SS 2011 Blatt 1 18.04.2011 Prof. D. Egorova Lösungen zur Übungen zur Vorlesung Theoretische Chemie, Teil I: Quantenmechanik Aufgabe 1 (a) ∂ p̂ = p̂x = ~ ∂ , i ∂x T = ∆= ~ ∇, i ¡∂ ∂x ∂ ∂y 2 2 ∂x ∂ ∇ = ∂y ∂ ∂z ~ ∂ , i ∂y p̂y = p̂z = ~ ∂ i ∂z p2 , 2m p̂2 ~2 T̂ = =− ∆ 2m 2m ∂ ∂x ¢ ∂2 ∂2 ∂2 ∂ ∂ = + + ∂z ∂y ∂x2 ∂y 2 ∂z 2 ∂ ∂z T̂x = − (b) ~ ∂ , 2m ∂x2 T̂y = − ~2 ∂ 2 , 2m ∂y 2 T̂z = − ~2 ∂ 2 2m ∂z 2 µ ¶ ~ ∂ ∂ [p̂z , ẑ] = p̂z ẑ − ẑ p̂z = z−z i ∂z ∂z µ ¶ µ ¶ ~ ∂ ∂ ~ ∂ψ ∂ψ ~ [p̂z , ẑ] ψ = z−z ψ= ψ+z −z = ψ i ∂z ∂z i ∂z ∂z i ⇒ [p̂z , ẑ] = ~ i (gilt auch für [p̂x , x̂] und [p̂y , ŷ]) ~ [p̂x , ŷ] ψ = i µ ∂ψ ∂ yψ − y ∂x ∂x ¶ ~ = i µ ∂ψ ∂ψ y −y ∂x ∂x ¶ =0 [p̂x , ŷ] = [p̂y , x̂] = [p̂y , ẑ] = [p̂z , ŷ] = [p̂z , x̂] = [p̂x , ẑ] = 0 h i T̂x , p̂x ψ = − ~3 ∂ 3 ψ ~3 ∂ 3 ψ ~2 ∂ 2 ~ ∂ψ ~ ∂ ~2 ∂ 2 ψ + = − + =0 2m ∂x2 i ∂x i ∂x 2m ∂x2 2mi ∂x3 2mi ∂x3 h i ⇒ T̂x , p̂x = 0 h i Â, B̂ = 0 ⇒gleichzeitig meßbar h i ³ ´ T̂y , ŷ ψ = T̂y ŷ − ŷ T̂y ψ ~2 ∂ 2 ~2 ∂ 2 yψ + y ψ 2m ∂y 2 2m ∂y 2 µ µ ¶ ¶ ~2 ∂ ∂ψ ∂2 − ψ+y + y 2ψ 2m ∂y ∂y ∂y µ ¶ 2 2 ~ ∂ψ ∂ψ ∂ ψ ∂ 2ψ − − −y 2 +y 2 2m ∂y ∂y ∂y ∂y µ ¶ 2 ~ ∂ψ − 2 2m ∂y 2 ~ ∂ψ − m ∂y h i ~2 ∂ =⇒ T̂x , x̂ = − m ∂x = − = = = = Aufgabe 2 (a) Ĥ = T̂ + V̂ , (b) T̂ = − ~2 ∂ 2 , 2m ∂x2 ~2 ∂ 2 Ĥ = − 2m ∂x2 T̂ (x) = − ~2 ∂ 2 , 2m ∂x2 V̂ (x) = 0 kx2 2 V̂ (x) = V (x) = Ĥ = T̂ + V̂ = − ~2 ∂ 2 kx2 + 2m ∂x2 2 Aufgabe 3 ~ ∂ φi = pxi φi i ∂x ∂ i φi = pxi φi ∂x ~ ipxi i λ = pxi , φi = Ai e ~ x ~ i freies Teilchen: pxi ∈ {−∞, +∞} ⇒ φ = Ae ~ px x Aufgabe 4 Orthonormalbasis: hfi | fj i = δij Orthogonalität: hfi | fj i = 0, i 6= j; Normierung: hfi | fi i = 1 fi = ci Pi Normierung: i = j, hfi | fi i = c∗i ci hPi | Pi i = 1 =⇒ ¯1 2 x3 ¯¯ = hP1 | P1 i = x dx = ¯ 3 −1 3 −1 Z 1 2 c∗i ci = 1 hPi | Pi i r =⇒ f1 = 3 P1 = 2 r 3 x 2 Z ¡ ¢2 1 1 hP2 | P2 i = dx 3x2 − 1 4 −1 Z ¡ ¢ 1 1 = dx 9x4 − 6x2 + 1 4 −1 ¯1 ¯1 9 x5 ¯¯ 6 x3 ¯¯ 1 = − + x|1−1 ¯ ¯ 4 5 4 3 4 −1 −1 9 1 = −1+ 10 2 2 = 5 r =⇒ f2 = 5 P2 = 2 r ¢ 5¡ 2 3x − 1 8 Z ¡ ¢2 1 1 hP3 | P3 i = dx 5x3 − 3x 4 −1 Z ¡ ¢ 1 1 dx 25x6 − 30x4 + 9x2 = 4 −1 ¯1 ¯1 ¯1 25 x7 ¯¯ 30 x5 ¯¯ 9 x3 ¯¯ = − + 4 7¯ 4 5¯ 4 3¯ −1 −1 3 25 −3+ = 14 2 2 = 7 r =⇒ Orthogonalität: i 6= j, Z −1 f3 = ! 1 ¢ 1¡ x 3x2 − 1 dx −1 2 µZ 1 ¶ Z 1 1 3 3x dx − xdx = 2 −1 −1 ¯1 ¯1 3 x4 ¯¯ 1 x2 ¯¯ = − 2 4¯ 2 2¯ −1 −1 = 0−0 = 0 1 ¢ 1¡ x 5x3 − 3x dx −1 2 ¯1 ¯1 1 x3 ¯¯ 1 x5 ¯¯ − = 2 5 ¯−1 2 3 ¯−1 1 = (1 + 1 − 1 − 1) 2 = 0 hP1 | P3 i = r ¢ 7¡ 3 5x − 3x 8 ! hf1 | f2 i = hf1 | f3 i = hf2 | f3 i = 0 =⇒ hP1 | P2 i = hP1 | P3 i = hP2 | P3 i = 0 hP1 | P2 i = Z 7 P3 = 2 Z 1 ¢1¡ 3 ¢ 1¡ 2 3x − 1 5x − 3x dx 2 −1 2 Z 1 Z Z Z 15 9 1 3 5 1 3 3 1 5 = x dx − x dx − x dx + xdx 4 −1 4 −1 4 −1 4 −1 = 0 hP2 | P3 i = (b) r µ ¶ ´ ­ ® ® ³√ 3 1 3­ 3 2 6 − 3 hx | xi − i hx | 1i hf1 | gi = 5 x |x + i x |x + 2 2 2 r µ ¶ ´2 ³√ 3 = 6−3 − i0 2 + i0 − 2 3 = 2 hf2 | gi = = = = hf3 | gi = = = = r µ ´ ­ ­ ® ® ³√ ® ® 3 ­ 5 1 ­ 5 · 3 x2 | x 3 + i · 3 x2 | x2 + 6 − 3 3 x2 | x − i · 3 x2 | 1 8 2 2 ¶ ³ ´ √ ­ ® ® 3­ 1 −5 1 | x3 − i 1 | x2 + 6 − 3 h1 | xi + i h1 | 1i 2 2 r µ ¶ 3 2 1 2 3 2 1 5 0+i ·3· +0−i ·3· −0−i · −0+i ·2 8 2 5 2 3 2 3 2 r µ ¶ 5 9 i −1−1+1 8 5 r 2 i 5 r µ ´ ­ ­ ® ® ³√ ® ® 7 3 ­ 1 ­ 5 · 5 x3 | x 3 + i · 5 x3 | x2 + 6 − 3 5 x3 | x − i · 5 x3 | 1 8 2 2 ¶ ³ ´ √ ­ ® ® 3 ­ 1 3 2 −5 · 3 x | x − i · 3 x | x + 6 − 3 · 3 hx | xi + i · 3 hx | 1i 2 2 r µ ¶ ³√ ´ ³√ ´ 7 50 + i0 + 6 − 3 · 2 − i0 − 6 − i0 − 6 − 3 · 2 + i0 8 7 r 7 8 · 8 7 r 2 2 7 r r 2 2 g(x) = 2f1 + i f2 + 2 f3 5 7 Alternativ √ 3 i g (x) = 5x3 + i x2 + 6x − 3x − 2 2½ ¾ ©¡ 3 ¢ª n√ o ¢ i¡ 2 = 5x − 3x + 6x + 3x − 1 2 √ = 2P3 + 6P1 + iP2 r r r √ 2 2 2 = 6 f1 + i f2 + 2 f3 3 5 7 r r 2 2 = 2f1 + i f2 + 2 f3 5 7 Aufgabe 5 Ĥψ = Eψ, E > 0, − − Ĥ = − ~2 ∂ 2 2m ∂x2 ~2 ∂ 2 ψ = Eψ 2m ∂x2 ~2 2 λ =E 2m √ ⇒ ψ = A1 ei 2mEx/~ p2 E= , 2m √ λ=± i√ 2mE ~ √ + A2 e−i 2mEx/~ 2mE = p; k= p ~ ψ = A1 eikx + A2 e−ikx = (A1 + A2 ) cos kx + i (A1 − A2 ) sin kx = Ã1 cos kx + Ã2 sin kx Eigenfunktionen des Impulsoperators: φ = Aeipx x/~ = Aeikx falls A2 = 0, ψ = A1 eikx ist auch Eigenfunktion von p̂x . Aufgabe 6 (a) p= ~ d i dx ~ ~ kf3 , p̂f3 = − kf2 i i p11 = 0 p12 = 0 p13 = 0 ~ ⇒ p21 = 0 p22 = 0 p23 = − i k p31 = 0 p32 = ~i k p33 = 0 0 0 0 ~ p̂ = 0 0 − i k 0 ~i k 0 p̂f1 = 0, (b) p̂f2 = ¯ ¯ ¯−λ 0 0 ¯¯ ¯ ¯ ~ ¯ det (p̂ − Eλ) = ¯ 0 −λ − i k ¯ = 0 ¯ ¯ ¯ 0 ~ k −λ ¯ i 3 2 2 −λ + ~ k = 0 Eigenwerte: λ1 = 0, Eigenvektoren: zu λ1 = 0: λ2 = ~k, λ3 = −~k 1 0 0 0 x1 x1 0 0 i~k x2 = 0 ⇒ x2 = 0 x3 x3 0 0 −i~k 0 zu λ2 = ~k: x1 = 0 i~kx3 = ~kx2 x =i ⇒ 2 −i~kx2 = ~kx3 x3 = 1 0 ⇒ i 1 zu λ3 = ~k: x1 = 0 i~kx3 = −~kx2 x = −i ⇒ 2 −i~kx2 = −~kx3 x3 = 1 0 ⇒ −i 1 Eigenfunktionen: ψ1 = √ 1 2π 1 1 ψ2 = if2 + f3 = √ (i sin kx + cos kx) = √ eikx π π 1 ψ3 = −if2 + f3 = √ e−ikx π (c) p̂ ist hermitisch, da die Eigenwerte reel sind