Bose Einstein Kondensation und die Gross-Pitaevski Gleichung Sebastian Diehl Institut für Theoretische Physik, TU Dresden verwandte Vorlesungsfolien: http://iqoqi006.uibk.ac.at/users/c705291/ verwandtes Vorlesungsskript: I. Boettcher, J. Pawlowski, S. Diehl, Nucl. Phys. B Proceedings supplement, arxiv:1204.4394 (2012) Introduction: Cold Atoms vs. Condensed Matter Q: What can cold atoms add to many body physics? • New models of own interest - Bose-Hubbard model - Strongly interacting continuum systems: BCS-BEC Crossover; Efimov effect - long range interactions other than Coulomb; SU(N) Heisenberg models with variable N... • Quantum Simulation: clean/ controllable realization of model Hamiltonians which are - less clear to what extent realized in condensed matter - extremely hard to analyze theoretically • e.g. 2d FermiHubbard model Nonequilibrium Physics, time dependence: - Condensed matter: thermodynamic equilibrium and ground state physics. - Cold atoms: e.g. creation of excited many-body states, study their dynamic behavior • Scalability: - Study crossover from systems with few- to (thermodynamically) many degrees of freedom: Change of concepts? • Integrate quantum optics concepts and many-body theory, coherent-dissipative manipulation, non-equilibrium stationary states Vorschau und Motivation • Vergleiche: • Ein-Teilchen Schrödinger Gleichung: linear in der Wellenfunktion i~@t '(x, t) = • • ~2 4 + V (x) '(x, t) 2m Gross-Pitaevski Gleichung: nichtlineare Gleichung fuer makroskopische “Wellenfunktion” i~@t '(x, t) = • '(x, t) ~2 4 + V (x) + g'⇤ (x, t)'(x, t) '(x, t) 2m Behauptung: beschreibt Ensemble ultrakalter schwach wechselwirkender Atome Ziele: • • • • Erinnerung Bose-Einstein Kondensation: makroskop. Besetzung eines Quantenzustands Typische Skalen in ultrakalten Quantengasen, effektiver Hamiltonian Diskussion notwendiger Näherungen, Herleitung Physikalische Implikationen: Nichtlinearität & makroskopische Phasenkohärenz BEC: Statistische Mechanik nicht-wechselwirkender Bosonen • zweite Quantisierung: - Vernichtungs- (Erzeugungs-) operator für Mode q : aq (a†q ) - nichtverschwindende Kommutatorrelation: [aq , a†q0 ] = (q - • n̂q = a†q aq Besetzungsoperator: Nicht-wechselwirkende Bosonen im freien Raum: Besetzungszahl-Darstellung, grosskanonisches Ensemble chemisches Potential H = Hkin • µN̂ = Z q q2 2m µ a†q aq Statistische Eigenschaften beschrieben durch freie Energie: U = kB T log Z, Z = tr exp 1 kB T (Hkin µ0 µN̂ ) Temperatur • q0 ) Chemisches Potential stellt mittlere Teilchenzahl ein: Zustandsgleichung N= @U = hN̂ i = @µ Z q ha†q aq i =V Z dd q (2⇡~)d Bose-Einstein Verteilung 1 1 2 q ( e kB T 2m µ) 1 BEC: Makroskopische Besetzung eines Quantenzustands • reduziere T und betrachte Verhalten vonµ (n fix, 3D) T N n= = V T=0 Z = µ d3 q (2⇡~)d 1 1 2 q ( e kB T 2m 3 µ/kB T (T )g (e ) 3/2 dB µ) 1 Polygamma Funktion zn g (z) = n n=1 • µ verschwindet bei endlichem T! der Zustandsgleichung notwendig • Bose und Einstein (1925): qualitative Modifikation Z 1. Modifikation: N= ha†q=0 aq=0 i +V Eq d3 q (2⇡~)3 nB (q) N ⇠V !1 2. thermodyn. Limes: => q = 0 Mode makroskopisch besetzt: klassische Behandlung aq=0 ⇡ a0 • kritische Temperatur: de Broglie Wellenlänge and n dB 3 dB a0 , a⇤0 ⇠ N 1/2 q = g3/2 (1) = ⇣(3/2) ⇡ 2.612 = (2⇥ 2 /mkB T )1/2 d=n 1/3 mittlerer Teilchenabstand BEC: Makroskopische Besetzung eines Quantenzustands • reduziere T und betrachte Verhalten vonµ (n fix, 3D) T N n= = V T=0 Z = µ d3 q (2⇡~)d 1 1 2 q ( e kB T 2m 3 µ/kB T (T )g (e ) 3/2 dB µ) 1 Polygamma Funktion zn g (z) = n n=1 • µ verschwindet bei endlichem T! der Zustandsgleichung notwendig • Bose und Einstein (1925): qualitative Modifikation Z 1. Modifikation: N= 2. thermodyn. Limes: ha†q=0 aq=0 i +V d3 q (2⇡~)3 nB (q) Eq N ⇠V !1 => q = 0 Mode makroskopisch besetzt: klassische Behandlung aq=0 ⇡ a0 • bei T = 0: and 3 dB a0 , a⇤0 ⇠ N 1/2 / T 3/2 ! 0 =) N = ⇤ a0 a0 q a⇤0 a0 N 1 vollständiges Kondensat, keine thermische Dichte T /Tc 1 - The operator nq = a†q aq measures the particle number in the momentum mode q. The total particle P † number is N̂ = q aq aq . Role of Dimension: No qBEC in 2D The dispersion relation is Eq = !ω = 2 2m . This is the energy of a single particle in the mode q. • Lower T and study the behavior of µ at fixed n (2D): • Lower T and study the behavior of µ at fixed n (3D): T Tc the equation of state has no solution • At a finite T , µ hits zero: below this ➡ EoS without condensate can be = 0 and Einstein (1925): Equation below T needs modification due to macroscopic • TBose c fulfilled for all T: d = 3 ➡ No BEC in (homogeneous) 2d d=2 space µ • Reason: Infrared (low momentum) divergence due to smaller phase space d2 q d2 q ⇤n̂q ⌅ = q2 2 (2⇥) (2⇥)2 e( 2m 1 µ)/kB T 1 ⇥ low momenta, small mu • dqq q2 µ logarithmic divergence Remark: More general result - No spontaneous breaking of continuous symmetries at finite temperature (Mermin-Wagner Theorem) - quasi long range order possible: Kosterlitz-Thouless transition Effektiver Hamiltonian für kalte Atomgase • Bisher: Freie Teilchen im homogenen Kontinuum: H0 = H µN̂ = Z nach Fourier Transformation • q 2m aq = Z µ aq = eiqx/~ ax ; x Z x ~2 4 2m a†x [ax , a†y ] = (x µ ax y) Jetzt: Realistischere Beschreibung für (Alkali) kalte atomare Gase: - Fallenpotential: lokale Dichte erfährt lokale potentielle Energie Htrap = - - Längenskala: losc V (x)n̂x , V (x) = 12 m xp = 2/(m!) physikalische Observable: Streulänge a 8⇡~2 g= a m Unser universeller effektiver Hamiltonian: H= Z x a†x ~2 4 2m V (x) x 2 2 Lokale Zweiteilchen-Wechselwirkungen Z Z g g Hint = y)n̂x n̂y = a†x2 a2x + quadratisch s (x 2 x x,y 2 - • q a†q 2 g †2 2o µ + V (x) ax + ax ax 2 d contact interaction Microscopic Origin of the Interaction Term model potential with same scattering length Example: Na atom (Alkali atoms) • Microscopic scattering physics: Lennard-Jones (LJ) potential - 1/r12 hard core repulsion: repulsion of electron clouds rrep = O(aB ) - 1/r6 attraction: van der Waals (induced dipole-dipole interaction) true interatomic potential U(x) x rvdW = (50...200)aB for alkalis: typ. order of magnitude for interaction length scale The Sodium atom has one valence electron outside a closed shell. 2 2 of the LJ type potentials at • General The groundproperties state has configuration 1slow 2senergies: 2p6 3s. - isotropic s-wave scattering dominates; the scattered wave function behaves asymptotically as (x) We order the interactions according to the importance: - a is the scattering length. Knowledge of this single parameter is sufficient to describe low energy scattering! - within Born approximation, it can be calculated as Electron - nucleus and electron - electron interaction interatomic potential U (x) system: Wave function of the atom as a aBorn many electron x ➡ very unℓsame (r) scattering length! different interaction potentialsΨmay have the =Φ Y (θ, φ) core r ℓm a/x The Model Hamiltonian as an Effective Theory H= ⇧ x • • ⇤ † ax ⇥ 2m ⇥ ⌅ 2 µ + V (x) ax + gn̂x Efficient description by an effective Hamiltonian with few parameters. For ultracold bosonic alkali gases, a single parameter, the scattering length a, is sufficient to characterize low energy scattering physics of indistinguishable particles : Effective interaction 2 8⇡~ g= a m • A typical order of magnitude for the scattering length is • The validity of the model Hamiltonian is restricted to length scales • For bosons, we must restrict to repulsive interactions a > 0 (else: bosons seek solid ground state, collapse in real space) • So far: microscopic description; now: many body scales! a = O(rvdW ), rvdW (50...200)aB l & rvdW Skalenhierarchie verdünnter ultrakalter Gase Wechselwirkung: Streulänge a phys. Bedeutung: • • • mittlerer Teilchenabstand ⌧ d=n Gültigkeit des eff. Hamiltonians verdünntes Gas de Broglie Wellenlänge 1/3 • • ⌧ dB Oszillatorlänge d. Falle 1/2 ⇠T ⇡ losc Quanten-Degeneriertheit ultrakaltes Gas schwache Wechselwirkung: Wechselwirkungsenergie a · n = (a/d) · d 2 typische Zahlwerte length aB = 5.3 ⇥ 10 2 nm scattering length interparticle sep. de Broglie w.l. (0.05 ... 0.2)10^3 (0.8 ... 3)10^3 (10 ... 40)10^3 a/aB d/aB dB /aB Bohr radius trap size losc /aB (3 ... 300)10^3 Gross-Pitaevski Gleichung: Herleitung • Heisenberg Bewegungsgleichung für den Feldoperator: ➡ ~ 4 2m 2 i~@t ax (t) = [ax , H] = • µ + V (x) + ga†x ax ax Nichtlineare partielle OperatorDifferentialgleichung... Vereinfachungen: Wechselwirkung: Streulänge • Oszillatorlänge d. Falle mittlerer Teilchenabstand • verdünntes Gas: ➡ geringe Quanten-Fluktuationen ➡ erwarte Skalierung: • Formalisierung: - Operatorentwicklung: aq=0 ⇡ p Idealisierung: T=0: ➡ keine thermische Fluktuationen ➡ keine WW, homog.: N vollst. Satz orthog. Basisfunktionen ax = 0 (x)aq=0 + X q (x)aq = 0 (x)aq=0 + ax q6=0 - Skalierungen (thermodyn. Limes N ~V): q (x) ⇠ V 1/2 de Broglie Wellenlänge aq=0 ⇠ V 1/2 aq6=0 ⇠ V 0 aq=0 = p N Gross-Pitaevski Glg.: “Makroskopische Wellenfunktion” • Heisenberg Bewegungsgleichung für den Feldoperator: ~ 4 2m 2 i~@t ax (t) = [ax , H] = • • ➡ µ + V (x) + ga†x ax ax Nichtlineare partielle OperatorDifferentialgleichung... Vereinfachungen: ax (t) = '(x, t) + ax (t) ⇡ '(x, t) ⇠1 ⇠ V 1/2 '(x, t) := 0 (x, t)a0 Führende Terme in Heisenberg Glg.: i~@t '(x, t) = ~2 4 2m µ + V (x) + g'⇤ (x, t)'(x, t) '(x, t) Gross-Pitaevski Gleichung: Bewegungsgleichung der Kondensatamplitude • Eigenschaften: - klassische Feldgleichung (vgl. klass. Elektrodynamik vs. QED): Materiewelle - i.a. nichtlineare Gleichung -> reichhaltiger als Schrödinger Gleichung “klassisch” im Sinne von makroskopischer Besetzung, nicht ~=0 g = 0: erhalte formal lineare Schrödinger Gleichung -> erwarte quantenmechanisches Verhalten: “makroskopische Wellenfunktion” '(x, t) Nichtlinearität und Vortexlösung • Gross-Pitaevski Gleichung: i~@t '(x, t) = • ~2 4 2m µ + V (x) + g'⇤ (x, t)'(x, t) '(x, t) Vortex Lösung (l = 1) Wechselspiel Quantenmechanik und Nichtlinearität: quantisierte Vortexlösung - uniformer Fall V(x) = 0, suche statische, zylindersymmetrische Lösung ohne z-Abhängigkeit. Ansatz: '(x, t) = '(r, ) = f (r)e - f (r) Eindeutigkeit der Wellenfunktion: GP Gleichung: 0= 2 f f” + 2m r ` = i` 2mgn Heilungslänge exp. Daten: ganzzahlig Dalibard Group (2000) ⇥2 f ⇥ r2 µf + gf 3 - grosse Distanzen: konstante Lösung, bestimmt chem. Potential - separierende Skala: “Heilungs”-Länge, Längenskala der WW-Energie kleine Distanzen: Kondensatamplitude muss wegen Zentrifugalbarriere verschwinden (Ursprung: Phasenquantisierung) a d 1 ⇠=d p 4 ⇡ r d a losc T r Ausblick: Limitationen der Gross-Pitaevski Beschreibung • Generische Skalenhierarchie und mögliche Verletzung Wechselwirkung Teilchenabstand de Broglie Wellenlänge Oszillatorlänge Falle Feshbach Resonanz or Optische Gitterkonstante • Feshbach Resonanz: Verletzung a/d << 1 möglich: Dichtes degeneriertes System • Optische Gitter: neue Längen- und Energieskala: • • Gitterkonstante = Wellenlänge des Lichts: hohe Dichte (“Füllung“) möglich Gittertiefe: Kinetische Energie stärker erniedrigt als potentielle (WW) Energie: “starke Korrelationen” • NB: Trotz der Verletzung der generischen Skalenrelation bleibt die Beschreibung durch universelle, einfache Hamiltonians korrekt! • Beides führt zu starken Korrelationen, die nicht mehr durch GP Glg. beschrieben werden! Bose and Einstein (1925): Equation below Tc needs modification due to macroscop occupation of zero mode: Quantum Fluctuations: Bogoliubov Theory n= • † ⟨a0 a0 ⟩ + dd q (2π)d homogeneous case: plane wave expansion of field 1 q^2 operator e 2mkB T( p p p 0 (x)a − 1 0 = 1/ V N0 = n0 ) X p iqx - plausible: Bosons can populate state with ax =singlenquantum + e aqarbitrary number 0 - • † macroscopic: N = ⟨a a0 ⟩ = O(N ) ∝ V , i.e. q extensive 0 phase 0 without choice of zero critical temperature: loss of generalitydetermined by 3 Grand canonical Hamiltonian. Take fluctuations into account to leading order: nλthe dB = g3/2 (1) = ζ(3/2) ≈ 2.612 - zero order: homogenous mean field reproduced linear terms: vanishes upon proper choice of the chemical potential (equilibrium condition) µ = gn0 quadratic part: (2) HBog = X † q2 aq ( 2m µ + 2gn0 )aq + gn0 † † (a qa q 2 + aq a lectron - nucleus and electron electron interaction q6=0 q) !✓ ◆ q X ave function of the electron system: aq 1 atom† as a many + gn0 gn0 2m = (aq , a q ) + const. 2 † q a q 2 gn0 + gn0 2m q6=0 unℓ (r) Yℓm (θ, φ) Ψ = Φcore µ = gn0 r 2 th core wave function (filled shell) and u(r) the radial wave function of the valence ele Quantum Fluctuations: Bogoliubov Theory • quadratic Bogoliubov Hamiltonian: (2) HBog = X † q2 aq ( 2m µ + 2gn0 )aq + Eq gn0 † † (a qa q 2 + aq a q) q6=0 1X † = (aq , a 2 q6=0 • q) q 2m + gn0 gn0 gn0 q2 2m + gn0 !✓ aq a† q ◆ + const. Discussion: - • 2 q Off-diagonal terms: pairwise creation/annihilation out of the condensate Coupling of modes with opposite momenta Hamiltonian not diagonal in operator space: diagonalize to find spectrum and elementary excitations Remarks: - An equivalent approach linearizes Heisenberg EoM around homog. GP mean field Validity: The ordering principle is given by the power of the condensate amplitude. Bogoliubov theory is not a systematic perturbation theory in U but becomes good at weak coupling - The operator aq creates a particle in the momentum mode q : aq |vac⟩ = The operators satisfy Similarly, aq annihilates a-particle in the mode q. bosonic commutation relation but with an index label q). † ′ ) (cf. ha ] = δ(q−q - The operators satisfy bosonicoperators, commutation relations, [a , a q ′ q † The operator n = a a measures the particle n q q q operators, but with an index label q). P † † number the is N̂particle = qa q aq . - The operator number in the momentum mo Diagonalization in operator space: nBogoliubov transformation q = aq aq measures P † q2 number is N̂ = q aq aq .- The dispersion relation is Eq = !ω = 2m . This is Bogoliubov Quasiparticles • q † q • ⇥ ⇥ 2 † ′ q a u v q q q The trafo be canonical, [α , α ]= δ( −particle ), - ⇥ The⇥dispersion relation is Eq = !ω = 2m . This is the energy ′of a single † vq uq a q † ′ 2 2 • [α Lower The trafo be canonical, , α ′T ] =and δ( - ⇠ • At a finiteofT ,µµathits zero: belowqthis Tc the e • Lower T and study the behavior fixed n (3D): 2 q 2 1 ⇠q 2 2 ⇠ = ✏ + gn , ✏ = + 1), v = 1) ( q q 0 q E = ⇠ ✏ q 2M q 2 E q has q no • At a finite T q, µ hits zero: below this T the equation of state c Rewrite the Hamiltonian with new operators and do normal ordering H=V gn 2 2 1 2 X (✏q + gn0 Eq ) + q6=0 • study − ),the thusbehavior uq − vq =of 1. µ at fixed The transformation coefficients are chosen make Tany • Lower T and study the behavior ofoff-diagonal µ study at fixed (2D): • toLower and thencontribution behavior ofinµ at fixed terms of new operators vanish. They can be chosen real and evaluate to u2q = 12 ( Eqq • = ⇥ X Eq ↵q† ↵q q6=0 quasiparticle dispersion Result: Collection of harmonic oscillators. New operators: elementary excitations on Bogoliubov ground state: quasiparticles † ↵ - q creates a quasiparticle qexcitation and ↵q |0Bog i =q0 - Their dispersion is Eq = q!0 2gn0 ✏q + ✏2q ! c|q|, c= gn0 m At low momenta, this is linear and gapless At high momenta, like free particles: quadratic speed of sound phonons particles Phonon Mode and Superfluidity • Landau criterion of superfluidity: frictionless flow - Gedankenexperiment: move an object through a liquid with velocity v. - Landau: the creation of an excitation with momentum p and energy ✏p is energetically unfavorable if ✏p v < vc = p ➡ in • this case, the flow is frictionless, i.e. superfluidity is present Weakly interacting Bose gas: Superfluidity through linear phonon excitation ✏p = c|p|, c = • q gn0 m ! vc = c Free Bose gas: No superfluidity due to soft particle excitations phonons p2 ✏p = ! vc = 0 2m ➡ Superfluidity is due to linear spectrum of quasiparticle excitations particles Summary • The basic phenomenon of Bose-Einstein condensation is a statistical effect, not driven by interactions. • Ultracold bosonic quantum gases realize a situation close to that: model Hamiltonians with weak, local, repulsive interactions. • • Important scale hierarchy: • GP mean field equation = nonlinear Schrödinger equation for macroscopic wave function (hallmark: quantized vortices). • Bogoliubov theory encompasses quadratic fluctuations around GP mean field and explains superfluidity through existence of phonon mode. a d dB In consequence, such systems are well described by relatively simple approximations: at T=0, the physics is well understood in terms of GP equation + quadratic fluctuations. Idea of Landau Criterion • • moving object v ⌃0 Consider moving object in the liquid ground state of a system Question: When is it favorable to create excitations? • ground state system General transformation of energy and momentum under Galilean boost with velocity v • ⌃: w/o moving object E, p 0 with moving ⌃ object : E0 = E ⌃ total system mass pv + 12 M v2 , p0 = p Mv Energy and momentum of the ground state w/o moving object E0 , with moving object ⌃0 : E00 = E0 + 12 M v2 , • p0 = 0 p00 = Mv Energy and momentum of the ground state plus an excitation with momentum, energy w/o moving object ⌃: Eex = E0 + ✏p , with moving object ⌃0 : 0 Eex = E0 + ✏ p • pex = p pv + 12 M v2 , p0ex = p Mv Creation of excitation unfavorable if 0 Eex E00 = ✏p pv ✏p |p||v| > 0 ✏p ) v < vc = p p, ✏p