Physik Formelsammlung Andreas Zimmer WS 97/98 1. Struktur der Materie Teilchen mol Avogadro Konstante N A = 6,022 ⋅ 10 23 Molvolumen Vm = 22,414 Stoffmenge n= m M mol Dichte ρ= m V kg 3 m Masse des Elektrons m e = 9,1091 ⋅ 10 −31 kg Masse des Protons m p = 1,6725 ⋅ 10 −27 kg Elementarladung e = 1,6021 ⋅ 10 −19 2. l As Wechselwirkungen und Kräfte Gravitationskraft Coulombkraft F=G F= m1 ⋅ m 2 r2 G = 6,670 ⋅ 10 −11 m3 2 kg ⋅ s ε 0 = 8,86 ⋅ 10 −12 A⋅s V ⋅ m Q1 ⋅ Q 2 4 ⋅ π ⋅ ε0 ⋅ r Kraft F=m⋅g Reibkraft FR = FN ⋅ µ Federkraft FF = −k ⋅ x 2 vom Skript-Server der FH-Köln: http://skript.vt.fh-koeln.de/ m g = 9,81 2 s 2 3. Kinematik Bewegungsgleichung x = x0 + v0 ⋅ t + Gleichförmige Bewegung x =v⋅t Beschleunigte Bewegung x= 1 ⋅ a ⋅ t2 2 v= x t 1 ⋅ a ⋅ t2 2 v =a⋅t v − v0 x= 2⋅a t= a= a= 2⋅x t 2 v t x v v = konst. 2⋅x a t= t= a = konst. v a 2 v = 2 ⋅ a ⋅ x + v0 2 Freier Fall y = y 0 + v 0Y ⋅ t − 1 ⋅ g ⋅ t2 2 Schiefer Wurf x = x 0 + v 0X ⋅ t + 1 ⋅ aX ⋅ t2 2 aX = 0 v 0 X = v 0 ⋅ cos α y = y 0 + v 0Y ⋅ t + 1 ⋅ aY ⋅ t2 2 a Y = −g v 0 Y = v 0 ⋅ sin α y = y 0 + v 0Y ⋅ t − 1 ⋅ g ⋅ t2 2 v = v 0Y − g ⋅ t a = −g 2 v 2 ⋅ y0 v = 0 Y + 0 Y + g g g Wurfzeit t 1/ 2 Steigzeit tS = v0 ⋅ sin α g Wurfweite (Reichweite) R= v0 ⋅ sin 2 α g 2 2 Wurfhöhe h max v = 0 ⋅ sin 2 α 2⋅g vom Skript-Server der FH-Köln: http://skript.vt.fh-koeln.de/ 3 4. Arbeit und Energie [J = Nm = Ws] Energie E = E kin + E pot = konst. Kinetische Energie E kin = Potentielle Energie E pot = m ⋅ g ⋅ h Arbeit W = ∆E pot = ∆E kin = F ⋅ cos α ⋅ ∆x 1 ⋅m ⋅ v2 2 ∆E kin = ( 1 2 2 ⋅ m ⋅ vE − v A 2 ) ∆E pot = m ⋅ g ⋅ (h − x ) x2 ∫ W = FX ⋅ dx = x1 h 1 1 2 m − ⋅ h ⋅ g ⋅ dh = m ⋅ h − ⋅ h 2 4 0 ∫ Reibarbeit WR = −FN ⋅ µ ⋅ x FN = h ⋅g 0 FG cos α WR = ∆E kin + ∆E pot W − WR = E kin Federarbeit WF = W= 1 ⋅ k ⋅ x2 2 1 ⋅ k ⋅ x2 − m ⋅ g ⋅ h 2 W F⋅x = F⋅v = t t Leistung P= Bremsleistung E pot A = E kin B v = 2⋅g⋅h cos α v = 2 ⋅ g ⋅ h ⋅ 1 − µ ⋅ sin α vom Skript-Server der FH-Köln: http://skript.vt.fh-koeln.de/ ohne Re ibung mit Re ibung 4 5. Schwingungen 1 T Frequenz f= f= Kreisfrequenz ω = 2⋅π⋅f ω 2⋅π f= k m ω= (Winkelgeschwindigkeit) Schwingungsdauer T= 1 f Federkonstante k= m⋅g x0 Anfangswinkel ϕ = ω⋅ t Amplitude A= T= ω= 2⋅π ω 1 −1 Hz = s = 1 1 k ⋅ 2⋅π m ϕ t ω= m k T =2⋅π⋅ v r T= t n x 0 ⇒ Auslenkung aus der Ruhelage v0 ω ⋅ x0 cos ϕ = v0 ω ⋅ sin ϕ A= tan ϕ = x0 cos ϕ A= x0 A a ω ⋅ cos ϕ 2 A ⇒ max . Auslenkung Auslenkung x = A ⋅ cos (ω ⋅ t + ϕ) x 0 = A ⋅ cos ϕ Geschwindigkeit v = − A ⋅ ω ⋅ sin (ω ⋅ t + ϕ) v 0 = − A ⋅ ω ⋅ sin ϕ Beschleunigung a = − A ⋅ ω2 ⋅ cos (ω ⋅ t + ϕ) a0 = − A ⋅ ω2 ⋅ cos ϕ a = −ω2 ⋅ x Energiebilanz Eges = 1 ⋅ k ⋅ A2 2 Epot = Eges ⋅ cos2 (ω ⋅ t + ϕ) Epot = 1 ⋅ k ⋅ x2 2 Ekin = Eges ⋅ sin2 (ω ⋅ t + ϕ) Ekin = 1 ⋅ m ⋅ v2 2 Max. Geschwindigkeit v max = Mathematisches Pendel ϕ= ω= s l 2 ⋅ E ges v max = ω ⋅ A m für kleine Winkel g l T =2⋅π⋅ ; FT = −m ⋅ g ⋅ sin ϕ l g l= T2 ⋅ g 4 ⋅ π2 s = A ⋅ cos ϕ vom Skript-Server der FH-Köln: http://skript.vt.fh-koeln.de/ 5 6. Elektrische Felder Feldstärke E= U d E= F Q E= E pot = Q 4 ⋅ π ⋅ ε0 ⋅ r 2 = 2⋅Q ε0 ⋅ A e2 V m [J = Nm] Potentielle Energie E pot = Q ⋅ ϕ Potentielle Arbeit W = ∆E pot = E pot 2 − E pot 2 = Q ⋅ ϕ 2 − Q ⋅ ϕ1 = Q ⋅ (ϕ 2 − ϕ1 ) = Q ⋅ U 4 ⋅ π ⋅ ε0 ⋅ r ∆E pot = e ⋅ U Energiebilanz ∆E pot = E kin e⋅U = Spannung U= ( 1 2 2 ⋅ m ⋅ ve − va 2 ( m 2 2 ⋅ ve − va ⋅ 2 e ) ) 2⋅ e ⋅U m v= Elementarladung e = 1,6021 ⋅ 10 −19 m 2 ⋅ ve ⋅ 2 e Nm J V = As = C U=E⋅d Geschwindigkeit UBrems = ve = 2⋅e⋅U 2 + va m As vom Skript-Server der FH-Köln: http://skript.vt.fh-koeln.de/ 6 7. Atomphysik Photon Energie E= h⋅c 1 = h ⋅ υ = ⋅ m ⋅ v 2 + WA λ 2 Frequenz υ= E 2 − E1 c = λ h Wellenlänge λ= h⋅c c h = = υ m⋅υ E Austrittsarbeit WA = E − Austrittsgeschwindigkeit v= Max. Bremsspannung U 0 max = 2 ⋅ (E − W A ) m U 0 max UV-Laser 1 h⋅c 1 ⋅m ⋅ v2 = − ⋅m ⋅ v2 λ 2 2 E kin e h⋅c − WA e⋅λ = e E ion = 2 ⋅ E = 2 ⋅ h ⋅ υ = λ= 2⋅h⋅c e⋅λ 2⋅h⋅c e ⋅ E ion Lichtgeschwindigkeit c = 2,9979 ⋅ 10 8 Plancksche Konstante h = 6,6256 ⋅ 10−34 m s Js vom Skript-Server der FH-Köln: http://skript.vt.fh-koeln.de/ 7