Herzlich Willkommen! Netzwerkanalyse Grundlagen und Anwendungsüberblick Tomas Lange (Agilent) 2013 Page 1 Agenda Arten der Leistungsmessung über der Frequenz • Physikalische Grundlagen der HF Übertragung • Charakterisierung der HF-Übertragung • Messbare Parameter • Aufbau des Network Analyzers • Modellüberblick • Applikationsbeispiele Page 2 ‘Netzwerkanalyse’ ist NICHT .… Router Bridge Repeater Hub Your IEEE 802.3 X.25 ISDN switched-packet data stream is running at 147 MBPS with -9 a BER of 1.523 X 10 . . . … es IST: HF Baugruppen & Komponenten Test !!! Page 3 Messmöglichkeiten: Leistung über Frequenz • Misst Amplitude über Zeit • Berechnet f (FFT) mit sehr begrenzter Ampl.auflösung • f-Auflösung <=> Speichertiefe • • • • Oszilloskop Power Meter Network Analyzer • Kann messen was er erzeugt -> hochgenaue Relativmessung • Nur schmalbandige Messung • Keine Signal-Inhaltsanalyse • Phase ! Page 4 Nur breitbandige Messung Keine Selektivität Eingeschränkte Dynamik (Ampl.) Keine Phase Spectrum Analyzer • • • • • Kann auch Summenleistung in Band Spektrum & Signal(-inhalts)analyse Grosse Dynamik Exzellente Selektivität Keine Phase Agenda • Arten der Leistungsmessung über der Frequenz Physikalische Grundlagen der HF Übertragung • Charakterisierung der HF-Übertragung • Messbare Parameter • Aufbau des Network Analyzers • Modellüberblick • Applikationsbeispiele Page 5 Analogie des Lichts zur HF Energie Incident Reflected Transmitted Strahlen Optik DUT HF Page 6 Warum überhaupt Komponenten messen? Die “building blocks” müssen Spezifikationen einhalten, damit ein komplexes HF-System funktioniert Störungsfreie Übertragung von Nutz-/Kommunikationssignalen Überprüfung grundlegender Eigneschaften • linear: constant amplitude, linear phase / constant group delay 7 • nonlinear: harmonics, intermodulation,Pagecompression, AM-to-PM conversion Impedanzanpassung (Effizienz!) Einhaltung von EMV Vorgaben KPWR Page 7 FM 97 Signalübetragung - Grundlagen Niedere Frequenzen + I Wellenlänge >> Kabellänge Strom (I) läuft entlang der Leitung , effiziente Übertragung bei niedrigem ohmschen Widerstand, sonst keine speziellen Anforderungen Gemessene Spannung und Strom nicht direkt ortsabhängig Hohe Frequenzen Page 8 Wellenlänge » oder << Länge des Ausbreitungsmediums Effiziente Übertragung bedarf “Leitung” mit ganz speziellen Eigenschaften Impedanzanpassung (Zo) ist sehr wichtig für geringe Reflexion und maximale Leistungsübertragung Die gemessene Spannung (Hüllkurve) schwankt stark mit dem Ort - Transmission line: Zo (charakteristische Impedanz) Zo bestimmt Beziehung zwischen Strom- und Spannungswelle Zo ist eine Funktion der physikalischen Dimensionen und r Zo ist normalerweise rein real, kein Imaginärteil (oft 50 oder 75 Ohm) 1.5 attenuation is lowest at 77 ohms 1.4 1.3 normalized values 1.2 1.1 50 ohm standard 1.0 0.9 0.8 0.7 power handling capacity peaks at 30 ohms 0.6 0.5 10 20 30 40 50 60 70 80 90 100 characteristic impedance for coaxial airlines (ohms) Page 9 Transmission Line Terminated with Zo Zs = Zo Zo = characteristic impedance of transmission line Zo Vinc Vrefl = 0! (all the incident power is absorbed in the load) For reflection, a transmission line terminated in Zo behaves like an infinitely long transmission line Page 10 Transmission Line Terminated with Short, Open Zs = Zo Vinc Vrefl In-phase (0o) for open, out-of-phase (180o) for short For reflection, a transmission line terminated in a short or open reflects all power back to source Page 11 Transmission Line Terminated with 25 W Zs = Zo ZL = 25 W Vinc Vrefl Standing wave pattern does not go to zero as with short or open Page 12 Agenda • Arten der Leistungsmessung über der Frequenz • Physikalische Grundlagen der HF Übertragung Charakterisierung der HF-Übertragung • Messbare Parameter • Aufbau des Network Analyzers • Modellüberblick • Applikationsbeispiele Page 13 Charakterisierung der HF Übertragung Incident Transmitted R B Reflected A TRANSMISSION REFLECTION Reflected Incident = (V)S WR S-Parameters S11, S22 Page 14 A Transmitted R Incident Return Loss Reflection Coefficient G, r Impedance, Admittance R+jX, G+jB = B R Group Delay Gain / Loss S-Parameters S21, S12 Transmission Coefficient T,t Insertion Phase Reflection Parameters Vreflected Reflection = = Coefficient G Vincident Return loss = -20 log(r), Emax Emin r r F = Z L + ZO G Voltage Standing Wave Ratio Emax VSWR = Emin = 1+r 1-r Full reflection (ZL = open, short) No reflection (ZL = Zo) Page 15 = ZL - ZO 0 r 1 dB RL 0 dB 1 VSWR Smith Chart Review . +jX Polar plane 90 o 1.0 .8 .6 0 +R .4 + 180 o - o .2 0 0 -jX -90 o Rectilinear impedance plane Constant X Constant R Z L = Zo Smith Chart maps rectilinear impedance plane onto polar plane G= 0 ZL = Z L = 0 (short) G= 1 ±180 G =1 O Smith chart Page 16 (open) 0 O Transmission Parameters V Incident V Transmitted DUT Transmission Coefficient = T = V Insertion Loss (dB) = - 20 Log V Gain (dB) = 20 Log V Page 17 V Trans Inc V Transmitted V Incident Trans = t = - 20 log Inc = 20 log t t Verhalten linearer und nichtlinearer Systeme A * Sin 360o * f (t - to) A Linear behavior: Time to Sin 360o * f * t A Time f 1 DUT Input phase shift = to * 360o * f input and output frequencies are the same (no additional frequencies created) output frequency only undergoes magnitude and phase change Frequency Output Nonlinear behavior: f 1 Frequency Time f Page 18 1 Frequency output frequency may undergo frequency shift (e.g. with mixers) additional frequencies created (harmonics, intermodulation) Voraussetzung für unverzerrte Übertragung LINEARITÄT Linear phase over bandwidth of interest Constant amplitude over bandwidth of interest Phase Magnitude Frequency Frequency Page 19 Gruppenlaufzeit (Group Delay, GD) statt Phase Frequencyw tg Group delay ripple Dw to Phase D Frequency Group Delay (tg) = -d dw w = -1 360 o * d df group-delay ripple indicates phase distortion average delay indicates electrical length of DUT aperture of measurement is very important in radians in radians/sec in degrees f in Hertz (w = 2 p f) Page 20 Phase Phase Weitere Gründe für GD statt Phasenmessung f f -d dw Group Delay Group Delay -d dw f Same p-p phase ripple can result in different group delay Page 21 f Characterizing Unknown Devices Using parameters (H, Y, Z, S) to characterize devices: gives linear behavioral model of our device measure parameters (e.g. voltage and current) versus frequency under various source and load conditions (e.g. short and open circuits) compute device parameters from measured data predict circuit performance under any source and load conditions H-parameters V1 = h11I1 + h12V2 I2 = h21I1 + h22V2 Page 22 Y-parameters I1 = y11V1 + y12V2 I2 = y21V1 + y22V2 Z-parameters V1 = z11I1 + z12I2 V2 = z21I1 + z22I2 h11 = V1 I1 V2=0 (requires short circuit) h12 = V1 V2 I1=0 (requires open circuit) Warum gerade S-Parameter messen? S 21 Incident Transmitted a1 b2 S 11 DUT Reflected Port 2 Port 1 b1 S 22 Reflected a2 Transmitted Incident S 12 b 1 = S 11 a 1 + S 12 a 2 b 2 = S 21 a 1 + S 22 a 2 S 11 = S 21 = Page 23 Reflected Incident Transmitted Incident b1 = a 1 b a2 = 0 2 = a 1 a2 = 0 S 22 = S 12 = Reflected Incident Transmitted Incident b2 = a 2 b a1 = 0 1 = a 2 a1 = 0 Equating S-Parameters with Common Measurement Terms S11 = forward reflection coefficient (input match) S22 = reverse reflection coefficient (output match) S21 = forward transmission coefficient (gain or loss) S12 = reverse transmission coefficient (isolation) Remember, S-parameters are inherently complex, linear quantities -- however, we often express them in a log-magnitude format Page 24 Agenda • Arten der Leistungsmessung über der Frequenz • Physikalische Grundlagen der HF Übertragung Charakterisierung der HF-Übertragung • Messbare Parameter • Aufbau des Network Analyzers • Modellüberblick • Applikationsbeispiele Page 25 Vereinfachtes Network Analyzer Blockschaltbild Incident Transmitted DUT SOURCE Reflected SIGNAL SEPARATION INCIDENT (R) REFLECTED TRANSMITTED (A) (B) RECEIVER / DETECTOR PROCESSOR / DISPLAY Page 26 Signal Separation Incident Transmitted DUT Reflected SOURCE SIGNAL SEPARATION INCIDENT (R) REFLECTED (A) TRANSMITTED (B) RECEIVER / DETECTOR PROCESSOR / DISPLAY • • measure incident signal for reference separate incident and reflected signals splitter bridge directional coupler Page 27 Detector Test Port Directivity Directivity is a measure of how well a coupler can separate signals moving in opposite directions (undesired leakage signal) (desired reflected signal) Test port Directional Coupler Page 28 Detector Types Incident Transmitted DUT Reflected SOURCE Diode Scalar broadband (no phase information) SIGNAL SEPARATION INCIDENT (R) REFLECTED (A) TRANSMITTED (B) RECEIVER / DETECTOR PROCESSOR / DISPLAY DC RF AC Tuned Receiver RF IF = F LO F RF ADC / DSP IF Filter LO Page 29 Vector (magnitude and phase) Comparison of Receiver Techniques Broadband (diode) detection Narrowband (tuned-receiver) detection 0 dB 0 dB -50 dB -50 dB -100 dB -100 dB -60 dBm Sensitivity higher noise floor false responses < -100 dBm Sensitivity high dynamic range harmonic immunity Dynamic range = maximum receiver power - receiver noise floor Page 30 Network Analyzer mit eingebautem Test Set – verschiedene Optionen S-Parameter Test Set Transmission/Reflection Test Set Source Source Transfer switch R R B A Port 1 Port 2 Fwd Page 31 Port 2 Port 1 Fwd DUT HF kommt immer aus Port 1 Port 2 ist immer nur Empfänger Einfache Response CAL B A DUT Rev HF kommt aus Port 1 oder Port 2 Kann vorwärts und rückwärts messen Full-two-port CAL Systematische Messfehler R Directivity A (Richtschärfe) Crosstalk (Übersprechen) B DUT Frequenzgang reflection tracking (A/R = Reflexion) transmission tracking (B/R = Übetragung) Source Mismatch (Quellenanpassung) Load Mismatch (Lastanpassung) Sechs Fehlerterme für “vorwärts”und ebensoviele für “rückwärts” -12 error terms für Prüflinge mit 2 Toren Page 32 Types of Error Correction response (normalization) simple to perform only corrects for tracking errors thru stores reference trace in memory, then does data divided by memory vector requires more standards requires an analyzer that can measure phase accounts for all major sources of systematic error SHORT S11a S11 m Page 33 thru OPEN LOAD Was ist „Vector-Error Correction“? Prozess zur Characterisierung systematischer Fehlerterme Messung bekannter Standards Korrektur der gemessenen Effekte von nachfolgenden Messungen 1-port Calibration (bei der Reflexionsmessung = “CAL light”) nur 3 systematische Fehlerterme werden erfasst: directivity, source match, and reflection tracking Full 2-port calibration (für Reflexions- und Transmissionsmessung) 12 systematische Fehlerterme erfasst Bedarf12 Messungen an vier bekannten Standards (“SOLT” = short, open, load, through) Standards werden in einer “cal kit definition” Datei abgelegt Network Analyzer kennen die Definition der käuflichen (Agilent) CAL-Kits Bei der Messung muss auch die richtige Definition benutzt werden! Andere Standards lassen sich als “User-defined” Cal-Kit abspeichern Page 34 Two-Port Error Correction Reverse model Forward model Port 1 Port 2 E RT' Port 1 EX Port 2 S21 a1 a1 ED S21A ES S11A b1 E RT S22 S 12 ETT A EL b2 EL' = rev load match ETT' = rev transmission tracking EX' = rev isolation Page 35 A E S' A ED' a2 S12 A E TT' EX' E D' = rev directivity E S' = rev source match E RT' = rev reflection tracking b1 b2 A S22 A EL = fwd load match ETT = fwd transmission tracking EX = fwd isolation S11 a2 ED = fwd directivity E S = fwd source match ERT = fwd reflection tracking E L' Jeder korrigierte S-Parameter ist eine Funktion von allen 4 gemessenen SParametern Analyzer muss abwechslend Vorwärtsund Rückwärts-Betrieb machen Die Lösung des Gleichungssystems übernimmt der Analyzer!!! S11a = S - ED S - ED ' S - E X S12 m - E X ' ( 11m )(1 22m E S ' ) - E L ( 21m )( ) E RT E RT ' E TT E TT ' S S S - E D' - ED ' - E X S12 m - E X ' (1 11m E S )(1 22m E S ' ) - E L ' E L ( 21m )( ) E RT E RT ' E TT ETT ' ( S21a = S12a = E TT )(1 S22 m - E D ' E RT ' ( E S '- E L )) S S S - ED - ED' - E X S12 m - E X ' (1 11m E S )(1 22m E S ' ) - E L ' E L ( 21m )( ) E RT E RT ' E TT ETT ' S - EX ' S - ED ( 12m )(1 11m ( E S - E L ' )) E TT ' E RT S - ED S - ED' S - E X S12m - E X ' (1 11m E S )(1 22m E S ' ) - E L ' E L ( 21m )( ) E RT E RT ' E TT E TT ' ( S22a = S21m - E X S 22m - E D ' E RT ' )( 1 S11m - E D S 21m - E X S12m - E X ' ES ) - E L ' ( )( ) E RT E TT E TT ' S - ED S - ED' S - E X S12m - E X ' (1 11m E S )(1 22m E S ' ) - E L ' E L ( 21m )( ) E RT E RT ' E TT ETT ' Calculating Measurement Uncertainty After a TwoPort Calibration Corrected error terms: DUT 1 dB loss (0.891) 16 dB RL (0.158) (8753ES 1.3-3 GHz Type-N) Directivity Source match Load match Refl. tracking Trans. tracking Isolation = = = = = = 47 dB 36 dB 47 dB .019 dB .026 dB 100 dB Reflection uncertainty S11m = S11a ( E D S11a E S S 21a S12 a E L S11a (1 - E RT )) 2 = 0158 . (.0045 0158 . 2 *.0158 0.8912 *.0045 0158 . *.0022) = 0.158 ± .0088 = 16 dB +0.53 dB, -0.44 dB (worst-case) Transmission uncertainty S 21m = S 21a S 21a ( E I / S 21a S11a E S S 21a S12 a E S E L S 22 a E L (1 - E TT )) = 0.891 0.891(10 -6 / 0.891 0158 . *.0158 0.8912 *.0158*.0045 0158 . *.0045.003) = 0.891 ± .0056 = 1 dB ±0.05 dB (worst-case) Page 36 Comparison of Measurement Examples Reflection Calibration type One-port One-port + attenuator Two-port Measurement uncertainty -4.6/10.4 dB -1.9/2.5 dB -0.44/0.53 dB Transmission Calibration type Response Enhanced response Enh. response + attenuator Two port Page 37 Calibration uncertainty 0.22 dB 0.02 dB 0.01 dB ----- Measurement uncertainty 0.60/-0.65 dB 0.22 dB 0.08 dB Total uncertainty 0.82/-0.87 dB 0.24 dB 0.09 dB 0.05 dB Calibration Summary Reflection Test Set (cal type) T/R S-parameter (one-port) Reflection tracking Directivity Source match Load match SHORT (two-port) OPEN LOAD Test Set (cal type) T/R Transmission (response, isolation)(two-port) error can be corrected Transmission Tracking Crosstalk Source match Load match error cannot be corrected * Page 38 enhanced response cal corrects for source match during transmission measurements S-parameter ( * ) ECal: Electronic Calibration • • • • • Variety of modules cover low kHz to high GHz 2 and 4-port versions available Choose from six connector types (50 W and 75 W) Mix and match connectors (3.5mm, Type-N, 7/16) Single-connection reduces calibration time makes calibrations easy to perform minimizes wear on cables and standards eliminates operator errors Highly repeatable temperature-compensated terminations provide excellent accuracy sa 85093A Electronic Calibration Module 30 kHz - 6 GHz • Microwave modules use a transmission line shunted by PINdiode switches in various combinations Page 39 Agenda • Arten der Leistungsmessung über der Frequenz • Physikalische Grundlagen der HF Übertragung Charakterisierung der HF-Übertragung • Messbare Parameter • Aufbau des Network Analyzers • Modellüberblick • Applikationsbeispiele Page 40 Agilent Network Analyzer Overview Test PNA-X, NVNA Industry-leading performance 10 MHz to 13.5, 26.5, 43.5, 50 GHz Banded mm-wave to 2 THz Accessories PNA Performance VNA 10 MHz to 20, 40, 50, 67, 110 GHz Banded mm-wave to 2 THz PNA-L World’s most capable value VNA 300 kHz to 6, 13.5, 20 GHz 10 MHz to 40, 50 GHz ENA World’s most popular midrange VNA 9 kHz to 4.5, 8.5 GHz 300 kHz to 20.0 GHz FieldFox RF Analyzer 5 Hz to 26.5 GHz ENA-L Economy VNA 5 Hz/300 kHz to 1.5/3.0 GHz Fokus heute Page 41 PNA-X receiver 8530A replacement Mm-wave solutions Up to 2 THz Wer braucht welchen Network Analyzer (NWA)? Wer braucht einen Spektrum Analysator? – im Prinzip jedes Elektronik-Labor Wer braucht einen Network Analyzer? – jeder, der HF-Übertragungs- oder Sperreigenschaften erwartet von ... • Einzelnen Bauteilen (Drosseln, Kondensatoren, Piezo‘s…) • Baugruppen (OP-Verstärker, Filter, Antennen, Kabel …) • Geräten/Einschüben (DC-Supplies, Wandler, Schirmdämpfung v. Gehäusen …) • Materialien (Induktionskerne, Substrate, Dielektrika …) • Usw. Alles aber ausschließlich << 1 MHz ?? Wir haben auch LCR Meter !!! Page 42 Low Integration High What Types of Devices are Tested? Duplexers Diplexers Filters Couplers Bridges Splitters, dividers Combiners Isolators Circulators Attenuators Adapters Opens, shorts, loads Delay lines Cables Transmission lines Waveguide Resonators Dielectrics R, L, C's Passive Page 43 RFICs MMICs T/R modules Transceivers Receivers Tuners Converters VCAs Amplifiers Antennas Switches Multiplexers Mixers Samplers Multipliers Diodes Device type VCOs VTFs Oscillators Modulators VCAtten’s Transistors Active Agenda • Arten der Leistungsmessung über der Frequenz • Physikalische Grundlagen der HF Übertragung • Charakterisierung der HF-Übertragung • Messbare Parameter • Aufbau des Network Analyzers • Modellüberblick Applikationsbeispiele Page 44 Frequency Sweep - Filter Test CH1 S 21 log MAG 10 dB/ REF 0 dB CH1 S11 log MAG 5 dB/ REF 0 dB Cor Stopband rejection 69.1 dB START .300 000 MHz STOP 400.000 000 MHz CH1 S21 SPAN 50.000 MHz CENTER 200.000 MHz log MAG 1 dB/ REF 0 dB Return loss Cor 1 2 ref Insertion loss Cor m1: 4.000 000 GHz 0.16 dB m2-ref: 2.145 234 GHz 0.00 dB x2 1 START 2 000.000 MHz Page 45 2 STOP 6 000.000 MHz Cable Loss Measurement Techniques Traditional 2-Port Loss Measurement Novel 1-Port Loss Measurement Power Sensor-Based Loss Measurement USB Cable Open or Short Power Sensor Cable Loss Measurement Examples 2-Port and 1-Port Cable Loss Open or Short Output Power (dBm) Power Sweeps - Compression Saturated output power Compression region Linear region (slope = small-signal gain) Input Power (dBm) Page 48 Power Sweep - Gain Compression CH1 S21 1og MAG 1 dB/ REF 32 dB 30.991 dB 12.3 dBm 1 dB compression: 1 0 START -10 dBm Page 49 CW 902.7 MHz STOP 15 dBm input power resulting in 1 dB drop in gain AM to PM Conversion Measure of phase deviation caused by amplitude variations Power sweep Amplitude AM (dB) Mag(Ami n) DUT AM can be undesired supply ripple, fading, thermal AM can be desired: modulation (e.g. QAM) PM (deg) Test Stimulus Q Time Amplitude AM (dB) Mag(AMout) AM - PM Conversion = Mag(Pmout) Mag(Amin) (deg/dB) PM (deg) Mag(Pmout ) Output Response Page 50 Time I AM to PM conversion can cause bit errors Antenna to Antenna Isolation Isolation Antenna #2 Antenna #1 Insertion Loss (2-Port) Copyright J M Briscoe and licensed for reuse under the Creative Commons License. FieldFox Messungen an einem selbst gebauten Shunt (1 mOhm Widerstand) 2-resistor-type power splitter 1 mOhm DUT Messung an den S-Parameter Ports (50Ω) Braucht Spulenkern zur Messung genau wie bei Messungen an Prüflingen mit sehr großer Dämpfung! Page 52 Messung an den Gain-Phase Ports (1 MOhm Eingang) Messergebnisse am Shunt (Vergleich) CH1: S-param. test ports with core 20*Log(|Z|) CH:2 Gain-phase test ports without core Source=10 dBm IFBW=Auto / 10 Hz-limit 20*Log(|Z|) Source=10 dBm Port-R: Zin=50 ohm, ATT=20 dB Port-T: Zin=50 ohm, ATT=0 dB IFBW=Auto / 10 Hz-limit 10 dB/div |Z|, linear scale |Z|, linear scale 500 uohm/div Beide Messungen ergeben korrekte Ergebnisse. Bei ganz tiefen Frequenzen ist die Gain-Phase Messung allerdings überlegen. Die Gain-phase Test Ports ermöglichen eine Messung auch von mOhm-Prüflingen ohne die Verwendung von Spulenkernen. Bei der S-Parameter Messung ist das Ergebnis sehr abhängig vom richtigen Aufbau und der Anzahl der Windungen und damit viel schwerer reproduzierbar. Page 53 Universelle Anwendungen in F&E (Automobil, Medizin, A&D, Kommuniksation, Industrielektronik etc) LF-to-RF network meas. needs in electronic equipment. Excellent RF performance Wireless Interfaces 5 Hz to 3 GHz coverage (Zigbee, Bluetooth, HF/UHF RFIDs, etc) S-parameters MHz to GHz range Wide dynamic range at LF DC-biased measurement Transceivers Sensor signals Antennas Low/mid speed data bus (CAN, FlexRay, etc) A/D LF amplifiers Freq. responses, CMRR, & PSRR near-DC to 100 MHz Filters Oscillator circuits MPUs/ MCUs Freq. resp.(loop gain) MHz range DC-DC Transceivers Wide dynamic range Freq. resp. & impedance 100 kHz to MHz range at MHz range Wide dynamic range at LF (POL/VRM) Loop gain, milliohm-impedance, & S21 near-DC to GHz DC-DC converters 5 Hz to 3 GHz in single sweep PDNs (Power Delivery Networks) CMRR = Gleichtaktunterdrückung, PSRR = Netzstörunterdrückungsverhältnis (power supply rejection ratio) Page 54 Weitere Spezialfälle • Adaption an Prüfling erforderlich • Symmetrische Messungen => mit Balun‘s oder MehrportNWA mit Superposition und Fixture Simulator • Impedanzmessungen (Spezialfall einer Reflexionsmessung) • Harmonische messen => Einsatz des NWA als Direktempfänger (ohne Quelle, quasi als Spektrumanalysator) • Nichtlineare Netzwerkanalyase => X-Parameter Page 55 Adaption an Prüfling: Adapterlösungen reflection from adapter leakage signal desired signal r measured = Directivity + r adapter + r DUT Coupler directivity = 40 dB Adapter Worst-case System Directivity 28 dB 17 dB 14 dB Page 56 DUT Termination DUT has SMA (f) connectors APC-7 calibration done here Adapting from APC-7 to SMA (m) APC-7 to SMA (m) SWR:1.06 APC-7 to N (f) + N (m) to SMA (m) SWR:1.05 SWR:1.25 APC-7 to N (m) + N (f) to SMA (f) + SMA (m) to (m) SWR:1.05 SWR:1.25 SWR:1.15 Calibrating Non-Insertable Devices When doing a through cal, normally test ports mate directly cables can be connected directly without an adapter result is a zero-length through What is an insertable device? has same type of connector, but different sex on each port has same type of sexless connector on each port (e.g. APC-7) What is a non-insertable device? one that cannot be inserted in place of a zero-length through has same connectors on each port (type and sex) has different type of connector on each port (e.g., waveguide on one port, coaxial on the other) What calibration choices do I have for non-insertable devices? use an uncharacterized through adapter use a characterized through adapter (modify cal-kit definition) swap equal adapters adapter removal Page 57 DUT Adapter Removal Calibration Calibration is very accurate and traceable In firmware of most analyzers Port 1 Also accomplished with ECal modules Uses adapter with same connectors as DUT Must specify electrical length of adapter to within 1/4 wavelength of highest frequency (to avoid phase ambiguity) Cal Adapter Port 1 Adapter B Port 2 Adapter B Port 2 DUT 1. Perform 2-port cal with adapter on port 2. Save in cal set 1. Cal Set 1 Port 1 Cal Adapter 2. Perform 2-port cal with adapter on port 1. Save in cal set 2. Cal Set 2 [CAL] [MORE] [MODIFY CAL SET] [ADAPTER REMOVAL] Port 1 Page 58 DUT Adapter B Port 2 3. Use ADAPTER REMOVAL to generate new cal set. 4. Measure DUT without cal adapter. Port 2 What are Balanced Devices? Ideally, respond to differential and reject common-mode signals Gain = 1 Differential-mode signal Balanced to single-ended Common-mode signal (EMI or ground noise) Gain = 1 Differential-mode signal Fully balanced Common-mode signal (EMI or ground noise) Page 59 Agilent Solution for Balanced Measurements For RF wireless and general-purpose devices: • ENA series is recommended choice (3...20 GHz) • measure standard or mixed-mode Sparameters • fixture simulator to embed/de-embed and transform test port impedances • 4-port ECal for fast and easy calibration For microwave or signal-integrity applications: Page 60 • consist of network analyzer, test set, external software • time domain, eye diagrams, RLCG extraction • ECal available up to high GHz Impedanzmessungen mit E5061B Port-1 reflection method using fixture e.g., for SMD type components Gain-phase series-thru method using fixture for wired components Page 61 Measuring Nonlinear Behavior Most common measurements: using a network analyzer and power sweeps gain compression AM to PM conversion using a spectrum analyzer + source(s) harmonics, particularly second and third intermodulation products resulting RL 0 dBm from two or more RF carriers LPF ATTEN Page 62 10 dB / DIV DUT CENTER 20.00000 MHz RB 30 Hz VB 30 Hz LPF 10 dB SPAN 10.00 kHz ST 20 sec Agilent’s Award Winning Nonlinear Vector Network Analyzer (NVNA) based on PNA-X Series Multi-tone and Multi-port Nonlinear Vector Network Analysis from 10 MHz to 50 GHz • Two-tone X-parameter measurements • Multi-tone waveform measurement and analysis • Three-port mixer and converter measurements • Fundamental only X-parameter measurements Page 63 Programmende Vielen Dank für Ihr Interesse an NetzwerkAnalysatoren! [email protected] Page 64