Auswirkungen von Imbalancen bei der Blockrandomisation auf die Power am Beispiel des t-Tests Rainer Muche, Laura Armbrust, Friederike Rohlmann, Jens Dreyhaupt - Institit für Epidemiologie und Medizinische Biometrie, Universität Ulm Die randomisierte kontrollierte klinische Studie wird in der Fachliteratur als „Goldstandard“ der klinischen Forschung bezeichnet. Randomisierung bedeutet die zufällige, also unvorhersehbare Zuteilung von Patienten zu den einzelnen Behandlungen und zielt damit bezüglich der Störgrößen auf strukturgleiche Behandlungsgruppen. Das Problem bei dieser rein zufälligen Zuordnung eines neuen Patienten ist allerdings, dass sowohl gleiche Anzahl der Patienten in den Behandlungsgruppen (Balanziertheit) als auch gleichmäßige Verteilung wichtiger Störgrößen nicht garantiert ist. Deshalb wird häufig die sogenannte stratifizierte Blockrandomisierung [1] eingesetzt. Bei dieser Randomisierung konkurrieren Balance und Unvorhersehbarkeit miteinander, insbesondere wenn die Studienteilnehmer auf viele Schichten (Strata) verteilt werden sollen, und zwar abhängig von der gewählten Blocklänge. Werden kleine Blöcke eingesetzt, erhöht sich die Wahrscheinlichkeit für gute Balance zu Ungunsten der Vorhersehbarkeit; werden große Blöcke gewählt, erhöht sich die Unvorhersehbarkeit zu Ungunsten der angestrebten Balance. Damit kommt der Wahl geeigneter Blocklängen eine große Bedeutung zu. Um bessere Entscheidungen bezüglich der Blocklängen treffen zu können, wurden SAS Makros [2] entwickelt, mit denen es möglich ist, die spezifische Studiensituation mit verschiedenen Blocklängen oder Sets von Blocklängen zu simulieren. Als wichtigste Größe wird dabei die beobachtete Imbalance mit entsprechender Eintrittswahrscheinlichkeit ausgegeben. Diese Informationen können dazu genutzt werden, die Fallzahlberechnung in der Studie soweit zu korrigieren, dass die vorgegebene gewünschte Power trotz Imbalance erreicht wird, denn ungleiche Fallzahlen in den Gruppen reduzieren die Power des Tests [3]. Dazu werden die mittels Simulationsmakros beobachteten Imbalancen in die Fallzahlplanung eingesetzt. Diese Fallzahlplanszenarios werden mit der SAS-Prozedur PROC POWER [4] auf Basis des unverbundenen tTests durchgeführt und untersucht. In dem Beitrag werden die notwendigen Schritte sowie der Einsatz der PROC POWER für diese Berechnungen anhand des unverbundenen t-Tests allgemein und exemplarisch an einer konkreten Studienplanung dargestellt. Literatur: [1] M. Schumacher, G. Schulgen: Methodik klinischer Studien. Springer Verlag, Heidelberg (2008) [2] L. Hupperz, F. Rohlmann, B. Einsiedler, R. Muche: Untersuchung zum Balanceverhalten der stratifizierten Blockrandomisierung – Eine Lösung mit SAS-Makros. In: R. Muche, R. Minkenberg: Proceedings der 17. KSFE-Tagung, Shaker-Verlag Aachen (2013), S. 249-259 [3] J. Bock: Bestimmung des Stichprobenumfangs. Oldenbourgh-Verlag, München (1998) [4] R. Minkenberg: Power- und Fallzahlanalyse mit SAS 9. In: E. Rödel, R.-H. Bödeker (Hrsg.): Proceedings der 9. KSFE-Tagung, Shaker Verlag, Aachen (2005), S. 245-277