein, J., Coco, D., Nagaraj, S., KellyScumpia, K. et al., MyD88-dependent expansion of an immature GR-11 CD11b1population induces T cell suppression and Th2 polarization in sepsis. J. Exp. Med. 2007. 21 Mazzoni, A., Bronte, V., Visintin, A., Spitzer, J. H., Apolloni, E., Serafini, P., Zanovello, P. and Segal, D. M., Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J. Immunol. 2002. 168: 689–695. 22 Lutz, M. B., Kukutsch, N. A., Menges, M., RöXner, S. and Schuler, G., Culture of bone marrow cells in GM-CSF plus high doses of lipopolysaccharide Abbreviations: Allo-MLR: allogenic MLR FSC: forward scatter IFA: incomplete Freund’s adjuvant MDSC: myeloid-derived suppressor cell Mo: monocytic SSC: side scatter Full correspondence: Dr. Manfred B. Lutz, Institute for Virology and Immunobiology, University of Würzburg, Versbacherstr.7, Würzburg, Germany Fax: 149-937-201-49243 e-mail: [email protected] generates exclusively immature dendritic cells which induce alloantigenspecific CD4 T cell anergy in vitro. Eur. J. Immunol. 2000. 30: 1048–1052. 23 Movahedi, K., Guilliams, M., Van den Bossche, J., Van den Bergh, R., Gysemans, C., Beschin, A., De Baetselier, P. and Van Ginderachter, J. A., Identification of discrete tumor-induced myeloid-derived suppressor cell Received: 2/4/2009 Revised: 6/7/2009 Accepted: 14/7/2009 subpopulations with distinct T cell-suppressive activity. Blood 2008. 111: 4233–4244. 24 Youn, J. I., Nagaraj, S., Collazo, M. and Gabrilovich, D. I., Subsets of Note added in proof: The data referred to as ‘‘ER and MBL, unpublished myeloid-derived suppressor cells in tumor-bearing mice. J. Immunol. 2008. observations’’ are now in press: Ribechini, E., Leenen, P. J. M. and Lutz, 181: 5791–5802. M. B. Gr-1 antibody induces STAT signaling, macrophage marker 25 Shortman, K. and Villadangos, J. A., Is it a DC, is it an NK? No, it’s an IKDC. Nat. Med. 2006. 12: 167–168. expression and abrogation of myeloid-derived suppressor cell activity in bone marrow cells Eur. J. Immunol. 2009. 10.1002/eji.200939530. 26 Shortman, K. and Naik, S. H., Steady-state and inflammatory dendriticcell development. Nat. Rev. Immunol. 2007. 7: 19–30. 27 Bronte, V., Wang, M., Overwijk, W. W., Surman, D. R., Pericle, F., Rosenberg, S. A. and Restifo, N. P., Apoptotic death of CD81T & 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.eji-journal.eu 38 6 Literaturverzeichnis 1. Abdalla A. O., Kiaii S., Hansson L., Rossmann E. D., Jeddi-Tehrani M., Shokri F., Osterborg A., Mellstedt H. and Rabbani H., (2003), Kinetics of cytokine gene expression in human CD4+ and CD8+ Tlymphocyte subsets using quantitative real-time PCR. Scand J Immunol 58:601-606. 2. al-Ramadi B. K., Brodkin M. A., Mosser D. M. and Eisenstein T. K., (1991), Immunosuppression induced by attenuated Salmonella. Evidence for mediation by macrophage precursors. J Immunol 146:2737-2746. 3. Albert M. L., Sauter B. and Bhardwaj N., (1998), Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392:86-89. 4. Alleva D. G., Walker T. M. and Elgert K. D., (1995), Induction of macrophage suppressor activity by fibrosarcoma-derived transforming growth factor-beta 1: contrasting effects on resting and activated macrophages. J Leukoc Biol 57:919-928. 5. Almand B., Resser J. R., Lindman B., Nadaf S., Clark J. I., Kwon E. D., Carbone D. P. and Gabrilovich D. I., (2000), Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 6:1755-1766. 6. Almand B., Clark J. I., Nikitina E., van Beynen J., English N. R., Knight S. C., Carbone D. P. and Gabrilovich D. I., (2001), Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166:678-689. 7. Angulo I., Rodriguez R., Garcia B., Medina M., Navarro J. and Subiza J. L., (1995), Involvement of nitric oxide in bone marrow-derived natural suppressor activity. Its dependence on IFN-gamma. J Immunol 155:15-26. 8. Angulo I., de las Heras F. G., Garcia-Bustos J. F., Gargallo D., MunozFernandez M. A. and Fresno M., (2000), Nitric oxide-producing CD11b(+)Ly-6G(Gr-1)(+)CD31(ER-MP12)(+) cells in the spleen of cyclophosphamide-treated mice: implications for T-cell responses in immunosuppressed mice. Blood 95:212-220. 9. Angulo I., Rullas J., Campillo J. A., Obregon E., Heath A., Howard M., Munoz-Fernandez M. A. and Subiza J. L., (2000), Early myeloid cells are high producers of nitric oxide upon CD40 plus IFN-gamma stimulation through a mechanism dependent on endogenous TNFalpha and IL-1alpha. Eur J Immunol 30:1263-1271. 10. Apolloni E., Bronte V., Mazzoni A., Serafini P., Cabrelle A., Segal D. M., Young H. A. and Zanovello P., (2000), Immortalized myeloid suppressor cells trigger apoptosis in antigen-activated T lymphocytes. J Immunol 165:6723-6730. 11. Banchereau J. and Steinman R. M., (1998), Dendritic cells and the control of immunity. Nature 392:245-252. 12. Bansal V. and Ochoa J. B., (2003), Arginine availability, arginase, and the immune response. Curr Opin Clin Nutr Metab Care 6:223-228. 13. Berthier R., Martinon-Ego C., Laharie A. M. and Marche P. N., (2000), A two-step culture method starting with early growth factors permits enhanced production of functional dendritic cells from murine splenocytes. J Immunol Methods 239:95-107. 39 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. Billard E., Dornand J. and Gross A., (2007), Brucella suis prevent human dendritic cell maturation and antigen presentation through the regulation of TNF-{alpha} secretion. Infect Immun. Billiau A. D., Fevery S., Rutgeerts O., Landuyt W. and Waer M., (2003), Transient expansion of Mac1+Ly6-G+Ly6-C+ early myeloid cells with suppressor activity in spleens of murine radiation marrow chimeras: possible implications for the graft-versus-host and graftversus-leukemia reactivity of donor lymphocyte infusions. Blood 102:740-748. Bingisser R. M., Tilbrook P. A., Holt P. G. and Kees U. R., (1998), Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J Immunol 160:5729-5734. Bobe P., Benihoud K., Grandjon D., Opolon P., Pritchard L. L. and Huchet R., (1999), Nitric oxide mediation of active immunosuppression associated with graft-versus-host reaction. Blood 94:1028-1037. Bogdan C., (2001), Nitric oxide and the immune response. Nat Immunol 2:907-916. Boonstra A., Asselin-Paturel C., Gilliet M., Crain C., Trinchieri G., Liu Y. J. and O'Garra A., (2003), Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: dependency on antigen dose and differential toll-like receptor ligation. J Exp Med 197:101-109. Bouaziz J. D., Yanaba K. and Tedder T. F., (2008), Regulatory B cells as inhibitors of immune responses and inflammation. Immunol Rev 224:201-214. Brito C., Naviliat M., Tiscornia A. C., Vuillier F., Gualco G., Dighiero G., Radi R. and Cayota A. M., (1999), Peroxynitrite inhibits T lymphocyte activation and proliferation by promoting impairment of tyrosine phosphorylation and peroxynitrite-driven apoptotic death. J Immunol 162:3356-3366. Bronte V., Serafini P., Apolloni E. and Zanovello P., (2001), Tumorinduced immune dysfunctions caused by myeloid suppressor cells. J Immunother (1997) 24:431-446. Bronte V., Wang M., Overwijk W. W., Surman D. R., Pericle F., Rosenberg S. A. and Restifo N. P., (1998), Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+ cells. J Immunol 161:5313-5320. Bronte V., Chappell D. B., Apolloni E., Cabrelle A., Wang M., Hwu P. and Restifo N. P., (1999), Unopposed production of granulocytemacrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J Immunol 162:5728-5737. Cauley L. S., Miller E. E., Yen M. and Swain S. L., (2000), Superantigen-induced CD4 T cell tolerance mediated by myeloid cells and IFN-gamma. J Immunol 165:6056-6066. Chan G., Boyle J. O., Yang E. K., Zhang F., Sacks P. G., Shah J. P., Edelstein D., Soslow R. A., Koki A. T., Woerner B. M., Masferrer J. L. and Dannenberg A. J., (1999), Cyclooxygenase-2 expression is upregulated in squamous cell carcinoma of the head and neck. Cancer Res 59:991-994. 40 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. Chatterjee S., Premachandran S., Bagewadikar R. S., Bhattacharya S., Chattopadhyay S. and Poduval T. B., (2006), Arginine metabolic pathways determine its therapeutic benefit in experimental heatstroke: role of Th1/Th2 cytokine balance. Nitric Oxide 15:408-416. Chaux P., Favre N., Bonnotte B., Moutet M., Martin M. and Martin F., (1997), Tumor-infiltrating dendritic cells are defective in their antigenpresenting function and inducible B7 expression. A role in the immune tolerance to antigenic tumors. Adv Exp Med Biol 417:525-528. Cheng P., Corzo C. A., Luetteke N., Yu B., Nagaraj S., Bui M. M., Ortiz M., Nacken W., Sorg C., Vogl T., Roth J. and Gabrilovich D. I., (2008), Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205:2235-2249. de Jong E. C., Smits H. H. and Kapsenberg M. L., (2005), Dendritic cell-mediated T cell polarization. Springer Semin Immunopathol 26:289-307. de Saint-Vis B., Fugier-Vivier I., Massacrier C., Gaillard C., Vanbervliet B., Ait-Yahia S., Banchereau J., Liu Y. J., Lebecque S. and Caux C., (1998), The cytokine profile expressed by human dendritic cells is dependent on cell subtype and mode of activation. J Immunol 160:1666-1676. De Santo C., Serafini P., Marigo I., Dolcetti L., Bolla M., Del Soldato P., Melani C., Guiducci C., Colombo M. P., Iezzi M., Musiani P., Zanovello P. and Bronte V., (2005), Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc Natl Acad Sci U S A 102:4185-4190. Delano M. J., Scumpia P. O., Weinstein J. S., Coco D., Nagaraj S., Kelly-Scumpia K. M., O'Malley K. A., Wynn J. L., Antonenko S., AlQuran S. Z., Swan R., Chung C. S., Atkinson M. A., Ramphal R., Gabrilovich D. I., Reeves W. H., Ayala A., Phillips J., Laface D., Heyworth P. G., Clare-Salzler M. and Moldawer L. L., (2007), MyD88dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J Exp Med 204:1463-1474. Dieckmann D., Bruett C. H., Ploettner H., Lutz M. B. and Schuler G., (2002), Human CD4(+)CD25(+) regulatory, contact-dependent T cells induce interleukin 10-producing, contact-independent type 1-like regulatory T cells [corrected]. J Exp Med 196:247-253. Duhe R. J., Evans G. A., Erwin R. A., Kirken R. A., Cox G. W. and Farrar W. L., (1998), Nitric oxide and thiol redox regulation of Janus kinase activity. Proc Natl Acad Sci U S A 95:126-131. Dumortier H., van Mierlo G. J., Egan D., van Ewijk W., Toes R. E., Offringa R. and Melief C. J., (2005), Antigen presentation by an immature myeloid dendritic cell line does not cause CTL deletion in vivo, but generates CD8+ central memory-like T cells that can be rescued for full effector function. J Immunol 175:855-863. Dupuis M., De Jesus Ibarra-Sanchez M., Tremblay M. L. and Duplay P., (2003), Gr-1+ myeloid cells lacking T cell protein tyrosine phosphatase inhibit lymphocyte proliferation by an IFN-gamma- and nitric oxide-dependent mechanism. J Immunol 171:726-732. 41 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. Filipazzi P., Valenti R., Huber V., Pilla L., Canese P., Iero M., Castelli C., Mariani L., Parmiani G. and Rivoltini L., (2007), Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 25:2546-2553. Fleming T. J., Fleming M. L. and Malek T. R., (1993), Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6-8C5 mAb to granulocyte-differentiation antigen (Gr-1) detects members of the Ly-6 family. J Immunol 151:2399-2408. Fu Y. X., Watson G., Jimenez J. J., Wang Y. and Lopez D. M., (1990), Expansion of immunoregulatory macrophages by granulocytemacrophage colony-stimulating factor derived from a murine mammary tumor. Cancer Res 50:227-234. Gabrilovich D., Ishida T., Oyama T., Ran S., Kravtsov V., Nadaf S. and Carbone D. P., (1998), Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92:4150-4166. Gabrilovich D. I. and Nagaraj S., (2009), Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162174. Gabrilovich D. I., Ciernik I. F. and Carbone D. P., (1996), Dendritic cells in antitumor immune responses. I. Defective antigen presentation in tumor-bearing hosts. Cell Immunol 170:101-110. Gabrilovich D. I., Velders M. P., Sotomayor E. M. and Kast W. M., (2001), Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J Immunol 166:5398-5406. Gabrilovich D. I., Bronte V., Chen S. H., Colombo M. P., Ochoa A., Ostrand-Rosenberg S. and Schreiber H., (2007), The terminology issue for myeloid-derived suppressor cells. Cancer Res 67:425; author reply 426. Gabrilovich D. I., Chen H. L., Girgis K. R., Cunningham H. T., Meny G. M., Nadaf S., Kavanaugh D. and Carbone D. P., (1996), Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2:1096-1103. Gallina G., Dolcetti L., Serafini P., De Santo C., Marigo I., Colombo M. P., Basso G., Brombacher F., Borrello I., Zanovello P., Bicciato S. and Bronte V., (2006), Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest 116:2777-2790. Gershon R. K., (1975), A disquisition on suppressor T cells. Transplant Rev 26:170-185. Ghiringhelli F., Menard C., Terme M., Flament C., Taieb J., Chaput N., Puig P. E., Novault S., Escudier B., Vivier E., Lecesne A., Robert C., Blay J. Y., Bernard J., Caillat-Zucman S., Freitas A., Tursz T., Wagner-Ballon O., Capron C., Vainchencker W., Martin F. and Zitvogel L., (2005), CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 202:1075-1085. 42 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. Goni O., Alcaide P. and Fresno M., (2002), Immunosuppression during acute Trypanosoma cruzi infection: involvement of Ly6G (Gr1(+))CD11b(+ )immature myeloid suppressor cells. Int Immunol 14:1125-1134. Goodnow C. C., Sprent J., Fazekas de St Groth B. and Vinuesa C. G., (2005), Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 435:590-597. Gordon S. A., Abou-Jaoude W., Hoffman R. A., McCarthy S. A., Kim Y. M., Zhou X., Zhang X. R., Simmons R. L., Chen Y., Schall L. and Ford H. R., (2001), Nitric oxide induces murine thymocyte apoptosis by oxidative injury and a p53-dependent mechanism. J Leukoc Biol 70:87-95. Griesser H. and Mak T. W., (1994), The T-cell receptor--structure, function, and clinical application. Hematol Pathol 8:1-23. Griffith O. W. and Stuehr D. J., (1995), Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol 57:707-736. Haile L. A., von Wasielewski R., Gamrekelashvili J., Kruger C., Bachmann O., Westendorf A. M., Buer J., Liblau R., Manns M. P., Korangy F. and Greten T. F., (2008), Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology 135:871-881, 881 e871-875. Hanada K., Tsunoda R. and Hamada H., (1996), GM-CSF-induced in vivo expansion of splenic dendritic cells and their strong costimulation activity. J Leukoc Biol 60:181-190. Hestdal K., Ruscetti F. W., Ihle J. N., Jacobsen S. E., Dubois C. M., Kopp W. C., Longo D. L. and Keller J. R., (1991), Characterization and regulation of RB6-8C5 antigen expression on murine bone marrow cells. J Immunol 147:22-28. Horwitz D. A., Zheng S. G. and Gray J. D., (2008), Natural and TGFbeta-induced Foxp3(+)CD4(+) CD25(+) regulatory T cells are not mirror images of each other. Trends Immunol 29:429-435. Huang B., Pan P. Y., Li Q., Sato A. I., Levy D. E., Bromberg J., Divino C. M. and Chen S. H., (2006), Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66:1123-1131. Huang X., Venet F., Chung C. S., Lomas-Neira J. and Ayala A., (2007), Changes in dendritic cell function in the immune response to sepsis. Cell- & tissue-based therapy. Expert Opin Biol Ther 7:929-938. Ichihara F., Kono K., Sekikawa T. and Matsumoto Y., (1999), Surgical stress induces decreased expression of signal-transducing zeta molecules in T cells. Eur Surg Res 31:138-146. Inaba K., Inaba M., Romani N., Aya H., Deguchi M., Ikehara S., Muramatsu S. and Steinman R. M., (1992), Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176:1693-1702. Inaba K., Inaba M., Deguchi M., Hagi K., Yasumizu R., Ikehara S., Muramatsu S. and Steinman R. M., (1993), Granulocytes, macrophages, and dendritic cells arise from a common major 43 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. histocompatibility complex class II-negative progenitor in mouse bone marrow. Proc Natl Acad Sci U S A 90:3038-3042. Jaffe M. L., Arai H. and Nabel G. J., (1996), Mechanisms of tumorinduced immunosuppression: evidence for contact-dependent T cell suppression by monocytes. Mol Med 2:692-701. Jonuleit H., Schmitt E., Kakirman H., Stassen M., Knop J. and Enk A. H., (2002), Infectious tolerance: human CD25(+) regulatory T cells convey suppressor activity to conventional CD4(+) T helper cells. J Exp Med 196:255-260. Jordan M. B., Mills D. M., Kappler J., Marrack P. and Cambier J. C., (2004), Promotion of B cell immune responses via an alum-induced myeloid cell population. Science 304:1808-1810. Kadowaki N., (2007), Dendritic Cells -A Conductor of T Cell Differentiation. Allergol Int 56:193-199. Kaisho T. and Akira S., (2003), Regulation of dendritic cell function through toll-like receptors. Curr Mol Med 3:759-771. Kanse S. M., Matz R. L., Preissner K. T. and Peter K., (2004), Promotion of leukocyte adhesion by a novel interaction between vitronectin and the beta2 integrin Mac-1 (alphaMbeta2, CD11b/CD18). Arterioscler Thromb Vasc Biol 24:2251-2256. Kerr E. C., Raveney B. J., Copland D. A., Dick A. D. and Nicholson L. B., (2008), Analysis of retinal cellular infiltrate in experimental autoimmune uveoretinitis reveals multiple regulatory cell populations. J Autoimmun 31:354-361. Kisseleva T., Bhattacharya S., Braunstein J. and Schindler C. W., (2002), Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285:1-24. Kurts C., Cannarile M., Klebba I. and Brocker T., (2001), Dendritic cells are sufficient to cross-present self-antigens to CD8 T cells in vivo. J Immunol 166:1439-1442. Kurts C., Kosaka H., Carbone F. R., Miller J. F. and Heath W. R., (1997), Class I-restricted cross-presentation of exogenous selfantigens leads to deletion of autoreactive CD8(+) T cells. J Exp Med 186:239-245. Kusmartsev S. and Gabrilovich D. I., (2003), Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species. J Leukoc Biol 74:186-196. Kusmartsev S. and Gabrilovich D. I., (2005), STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J Immunol 174:4880-4891. Kusmartsev S. and Gabrilovich D. I., (2006), Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother 55:237-245. Kusmartsev S., Nagaraj S. and Gabrilovich D. I., (2005), Tumorassociated CD8+ T cell tolerance induced by bone marrow-derived immature myeloid cells. J Immunol 175:4583-4592. Kusmartsev S., Nefedova Y., Yoder D. and Gabrilovich D. I., (2004), Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172:989-999. 44 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. Kusmartsev S., Cheng F., Yu B., Nefedova Y., Sotomayor E., Lush R. and Gabrilovich D., (2003), All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res 63:4441-4449. Kusmartsev S. A., Li Y. and Chen S. H., (2000), Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J Immunol 165:779-785. Labeur M. S., Roters B., Pers B., Mehling A., Luger T. A., Schwarz T. and Grabbe S., (1999), Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage. J Immunol 162:168-175. Lathers D. M., Clark J. I., Achille N. J. and Young M. R., (2004), Phase 1B study to improve immune responses in head and neck cancer patients using escalating doses of 25-hydroxyvitamin D3. Cancer Immunol Immunother 53:422-430. Leenen P. J., de Bruijn M. F., Voerman J. S., Campbell P. A. and van Ewijk W., (1994), Markers of mouse macrophage development detected by monoclonal antibodies. J Immunol Methods 174:5-19. Leite-de-Moraes M. C., Lisbonne M., Arnould A., Machavoine F., Herbelin A., Dy M. and Schneider E., (2002), Ligand-activated natural killer T lymphocytes promptly produce IL-3 and GM-CSF in vivo: relevance to peripheral myeloid recruitment. Eur J Immunol 32:18971904. Lissoni P., Vigore L., Ferranti R., Bukovec R., Meregalli S., Mandala M., Barni S., Tancini G., Fumagalli L. and Giani L., (1999), Circulating dendritic cells in early and advanced cancer patients: diminished percent in the metastatic disease. J Biol Regul Homeost Agents 13:216-219. Liu C., Yu S., Kappes J., Wang J., Grizzle W. E., Zinn K. R. and Zhang H. G., (2007), Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood 109:43364342. Lutz M. B. and Schuler G., (2002), Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol 23:445-449. Lutz M. B., Kukutsch N. A., Menges M., Rossner S. and Schuler G., (2000), Culture of bone marrow cells in GM-CSF plus high doses of lipopolysaccharide generates exclusively immature dendritic cells which induce alloantigen-specific CD4 T cell anergy in vitro. Eur J Immunol 30:1048-1052. Lutz M. B., Kukutsch N., Ogilvie A. L., Rossner S., Koch F., Romani N. and Schuler G., (1999), An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 223:77-92. Lutz M. B., Suri R. M., Niimi M., Ogilvie A. L., Kukutsch N. A., Rossner S., Schuler G. and Austyn J. M., (2000), Immature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo. Eur J Immunol 30:1813-1822. 45 91. 92. 93. 94. 95. 96. 97. 98. 99. 100. 101. 102. 103. 104. 105. Maeda H. and Shiraishi A., (1996), TGF-beta contributes to the shift toward Th2-type responses through direct and IL-10-mediated pathways in tumor-bearing mice. J Immunol 156:73-78. Mahnke K., Schmitt E., Bonifaz L., Enk A. H. and Jonuleit H., (2002), Immature, but not inactive: the tolerogenic function of immature dendritic cells. Immunol Cell Biol 80:477-483. Makarenkova V. P., Bansal V., Matta B. M., Perez L. A. and Ochoa J. B., (2006), CD11b+/Gr-1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress. J Immunol 176:2085-2094. Marhaba R., Vitacolonna M., Hildebrand D., Baniyash M., Freyschmidt-Paul P. and Zoller M., (2007), The importance of myeloidderived suppressor cells in the regulation of autoimmune effector cells by a chronic contact eczema. J Immunol 179:5071-5081. Matsuguchi T., Zhao Y., Lilly M. B. and Kraft A. S., (1997), The cytoplasmic domain of granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor alpha subunit is essential for both GM-CSFmediated growth and differentiation. J Biol Chem 272:17450-17459. Mayordomo J. I., Zorina T., Storkus W. J., Zitvogel L., Garcia-Prats M. D., DeLeo A. B. and Lotze M. T., (1997), Bone marrow-derived dendritic cells serve as potent adjuvants for peptide-based antitumor vaccines. Stem Cells 15:94-103. Mazzoni A., Bronte V., Visintin A., Spitzer J. H., Apolloni E., Serafini P., Zanovello P. and Segal D. M., (2002), Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol 168:689-695. McKee A. S., MacLeod M., White J., Crawford F., Kappler J. W. and Marrack P., (2008), Gr1+IL-4-producing innate cells are induced in response to Th2 stimuli and suppress Th1-dependent antibody responses. Int Immunol 20:659-669. McKnight A. J. and Gordon S., (1998), Membrane molecules as differentiation antigens of murine macrophages. Adv Immunol 68:271314. Melani C., Chiodoni C., Forni G. and Colombo M. P., (2003), Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood 102:2138-2145. Mencacci A., Montagnoli C., Bacci A., Cenci E., Pitzurra L., Spreca A., Kopf M., Sharpe A. H. and Romani L., (2002), CD80+Gr-1+ myeloid cells inhibit development of antifungal Th1 immunity in mice with candidiasis. J Immunol 169:3180-3190. Merchav S., Apte R. N., Tatarsky I. and Ber R., (1987), Effect of plasmacytoma cells on the production of granulocyte-macrophage colony-stimulating activity (GM-CSA) in the spleen of tumor-bearing mice. Exp Hematol 15:995-1000. Mills C. D., Kincaid K., Alt J. M., Heilman M. J. and Hill A. M., (2000), M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164:6166-6173. Mizoguchi A. and Bhan A. K., (2006), A case for regulatory B cells. J Immunol 176:705-710. Morris M. A. and Ley K., (2004), Trafficking of natural killer cells. Curr Mol Med 4:431-438. 46 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. 117. 118. 119. Mosmann T. R. and Sad S., (1996), The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 17:138-146. Movahedi K., Guilliams M., Van den Bossche J., Van den Bergh R., Gysemans C., Beschin A., De Baetselier P. and Van Ginderachter J. A., (2008), Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111:4233-4244. Munder M., Eichmann K. and Modolell M., (1998), Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J Immunol 160:5347-5354. Nagaraj S., Gupta K., Pisarev V., Kinarsky L., Sherman S., Kang L., Herber D. L., Schneck J. and Gabrilovich D. I., (2007), Altered recognition of antigen is a mechanism of CD8(+) T cell tolerance in cancer. Nat Med 13:828-835. Naik S. H., Corcoran L. M. and Wu L., (2005), Development of murine plasmacytoid dendritic cell subsets. Immunol Cell Biol 83:563-570. Nefedova Y., Nagaraj S., Rosenbauer A., Muro-Cacho C., Sebti S. M. and Gabrilovich D. I., (2005), Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway. Cancer Res 65:9525-9535. Nefedova Y., Huang M., Kusmartsev S., Bhattacharya R., Cheng P., Salup R., Jove R. and Gabrilovich D., (2004), Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol 172:464-474. Nikcevich D. A., Duffie G. P., Young M. R., Ellis N. K., Kaufman G. E. and Wepsic H. T., (1987), Stimulation of suppressor cells in the bone marrow and spleens of high dose cyclophosphamide-treated C57Bl/6 mice. Cell Immunol 109:349-359. Ochoa A. C., Zea A. H., Hernandez C. and Rodriguez P. C., (2007), Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res 13:721s-726s. Ochoa J. B., Bernard A. C., O'Brien W. E., Griffen M. M., Maley M. E., Rockich A. K., Tsuei B. J., Boulanger B. R., Kearney P. A. and Morris Jr S. M., Jr., (2001), Arginase I expression and activity in human mononuclear cells after injury. Ann Surg 233:393-399. Ostrand-Rosenberg S. and Sinha P., (2009), Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182:4499-4506. Otsuji M., Kimura Y., Aoe T., Okamoto Y. and Saito T., (1996), Oxidative stress by tumor-derived macrophages suppresses the expression of CD3 zeta chain of T-cell receptor complex and antigenspecific T-cell responses. Proc Natl Acad Sci U S A 93:13119-13124. Pak A. S., Wright M. A., Matthews J. P., Collins S. L., Petruzzelli G. J. and Young M. R., (1995), Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocytemacrophage colony-stimulating factor. Clin Cancer Res 1:95-103. Pan P. Y., Wang G. X., Yin B., Ozao J., Ku T., Divino C. M. and Chen S. H., (2008), Reversion of immune tolerance in advanced 47 120. 121. 122. 123. 124. 125. 126. 127. 128. 129. 130. 131. 132. 133. malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood 111:219228. Park S. J., Nakagawa T., Kitamura H., Atsumi T., Kamon H., Sawa S., Kamimura D., Ueda N., Iwakura Y., Ishihara K., Murakami M. and Hirano T., (2004), IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation. J Immunol 173:3844-3854. Parmiani G., Castelli C., Pilla L., Santinami M., Colombo M. P. and Rivoltini L., (2007), Opposite immune functions of GM-CSF administered as vaccine adjuvant in cancer patients. Ann Oncol 18:226-232. Pellegrini J. D., De A. K., Kodys K., Puyana J. C., Furse R. K. and Miller-Graziano C., (2000), Relationships between T lymphocyte apoptosis and anergy following trauma. J Surg Res 88:200-206. Pollard J. W., (2004), Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71-78. Redmond W. L. and Sherman L. A., (2005), Peripheral tolerance of CD8 T lymphocytes. Immunity 22:275-284. Reis e Sousa C., Diebold S. D., Edwards A. D., Rogers N., Schulz O. and Sporri R., (2003), Regulation of dendritic cell function by microbial stimuli. Pathol Biol (Paris) 51:67-68. Roder J. C., Duwe A. K., Bell D. A. and Singhal S. K., (1978), Immunological senescence. I. The role of suppressor cells. Immunology 35:837-847. Rodriguez P. C., Quiceno D. G. and Ochoa A. C., (2007), L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109:1568-1573. Rodriguez P. C., Zea A. H., Culotta K. S., Zabaleta J., Ochoa J. B. and Ochoa A. C., (2002), Regulation of T cell receptor CD3zeta chain expression by L-arginine. J Biol Chem 277:21123-21129. Rodriguez P. C., Zea A. H., DeSalvo J., Culotta K. S., Zabaleta J., Quiceno D. G., Ochoa J. B. and Ochoa A. C., (2003), L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes. J Immunol 171:1232-1239. Rodriguez P. C., Hernandez C. P., Quiceno D., Dubinett S. M., Zabaleta J., Ochoa J. B., Gilbert J. and Ochoa A. C., (2005), Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 202:931-939. Rodriguez P. C., Quiceno D. G., Zabaleta J., Ortiz B., Zea A. H., Piazuelo M. B., Delgado A., Correa P., Brayer J., Sotomayor E. M., Antonia S., Ochoa J. B. and Ochoa A. C., (2004), Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 64:5839-5849. Rossner S., Voigtlander C., Wiethe C., Hanig J., Seifarth C. and Lutz M. B., (2005), Myeloid dendritic cell precursors generated from bone marrow suppress T cell responses via cell contact and nitric oxide production in vitro. Eur J Immunol 35:3533-3544. Saio M., Radoja S., Marino M. and Frey A. B., (2001), Tumorinfiltrating macrophages induce apoptosis in activated CD8(+) T cells 48 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148. by a mechanism requiring cell contact and mediated by both the cellassociated form of TNF and nitric oxide. J Immunol 167:5583-5593. Salvadori S., Martinelli G. and Zier K., (2000), Resection of solid tumors reverses T cell defects and restores protective immunity. J Immunol 164:2214-2220. Sauer H., Wartenberg M. and Hescheler J., (2001), Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11:173-186. Schwartz R. H., (1997), T cell clonal anergy. Curr Opin Immunol 9:351-357. Schwartz R. H., (2003), T cell anergy. Annu Rev Immunol 21:305-334. Segre M., Tomei E. and Segre D., (1985), Cyclophosphamide-induced suppressor cells in mice: suppression of the antibody response in vitro and characterization of the effector cells. Cell Immunol 91:443-454. Serafini P., Borrello I. and Bronte V., (2006), Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 16:53-65. Serafini P., Mgebroff S., Noonan K. and Borrello I., (2008), Myeloidderived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 68:5439-5449. Serafini P., Carbley R., Noonan K. A., Tan G., Bronte V. and Borrello I., (2004), High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res 64:6337-6343. Serafini P., De Santo C., Marigo I., Cingarlini S., Dolcetti L., Gallina G., Zanovello P. and Bronte V., (2004), Derangement of immune responses by myeloid suppressor cells. Cancer Immunol Immunother 53:64-72. Serafini P., Meckel K., Kelso M., Noonan K., Califano J., Koch W., Dolcetti L., Bronte V. and Borrello I., (2006), Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 203:2691-2702. Seung L. P., Rowley D. A., Dubey P. and Schreiber H., (1995), Synergy between T-cell immunity and inhibition of paracrine stimulation causes tumor rejection. Proc Natl Acad Sci U S A 92:62546258. Sinha P., Clements V. K. and Ostrand-Rosenberg S., (2005), Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J Immunol 174:636-645. Sinha P., Clements V. K., Fulton A. M. and Ostrand-Rosenberg S., (2007), Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67:4507-4513. Sinha P., Clements V. K., Bunt S. K., Albelda S. M. and OstrandRosenberg S., (2007), Cross-Talk between Myeloid-Derived Suppressor Cells and Macrophages Subverts Tumor Immunity toward a Type 2 Response. J Immunol 179:977-983. Slavin S. and Strober S., (1979), Induction of allograft tolerance after total lymphoid irradiation (TLI): development of suppressor cells of the mixed leukocyte reaction (MLR). J Immunol 123:942-946. 49 149. 150. 151. 152. 153. 154. 155. 156. 157. 158. 159. 160. 161. Smith C. W., Chen Z., Dong G., Loukinova E., Pegram M. Y., Nicholas-Figueroa L. and Van Waes C., (1998), The host environment promotes the development of primary and metastatic squamous cell carcinomas that constitutively express proinflammatory cytokines IL1alpha, IL-6, GM-CSF, and KC. Clin Exp Metastasis 16:655-664. Sojka D. K., Huang Y. H. and Fowell D. J., (2008), Mechanisms of regulatory T-cell suppression - a diverse arsenal for a moving target. Immunology 124:13-22. Soslow R. A., Dannenberg A. J., Rush D., Woerner B. M., Khan K. N., Masferrer J. and Koki A. T., (2000), COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer 89:2637-2645. Steinman R. M. and Nussenzweig M. C., (2002), Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci U S A 99:351-358. Steptoe R. J., Ritchie J. M., Jones L. K. and Harrison L. C., (2005), Autoimmune diabetes is suppressed by transfer of proinsulin-encoding Gr-1+ myeloid progenitor cells that differentiate in vivo into resting dendritic cells. Diabetes 54:434-442. Strober S., (1984), Natural suppressor (NS) cells, neonatal tolerance, and total lymphoid irradiation: exploring obscure relationships. Annu Rev Immunol 2:219-237. Subiza J. L., Vinuela J. E., Rodriguez R., Gil J., Figueredo M. A. and De La Concha E. G., (1989), Development of splenic natural suppressor (NS) cells in Ehrlich tumor-bearing mice. Int J Cancer 44:307-314. Suzuki E., Kapoor V., Jassar A. S., Kaiser L. R. and Albelda S. M., (2005), Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 11:6713-6721. Taheri F., Ochoa J. B., Faghiri Z., Culotta K., Park H. J., Lan M. S., Zea A. H. and Ochoa A. C., (2001), L-Arginine regulates the expression of the T-cell receptor zeta chain (CD3zeta) in Jurkat cells. Clin Cancer Res 7:958s-965s. Terabe M., Matsui S., Park J. M., Mamura M., Noben-Trauth N., Donaldson D. D., Chen W., Wahl S. M., Ledbetter S., Pratt B., Letterio J. J., Paul W. E. and Berzofsky J. A., (2003), Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocytemediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med 198:1741-1752. Terrazas L. I., Walsh K. L., Piskorska D., McGuire E. and Harn D. A., Jr., (2001), The schistosome oligosaccharide lacto-N-neotetraose expands Gr1(+) cells that secrete anti-inflammatory cytokines and inhibit proliferation of naive CD4(+) cells: a potential mechanism for immune polarization in helminth infections. J Immunol 167:5294-5303. Toi M., Kondo S., Suzuki H., Yamamoto Y., Inada K., Imazawa T., Taniguchi T. and Tominaga T., (1996), Quantitative analysis of vascular endothelial growth factor in primary breast cancer. Cancer 77:1101-1106. Tsuei B. J., Bernard A. C., Shane M. D., Shirley L. A., Maley M. E., Boulanger B. R., Kearney P. A. and Ochoa J. B., (2001), Surgery 50 162. 163. 164. 165. 166. 167. 168. 169. 170. 171. 172. 173. 174. 175. induces human mononuclear cell arginase I expression. J Trauma 51:497-502. Turovskaya O., Foell D., Sinha P., Vogl T., Newlin R., Nayak J., Nguyen M., Olsson A., Nawroth P. P., Bierhaus A., Varki N., Kronenberg M., Freeze H. H. and Srikrishna G., (2008), RAGE, carboxylated glycans and S100A8/A9 play essential roles in colitisassociated carcinogenesis. Carcinogenesis 29:2035-2043. Vickers S. M., MacMillan-Crow L. A., Green M., Ellis C. and Thompson J. A., (1999), Association of increased immunostaining for inducible nitric oxide synthase and nitrotyrosine with fibroblast growth factor transformation in pancreatic cancer. Arch Surg 134:245-251. Voisin M. B., Buzoni-Gatel D., Bout D. and Velge-Roussel F., (2004), Both expansion of regulatory GR1+ CD11b+ myeloid cells and anergy of T lymphocytes participate in hyporesponsiveness of the lungassociated immune system during acute toxoplasmosis. Infect Immun 72:5487-5492. Walker L. S. and Abbas A. K., (2002), The enemy within: keeping selfreactive T cells at bay in the periphery. Nat Rev Immunol 2:11-19. Waris G. and Ahsan H., (2006), Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 5:14. Wiers K. M., Lathers D. M., Wright M. A. and Young M. R., (2000), Vitamin D3 treatment to diminish the levels of immune suppressive CD34+ cells increases the effectiveness of adoptive immunotherapy. J Immunother (1997) 23:115-124. Wilczynski J. R., Radwan M. and Kalinka J., (2008), The characterization and role of regulatory T cells in immune reactions. Front Biosci 13:2266-2274. Wu G. and Morris S. M., Jr., (1998), Arginine metabolism: nitric oxide and beyond. Biochem J 336 ( Pt 1):1-17. Yamamoto Y., Ishigaki H., Ishida H., Itoh Y., Noda Y. and Ogasawara K., (2008), Analysis of splenic Gr-1int immature myeloid cells in tumorbearing mice. Microbiol Immunol 52:47-53. Yang L., DeBusk L. M., Fukuda K., Fingleton B., Green-Jarvis B., Shyr Y., Matrisian L. M., Carbone D. P. and Lin P. C., (2004), Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6:409-421. Yang L., Huang J., Ren X., Gorska A. E., Chytil A., Aakre M., Carbone D. P., Matrisian L. M., Richmond A., Lin P. C. and Moses H. L., (2008), Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13:23-35. Yang R., Cai Z., Zhang Y., Yutzy W. H. th, Roby K. F. and Roden R. B., (2006), CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+ myeloid cells. Cancer Res 66:6807-6815. Youn J. I., Nagaraj S., Collazo M. and Gabrilovich D. I., (2008), Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181:5791-5802. Young M. R., (2004), Tumor skewing of CD34+ progenitor cell differentiation into endothelial cells. Int J Cancer 109:516-524. 51 176. 177. 178. 179. 180. 181. 182. 183. Young M. R., Newby M. and Wepsic H. T., (1987), Hematopoiesis and suppressor bone marrow cells in mice bearing large metastatic Lewis lung carcinoma tumors. Cancer Res 47:100-105. Young M. R., Wright M. A. and Young M. E., (1991), Antibodies to colony-stimulating factors block Lewis lung carcinoma cell stimulation of immune-suppressive bone marrow cells. Cancer Immunol Immunother 33:146-152. Young M. R., Wright M. A., Coogan M., Young M. E. and Bagash J., (1992), Tumor-derived cytokines induce bone marrow suppressor cells that mediate immunosuppression through transforming growth factor beta. Cancer Immunol Immunother 35:14-18. Young M. R., Wright M. A., Matthews J. P., Malik I. and Prechel M., (1996), Suppression of T cell proliferation by tumor-induced granulocyte-macrophage progenitor cells producing transforming growth factor-beta and nitric oxide. J Immunol 156:1916-1922. Zea A. H., Rodriguez P. C., Atkins M. B., Hernandez C., Signoretti S., Zabaleta J., McDermott D., Quiceno D., Youmans A., O'Neill A., Mier J. and Ochoa A. C., (2005), Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 65:3044-3048. Zhang Y., Wang Y., Ogata M., Hashimoto S., Onai N. and Matsushima K., (2000), Development of dendritic cells in vitro from murine fetal liver-derived lineage phenotype-negative c-kit(+) hematopoietic progenitor cells. Blood 95:138-146. Zhang Y., Harada A., Wang J. B., Zhang Y. Y., Hashimoto S., Naito M. and Matsushima K., (1998), Bifurcated dendritic cell differentiation in vitro from murine lineage phenotype-negative c-kit+ bone marrow hematopoietic progenitor cells. Blood 92:118-128. Zhu B., Bando Y., Xiao S., Yang K., Anderson A. C., Kuchroo V. K. and Khoury S. J., (2007), CD11b+Ly-6C(hi) suppressive monocytes in experimental autoimmune encephalomyelitis. J Immunol 179:52285237. 52 7 Abkürzungsverzeichnis APZ/APC Antigen-präsentierende Zellen/antigen-presenting cells ATRA all-trans-Retinoidsäure/all-trans-retinoid acid BM Knochenmark/bone marrow bzw. beziehungsweise CAT2B kationischer Aminosäuretransporter 2B/cationic amino acid transporter 2B CCR Chemokinrezeptor/chemokine receptor CD cluster of differentiation CFSE carboxyfluorescein-diacetate-succinimidyl-ester CpG Cytosin-phosphatidyl-Guanosin CSF-1 colony-stimulating-factor-1 CTLA-4 cytotoxic T-lymphocyte antigen 4 DZ/DC dendritische Zellen/dendritic cells e.g. for example (exempli gratia) EAE experminentelle Autoimmunenzephalitis/experimental autoimmune encephalitis ELISA enzyme-linked immunosorbent assay FACS Durchflusszytometrie/fluorescence activated cell sorting FCS fetales Kälberserum/fetal calf serum FITC fluorescein isothiocyanate FLT3- Ligand Fms-like tyrosine-kinase 3 ligand FSC Vorwärtsstreulicht/forward light scatter GM-CSF granulocyte/macrophage-colony-stimulating-factor GPI Glycosyl-Phosphatidyl-Inositol H2O2 Wasserstoffperoxid/ hydrogen peroxide H3PO4 ortho-Phosphorsäure/orthophosphoric acid HLA humanes Leukozytenantigen/human leukocyte antigen ICAM 1 intercellular adhesion molecule 1 IDC unreife dendritische Zellen/immature dendritic cells IFA inkomplettes Freund-Adjuvans/incomplete Freund´s adjuvant IFN Interferon IL Interleukin IMC unreife myeloide Zellen/immature myeloid cells/ 53 iNOS induzierbare NO-Synthase/inducible NO-synthase JAK Janus Kinase LN Lymphknoten/lymph node LPS Lipopolysaccharid(e) mAB monoklonaler Antikörper/monoclonal antibody MACS Magnet-aktivierte Zelltrennung/magnetic bead cell sorting MDSC myeloid-derived suppressor cells MHC major histocompatibility complex MLR gemischte Leukozytenreaktion/mixed leukocyte reaction MMP Matrixmetalloproteinase NADPH reduzierte Form von Nikotinamid-Adenin-DinucleotidPhosphat/reduced form of nicotinamide-adeninedinucleotide-phosphate NF-κB nuclear factor “κ-light-chain-enhancer” of activated B-cells NK- Zellen/NK-cells natürliche Killerzellen/natural killer cells NO Stickstoffmonoxid/nitrogen monoxide NOD-Maus non-obese-diabetic-Maus nor-NOHA N -hydroxy-nor-L-arginine OT OVA-spezifischer TZR/OVA specific TCR OVA Ovalbumin PBS Phosphat-gepufferte Salzlösung/phosphate-buffered saline PD programmed death PDCA plasmacytoid dendritic cell antigen PDGF plateled-derived-growth-factor PD-L programmed death ligand PE phycoerythrin perCP peridinin-chlorophyll protein complex PGE2 Prostaglandin E2 PMN polymorphkernig/polymorphonuclear ROS reaktive Sauerstoffspezies/reactive oxygen species SCF stem cell factor SSC Seitwärtsstreulicht/sideward light scatter STAT signal transducers and activators of transcription TAM Tumor-assoziierte Makrophagen/tumor-associated macrophages TGF transforming growth factor TLR Toll-like Rezeptor/toll-like receptor 54 TNF Tumornekrosefaktor/tumor necrosis factor Treg regulatorische T-Zellen/regulatory T-cells TZR/TCR T-Zell-Rezeptor/T-cell-receptor v.a. vor allem VEGF vascular endothelial growth factor z.B. zum Beispiel 55 8 Danksagung An erster Stelle möchte ich mich bei Herrn Professor Gerold Schuler bedanken, dass er mir die Anfertigung meiner Dissertation in den Laboratorien der Hautklinik Erlangen ermöglichte. Großer Dank geht an das Interdisziplinäre Zentrum für Klinische Forschung Erlangen, das meine Promotion mit einem Doktorandenstipendium unterstützte. Besonderen Dank spreche ich meinem Betreuer Herrn Professor Manfred Lutz für die langjährige Betreuung meiner Promotion aus, die auch „überregional“ funktionierte und bedanke mich für seine Geduld. Bedanken möchte ich mich auch bei den Referenten Prof.Dr.Dr. André Gessner und Prof.Dr. Alexander Steinkasserer aus Erlangen und Prof.Dr. Nikolaus Romani aus Innsbruck, die Zweitgutachten für diese Arbeit erstellten. Unvorhersehbare Umstände führten dazu, dass Teile der Arbeit in Würzburg durchgeführt werden müssen. Vielen, vielen Dank an Dr. Eliana Ribechini, dass sie neben ihrem eigenen Projekt auch an der Fragestellung dieser Dissertation mitarbeitete. Vielen Dank auch an das gesamte Laborteam, das sich im Laufe der Jahre ja ziemlich gewandelt hat. Besonders möchte ich mich bei Susa Rößner bedanken, die immer ein offenes Ohr für mich hatte, mir mit Rat und Tat zur Seite stand und auch ab und zu eine Verstellung des Radiosenders tolerierte. Danken möchte ich auch vor allem Dr. Jens Hänig und Dr. Lisa Zinser - beide waren ebenfalls jederzeit hilfsbereit und nie genervt, wenn ich Fragen stellte. Danke auch an all die Menschen in den anderen Labors, denen ich im Laufe der Zeit immer wieder mal kleinere und größere Fragen stellen musste, die diese immer bereitwillig beantworteten. Danke für die wirklich nette Atmosphäre im Laborbereich dieser Klinik. Bedanken möchte ich mich auch bei den Dres. Pichler: Danke, Dr. Matthias Pichler, dass Du „trotzdem“ immer da warst und bist und hoffentlich bleibst. Der Weg wird ebener und gerader werden, jedoch nie eine Autobahn. Danke, Dr. Klemens Pichler, dass Du meine Technikwüste in eine Oase verwandelt hast. 56 Das Promotionsprojekt konnte in der Form nur stattfinden, weil ich mich neben meinem Studium nicht um dessen Finanzierung kümmern musste, sondern seitens meiner Eltern unterstützt wurde. Dafür möchte ich mich herzlich bei Euch bedanken! Nun müsst Ihr nur noch Eure Visitenkarte ändern…Vielen Dank auch besonders an meine Schwester, die mir bei vielen kleinen und größeren Problemen immer geholfen hat und sich durch den Wust gelesen hat. Danke Julia! Danke Oma, dass Du immer an mich gedacht hast. Danke an zwei gewisse, starke Damen aus Nürnberg, die das sehen, was andere nicht sehen und meinen Blick dahingehend schärfen konnten. Danke an Dr. Weibchen, dass Du stark geblieben bist und Dich nicht unterkriegen hast lassen. In Kooperation mit Dr. Nasi wird es ein phantastisches, lebenslanges Projekt werden, glaub mir! 57 9 Lebenslauf Persönliche Daten: Name Verena Greifenberg Geburtsdatum/-ort 12. Oktober 1978/Bamberg Eltern Rita Greifenberg, geb. Gruber (*12.01.1954) Günter Greifenberg (*15.06.1952) Geschwister Julia Greifenberg (*11.12.1982) Familienstand ledig Staatsangehörigkeit deutsch Berufliche Tätigkeit: seit 01.09.2009 Assistenzärztin am Institut für Medizinische Mikrobiologie, Immunologie und Hygiene (TU München) Hochschulstudium: 05/2009 Approbation als Ärztin 04/2009 Ärztliche Prüfung, zweiter Abschnitt 04/2005-02/2009 Humanmedizin, klinischer Abschnitt an der Friedrich- Alexander- Universität Erlangen 03/2005 Ärztliche Prüfung, erster Abschnitt 10/2004-02/2005 Humanmedizin Vervollständigung des vorklinischen Abschnitts an der Friedrich-Alexander-Universität Erlangen 11/2003-06/2004 Diplomarbeit der Molekularen Medizin an der Klinik für Psychiatrie und Psychotherapie Erlangen Thema: Etablierung und Charakterisierung der Zelllinie NTera-2 zur Entwicklung eines Modellsystems für antidepressive Therapien 10/1999-06/2004 Molekulare Medizin (Hauptstudium) an der Friedrich-Alexander-Universität Erlangen Abschluss: Diplom 05/1999-07/1999 Humanmedizin an der Friedrich-Alexander-Universität Erlangen Schulbildung: 09/1989-06/1998 Franz-Ludwig-Gymnasium Bamberg Abschluss: Allgemeine Hochschulreife