Können die Eigenschaften der Dunklen Materie

Werbung
Können die Eigenschaften der Dunklen Materie aus denen
spheroidaler Zwerggalaxien hergeleitet werden?
Bachelorarbeit
zur Erlangung des Grades eines Bachelor of Science
der Fakultät Physik
der Universität Bielefeld
vorgelegt von
Matthias Götte
Betreuer und 1. Gutachter: Prof. Dr. Mikko Laine
2. Gutachter: Dr. Alexander Rothkopf
Bielefeld, den
Erklärung
Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Alle Stellen der
Arbeit, die wörtlich oder sinngemäß aus anderen Quellen übernommen wurden, sind als
solche kenntlich gemacht worden und die Arbeit wurde in gleicher oder ähnlicher Form
noch keiner Prüfungsbehörde vorgelegt.
Bielefeld, den
Inhaltsverzeichnis
1 Einleitung
4
2 Grundlegendes zu Dunkler Materie
2.1 Simulationen von CDM-Halos .
2.2 Kandidaten für Dunkle Materie
2.2.1 WIMPs . . . . . . . . .
2.2.2 Axionen . . . . . . . . .
2.2.3 Sterile Neutrinos . . . .
.
.
.
.
.
5
7
7
7
8
8
.
.
.
.
.
10
11
12
13
15
15
. .
.
. .
. .
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3 Eigenschaften spheroidaler Zwerggalaxien
3.1 Die Metallizität . . . . . . . . . . . . . . . . . . . . .
3.2 Dichteprofile . . . . . . . . . . . . . . . . . . . . . .
3.2.1 Die kollisionsfreie sphärische Jeans-Gleichung
3.2.2 Die stellare Dichte . . . . . . . . . . . . . . .
3.2.3 Modellierung der Massenprofile . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4 Implikationen der Eigenschaften der spheroidalen Zwerggalaxien für die
Dunklen Materie
4.1 Direkte Rückschlüsse . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.1 Die Masse der dSphs . . . . . . . . . . . . . . . . . . . . . . . .
4.1.2 Die Phasenraumdichte . . . . . . . . . . . . . . . . . . . . . . .
4.1.2.1 Untere Massengrenzen für sterile Neutrinos . . . . . .
4.2 Indirekte Beobachtung . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.2 Bestimmung des erwarteten Annihilationsflusses . . . . . . . .
5 Zusammenfassung
.
.
.
.
.
.
.
.
.
.
der
.
.
.
.
.
.
.
.
.
.
.
.
.
.
19
19
19
20
20
21
21
22
24
1 Einleitung
Die Frage nach der Beschaffenheit der Dunklen Materie ist einer der zentralen Punkte der
modernen Kosmologie und Teilchenphysik. Auch wenn die ersten Beweise für die Existenz
von Dunkler Materie bereits in den 1930er Jahren gefunden wurden, ist es bis heute,
trotz intensiver Suche, nicht gelungen zu ermitteln woraus sie besteht. Es gibt jedoch
viele gut motivierte Kandidaten, von denen ein kaltes Dunkle Materie-Teilchen derzeit
als das vielversprechendste angesehen wird, da sich damit die aktuellen Beobachtungen
überwiegend gut beschreiben lassen.
Da Spheriodale Zwerggalaxien zu den am stärksten von Dunkler Materie dominierten Objekten gehören und sie sich zudem in größerer Zahl in relativer Nähe zur Erde
befinden, scheinen sie ideale Ziele für die Untersuchung von Dunkler Materie zu sein.
In dieser Arbeit soll untersucht werden, ob man anhand der beobachteten Eigenschaften der spheroidalen Zwerggalaxien die Eigenschaften der Dunklen Materie bestimmen
kann, wozu in Kapitel 2 zunächst auf einige grundlegende Eigenschaften der Dunklen
Materie eingegangen wird, die für die Strukturbildung und mögliche Nachweise wichtig
sind. In Kapitel 3 werden dann die Eigenschaften der spheroidalen Zwerggalaxien betrachtet, um in Kapitel 4 schließlich Möglichkeiten zu untersuchen, anhand derer man,
aus diesen Eigenschaften, die Beschaffenheit der Dunklen Materie bestimmen kann.
4
2 Grundlegendes zu Dunkler Materie
Erste Hinweise darauf, dass es neben der sichtbaren Materie noch andere Materie geben
muss, fanden Smith und Zwicky 1930. Sie stellten fest, dass die Geschwindigkeiten der
Galaxien im Virgo- und im Coma-Galaxienhaufen etwa zehnmal größer waren, als man
auf Grund der sichtbaren Materie annehmen konnte. 1970 bestätigten Rubin, Freeman
und Peeples diese Beobachtung anhand der Daten von vielen weiteren Galaxienhaufen
[1]. Das gleiche gilt auch für Galaxien. Betrachtet man z.B. eine Spiralgalaxie, so nimmt
die Massendichte in Form von Sternen und Gas vom Zentrum aus ab und somit müsste,
2
(r)
wegen der Gleichheit von Zentrifugal- und Gravitationskraft v(r)
= GM
, auch die
r
r2
Rotationsgeschwindigkeit abnehmen, wenn die gesamte Materie durch Sterne und Gas
gegeben wäre. G = 6.673 · 10−11 m3 kg −1 s−2 [2] ist hier und im Folgenden die Gravitationskonstante und M (r) die Masse innerhalb des Radius r. Beobachtungen haben jedoch
gezeigt, dass die Rotationsgeschwindigkeit bei großen Radien annähernd konstant bleibt
und somit M (r) ∝ r ist. Die Rotationsgeschwindigkeit wird dabei aus der durch den
Dopplereffekt verschobenen 21 cm Emissionslinie von neutralem Wasserstoff bestimmt,
da das Gas auch noch in größeren Entfernungen vom Zentrum existiert, wo es keine oder
kaum sichtbare Sterne gibt. Weitere Hinweise für die Dominanz der Dunklen Materie
kommen z.B. aus Untersuchungen mit dem Gravitationslinseneffekt, bei dem man die
Ablenkung des Lichts von entfernten Objekten durch Galaxienhaufen oder Superhaufen
misst [3].
Wenngleich die Existenz von Dunkler Materie (DM) und deren Dominanz gegenüber
sichtbarer Materie auf Grund diverser Beobachtungen als erwiesen gilt, so ist die Frage
woraus die Dunkle Materie besteht noch unbeantwortet.
Eine mögliche Überlegung wäre, dass es sich um die kalten Überreste von Sternen, d.h.
weiße Zwerge, Neutronensterne und schwarze Löcher, oder braune Zwerge handelt. Diese
Objekte, MACHOs (MAssiv Compact Halo Objects) genannt, sind so lichtschwach, dass
man sie nur sehr schwer finden kann, weshalb sie eine Form von baryonischer Dunkler Materie darstellen könnten. Untersuchungen mit Hilfe des Mikrolinseneffekts haben
jedoch gezeigt, dass die meiste Dunkle Materie nicht aus MACHOs bestehen kann [4].
Zudem liefern die Häufigkeit der leichten Elemente, Wasserstoff, Helium und Lithium, in
der intergalaktischen Materie, die während der primordialen Nukleosynthese entstanden
sind, der Kosmische Mikrowellenhintergrund (CMB) und noch andere Untersuchungen
die Erkenntnis, dass baryonische Materie nur einen kleinen Teil der gesamten Materie
ausmachen kann. Daher muss es einen großen Anteil von nicht-baryonischer Materie
geben [3, 5].
Nach dem aktuellen Kosmologischen Standardmodell, dem ΛCDM-Modell, setzt sich
die Energiedichte Ω des Universums im Wesentlichen aus den Energiedichten von baryonischer Materie Ωb = 0.044 ± 0.04, kalter Dunkler Materie Ωcdm = 0.27 ± 0.04 und
5
2 Grundlegendes zu Dunkler Materie
Dunkler Energie ΩΛ = 0.69±0.08, zusammen, wobei Ωi =
3H02
ρi
ρcrit
das Verhältnis der Dichte
zur kritischen Dichte ρcrit = 8πG ist. Die Herkunft des größten Teils der Energiedichte ist somit unbekannt und insbesondere besteht der größte Teil der Materie scheinbar
aus Teilchen, die nicht elektromagnetisch wechselwirken. Da die Gesamtenergiedichte
ziemlich genau der kritischen Dichte entspricht ist das Universum (fast) flach [1].
Auch wenn im Standardmodell kalte Dunkle Materie vorausgesagt wird, gibt es auchnoch andere Dunkle Materie-Kandidaten. Hierbei unterscheidet man generell zwischen
heißer (HDM), kalter (CDM) und warmer (WDM) Dunkler Materie, die jeweils unterschiedliche Strukturbildungen zur Folge haben, da primordiale DM-Dichtefluktuationen,
die kleiner als die freie Strömungslänge der DM-Teilchen sind, von diesen ausgeglichen
werden [5, 6].
Heiße Dunkle Materie besteht aus leichten Teilchen, wie zum Beispiel massiven Neutrinos, die zur Zeit der Strukturbildung relativistisch waren [3, 6]. Durch ihr freies Wegströmen aus Gebieten mit erhöhter Dichte wären alle ursprünglichen Dichtefluktuationen
die kleiner als ein großer Galaxienhaufen waren, ausgeglichen worden. Dies hätte ein
sogenanntes “top-down scenario” zur Folge gehabt, bei dem sich zuerst Superhaufen
gebildet hätten, die sich dann in kleinere Strukturen hätten aufteilen müssen, bevor Galaxien hätten entstehen können. Da man aber schon Galaxien und Quasare bei großen
Rotverschiebungen gefunden hat und Superhaufen aktuell am kollabieren sind, kann
HDM höchstens einen kleinen Teil der gesamten Dunklen Materie ausmachen [3]. Aktuelle Daten besagen für Neutrinos, dass Ων h2 < 0.0076 ist, mit dem Hubble-Parameter
h = 0.719 ± 0.027 [1].
In Modellen mit kalter Dunkler Materie, die aus langsamen, meistens schweren Teilchen besteht, bilden sich zuerst die kleinsten Strukturen, die sich dann langsam zu größeren Strukturen zusammenfügen. In diesem “bottom-up scenario” können Dichtefluktuationen in der Dunklen Materie nach der Phase der Materie-Strahlungs-Gleichheit
ungehindert wachsen. Wenn dann die Baryonen und Photonen entkoppeln, fallen die
Baryonen in die bereits existierenden Potentialtöpfe der Dunklen Materie, wobei sie
Energie in Form von Photonen abstrahlen [3]. WIMPs (siehe 2.2.1) gehören hier zu den
vielversprechendsten Kandidaten, aber auch kalte Axionen (siehe 2.2.2) könnten trotz
sehr kleiner Masse zur CDM beitragen [7].
Warme Dunkle Materie besteht aus Teilchen mit Geschwindigkeiten, die zwischen denen der kalten und heißen Dunklen Materie liegen. Sie wurde in Betracht gezogen, da
CDM zum Teil Schwierigkeiten hat gewisse Beobachtungen zu beschreiben und es bislang auch nicht gelungen ist CDM-Teilchen nachzuweisen. So sagen z.B. Simulationen mit
CDM für eine Galaxie wie die Milchstraße wesentlich mehr Unterhalos voraus, als man
bislang in Form von Satellitengalaxien beobachtet hat. Unterhalos sind Unterstrukturen im DM-Halo einer Galaxie. Sie sind Überbleibsel der hierarchischer Strukturbildung
und enthalten zum Teil Satellitengalaxien. Außerdem scheinen die beobachteten DMDichteprofile eher flache Kerne zu haben, anstelle der auf Grund von CDM-Simulationen
erwarteten Spitzen. WDM könnte diese Probleme lösen, da sie auf Grund der größeren
freien Strömungslänge die Bildung kleinerer Strukturen unterdrücken würde. Ein möglicher Kandidat für WDM ist das sterile Neutrino (siehe 2.2.3) [5, 6, 8].
6
2 Grundlegendes zu Dunkler Materie
2.1 Simulationen von CDM-Halos
In N-Körper Simulationen versucht man den hierarchischen Aufbau von CDM-Halos
zu simulieren. Die aus diesen Simulationen resultierenden Dichteprofile können dann
benutzt werden, um aus Vergleich mit Messdaten von Galaxien und Galaxienhaufen
Parameter abzuleiten. Ein weit verbreitetes Profil, dass durch N-Körper-Simulationen
gefunden wurde ist das Navarro-Frenk-White-Profil (NFW-Profil)
ρs
ρ (r) =
(2.1)
γ
(r/rs ) (1 + r/rs )δ−γ
mit γ = 1 der inneren Steigung des Profils und δ = 3 der äußeren Steigung. Der Skalierungsradius rs hängt über rVmax = p
2.163rs vom Radius ab, bei dem das Profil der
zirkularen Geschwindigkeiten Vc (r) = GM (r) /r sein Maximum hat. Die Skalierungsdichte ρs hängt mit der Entstehungszeit des Halos zusammen, d.h. je größer ρs ist, desto
eher ist der Halo entstanden [5, 9].
Neuere Simulationen mit mehr Teilchen, die Halos bis zu einem kleineren Radius auflösen können, haben gezeigt, dass nicht alle Halos die gleiche innere Steigung haben,
sondern überwiegend steiler als das NFW-Profil sind. Dies lässt sich zum Beispiel lösen,
indem man den Parameter γ frei lässt. Generell gilt jedoch, dass die Profile wegen mangelndem Auflösungsvermögen besonders in den inneren Bereichen noch unzureichend
definiert sind. Außerdem werden die Einflüsse von baryonischer Materie in diesen Simulationen vernachlässigt [5].
Ein weiteres Profil, das eine bessere Modellierung der inneren und äußeren Steigungen
ermöglicht ist
ρs
ρ (r) =
(2.2)
h
i(c−a)/b ,
(r/rs )a 1 + (r/rs )b
wobei a und c die asymptotische innere bzw. äußere Steigung und b den Übergang
dazwischen parametrisieren [10].
CDM-Simulationen sagen zudem eine große Zahl von Unterhalos in Galaxien wie der
Milchstraße voraus, wobei die Anzahl zu kleineren Massen hin zunimmt [11].
2.2 Kandidaten für Dunkle Materie
2.2.1 WIMPs
WIMPs (Weakly Interacting Massive Particles) mit einer Masse von M ∼ 101 − 104 GeV
[9] sind vielversprechende Dunkle Materie-Kandidaten. Sie könnten im frühen Universum, während der strahlungsdominierten Phase, bei Kollisionen von StandardmodellTeilchen entstanden und auch wieder durch Paarannihilation χχ̄ in andere TeilchenAntiteilchen Paare, wie e+ e− , q q̄, W + W − , usw. übergegangen sein.
Bei Temperaturen, die deutlich höher als die WIMP-Masse mχ waren, sind die WIMPs
im Gleichgewicht von Erzeugung und Vernichtung mit einer Annihilationsrate
Γann = hσann vi neq .
7
(2.3)
2 Grundlegendes zu Dunkler Materie
Diese hängt vom thermischen Mittel des Produktes von Wirkungsquerschnitt σann mit
der relativen Teilchengeschwindigkeit v und der Teilchendichte im chemischen Gleichgewicht neq ab. Durch die Ausdehnung des Universums und dem damit verbundenen Abnehmen der Temperatur, nimmt die Anzahl der produzierten WIMPs mit dem BoltzmannFaktor e−mχ /T exponentiell ab, während gleichzeitig die Teilchendichte und damit die
Annihilationsrate abnimmt. Sobald die Annihilationsrate kleiner ist als die Expansionsrate des Universums H, bleibt die Anzahl der WIMPs in einem mitbewegten Volumen konstant. Der Zeitpunkt dieses “Ausfrierens” findet für WIMPs mit Massen mχ ?
100M eV vor der primordialen Nukleosynthese statt und ist umso früher, je kleiner der
Wirkungsquerschnitt des WIMPs ist [5].
Die verbliebene WIMP-Dichte
Ωh2 ≈
3 · 10−27 cm3 s−1
,
hσann vi
(2.4)
ergäbe für schwache Wirkungsquerschnitte die richtige Größenordung der heutigen Dunkle
Materie-Dichte (Ωcdm h2 = 0.1131±0.0034 [5] ), weshalb WIMPs einen sehr interessanten
Kandidaten für kalte Dunkle Materie darstellen [5].
Andere Möglichkeiten der Entstehung von WIMPs sind zum Beispiel der Zerfall anderer thermisch enstandener Teilchen oder im Fall von besonders schweren WIMPs,
sogenannten WIMPZILLAs, gravitative Wechselwirkungen, während der Wiederaufheizungsphase nach der Inflation [5].
Mögliche WIMP-Kandidaten, wie das leichteste supersymmetrische Teilchen (LSP)
kommen z.B. aus der Supersymmetrie (SUSY), einer möglichen Erweiterung des Standardmodells, die eine Fermion-Boson-Symmetrie voraussagt, bei der es zu jedem Fermion
und Boson des Standardmodells jeweils einen bosonischen bzw. fermionischen Superpartner gibt. Ein guter Kandidat für das LSP wäre das Neutralino, das im Allgemeinen
eine Linearkombination aus Photino, Zino und zwei Higgsinos, vier neutralen Spin-1/2
SUSY-Teilchen, ist[7].
2.2.2 Axionen
Axionen sind hypothetische Teilchen mit einer geringen Masse von 10−3 − 10−6 eV , die
ursprünglich postuliert wurden, um die fehlende CP-Verletzung in der Starken Wechselwirkung zu erklären. Trotz ihrer kleinen Masse können sie sowohl als HDM als auch
als CDM auftreten, je nachdem wie sie erzeugt wurden. Sie können in zwei Photonen
zerfallen, wobei die Lebensdauer jedoch wie bei allen DM-Teilchen sehr lang ist [7].
2.2.3 Sterile Neutrinos
Sterile Neutrinos (SN) sind hypothetische neutrale Leptonen, die im frühen Universum
durch Oszillationen aus aktiven Neutrinos entstanden sein könnten. Sie unterliegen weder
der Starken, noch der Schwachen Wechselwirkung, können aber gravitativ mit anderer
Materie wechselwirken. Da sie über die Neutrinooszillation an die aktiven Neutrinos
gekoppelt sind, liegt hierin auch die vielversprechendste Möglichkeit des zweifelsfreien
8
2 Grundlegendes zu Dunkler Materie
Nachweises ihrer Existenz. Zudem besteht die Möglichkeit, dass ein steriles Neutrino in
ein aktives Neutrino und ein Gammaquant zerfällt [6, 8].
9
3 Eigenschaften spheroidaler Zwerggalaxien
Spheroidale Zwerggalaxien sind diffuse Galaxien, mit einer näherungsweise sphärischen
Form und einer Leuchtkraft von L > 3·107 L . Sie treten im Allgemeinen, neben anderen
Zwerggalaxien, als Satellitengalaxien von größeren Galaxien, wie der Milchstraße oder
Andromeda, auf [12].
Die ersten Zwerggalaxien in der Milchstraße, die Große und die Kleine Magellansche
Wolke (GMW und KMW), wurden offiziell 1519 von Magellan entdeckt, auch wenn
die erste dokumentierte Beobachtung der GMW schon bis ins zehnte Jahrhundert zurückreicht. Sie sind als irreguläre Galaxien klassifiziert und enthalten sehr viel neutralen
Wasserstoff (HI-Gas) und sowohl junge, als auch alte Sterne und Sternhaufen. Außerdem
gibt es noch aktive Sternentstehungsgebiete [5, 12].
Erst 1938 entdeckte Shapley Sculptor, die erste spheroidale Zwerggalaxie (dSph). Anschließend fand man bis 1994 noch 8 weitere dSphs in der Milchstraße. Die Schwierigkeit
der Entdeckung liegt dabei in der geringen Oberflächenhelligkeit, die mindestens ~100
mal geringer ist, als die der Magellanschen Wolken. Diese geringe Oberflächenhelligkeit
ist jedoch auch, jedenfalls klassisch, ein Unterscheidungsmerkmal gegenüber Kugelsternhaufen, die bei einer festen absoluten Helligkeit weniger weit ausgedehnt sind, also einen
kleineren effektiven Radius (half-light radius) haben. Mit Hilfe des Sloan Digital Sky Survey (SDSS) konnten seit 2005 mindestens 13 weitere Satelliten im Halo der Milchstraße
entdeckt werden, die alle leuchtschwächer sind, als die vorher gefundenen. Sie haben zum
Teil effektive Radien, die zwischen denen der Kugelsternhaufen und der vor-SDSS dSphs
liegen, was ihre Zuordnung schwieriger macht. Eine Zuordung ist jedoch wichtig, da sie
Hinweise auf die Eigenschaften von Dunkler Materie und Galaxienbildung auf kleinen
Skalen gibt. Da der SDSS aber erst ca. ein Drittel des Himmels abgesucht hat und auch
nur Objekte mit einer Oberflächenhelligkeit von mindestens 29 mag arcsec−2 entdecken
kann, werden in Zukunft wohl noch viele weitere Satellitengalaxien gefunden werden
[5, 12, 13]. In [13] erwartet man daher, auf Grund von Vollständigkeitsüberlegungen,
mehr als 60 Satellitengalaxien.
Im Gegensatz zu den Magellanschen Wolken gibt es in dSphs fast kein Gas und auch
keine kürzliche Sternentstehung. Die einzige Ausnahme ist Leo T, in der HI-Gas beobachtet wurde. Leo T ist jedoch mit ~420 kpc auch die am weitesten von der Sonne
entfernte dSph. Die anderen dSphs haben eine Entfernung von ~25-250 kpc zur Sonne.
Daher ist es möglich, dass die anderen dSphs ihr Gas an den intergalaktischen Raum abgegeben haben. Außerdem könnten sie durch die Gezeitenkräfte der Milchstraße Material
an diese verloren haben. Dieser Prozess ist derzeit bei Sagittarius zu beobachten, dessen
Gezeitenschweif sich um die gesamte Galaxie erstreckt (siehe Abbildung 3.1) [5, 12]. Für
die übrigen dSphs lässt sich berechnen, dass die inneren Gravitationskräfte etwa 100 mal
größer sind als die Gezeitenkräfte durch die Milchstraße, so dass man annehmen kann,
10
3 Eigenschaften spheroidaler Zwerggalaxien
Abbildung 3.1: Der Gezeitenschweif von Sagittarius; ermittelt aus den Daten vom SDSS.
Die Farben geben die Entfernung zum Stern an, während die Intensität
die Dichte widerspiegelt.[14]
dass sie momentan im dynamischen Gleichgewicht sind [10]. Da der SDSS noch viele
weitere bezugslose stellare Ströme und erhöhte Dichten im Halo der Milchstraße und
von Andromeda gefunden hat, ist zu vermuten, dass solche Akkretionen von kleineren
Massen üblich waren [5].
3.1 Die Metallizität
DSphs weisen eine gewisse Spannweite in der Metallizität [Fe/H] auf, was auf mehrere
Sternentstehungsphasen hindeutet. Sie sind aber im Mittel metallarm. Die Metallizität
ist als
[F e/H] = log10
Z
Z
(3.1)
definiert, wobei Z bzw. Z das Verhältnis von Eisen zu Wasserstoff im untersuchten
Stern bzw. in der Sonne ist. Sie ist ein Hinweis auf den Ursprung des Sternmaterials,
da schwere Elemente wie Eisen nur in Supernovae entstehen. [F e/H] = 0 ist somit die
Metallizität der Sonne [12]. Die dSphs, die vor dem SDSS entdeckt wurden, zeigen einen
linearen Zusammenhang zwischen den Metallizitäten [Fe/H] und dem Logarithmus der
Helligkeit, was sie von den Kugelsternhaufen unterscheidet, bei denen die Metallizitäten
mehr über die Helligkeiten verstreut sind. Insbesondere scheinen die SDSS-Satelliten
diese Abhängigkeit fortzusetzen, wodurch sie eher den dSphs zuzuordnen sind.[5, 15] Da
es in einigen dSphs RR-Lyrae-Sterne gibt, die mindestens 10 Mrd. Jahre [16] brauchen,
um diesen Entwicklungsstand zu erreichen, müssen sie früh Sterne gebildet haben und
könnten so alt sein wie große Galaxien wie z.B. die Milchstraße [12].
11
3 Eigenschaften spheroidaler Zwerggalaxien
3.2 Dichteprofile
Die Massenbestimmung und das Erstellen von Dichteprofilen erfolgt mit Hilfe der Geschwindigkeitsdispersionen. Die Geschwindigkeitsdispersion entlang der Sichtlinie (line
of sight, los)
σlos =
D
(vlos − hvlos i)2
E1/2
(3.2)
wird dabei aus den Sichtliniengeschwindigkeiten der einzelnen Sterne bestimmt, die anhand der Dopplerverschiebung bestimmter Spektrallinien gemessen werden [2]. Die Geschwindigkeitsdispersion senkrecht zur Sichtlinie ist im Allgemeinen unbekannt, da sie
wegen der großen Entfernung zu den Sternen nur schwer gemessen werden kann [12]. Die
Geschwindigkeitsdispersionen liegen bei den dSphs im Bereich ∼ 5 − 15km s−1 und bleiben für alle Radien etwa konstant. Die dSphs scheinen jedoch keine signifikante Rotation
zu haben [5, 17, 10].
Mit Hilfe des Virialsatzes lässt sich die Masse von kugelförmigen Systemen, die sich
im mechanischen Gleichgewicht befinden, leicht abschätzen. Der Virialsatz lautet
1
Ekin = − Epot
2
(3.3)
und ergibt, mit einer kinetischen Energie
Ekin =
1 D 2E
M v
2
(3.4)
GM 2
,
rh
(3.5)
und einer potentiellen Energie
Epot = −α
eine Gesamtmasse
M
=
2
v rh
αG
.
(3.6)
Dabei ist α ∼
1 ein
Parameter der von der Massenverteilung abhängt, rh ist der Effektive
2
Radius und v = 3σ, unter der Annahme von Isotropie, die dreifache Sichtliniengeschwindigkeitsdispersion [2]. Da dSphs und Kugelsternhaufen beide Geschwindigkeitsdispersionen von ∼ 5 − 15km/s, bei stark unterschiedlichen effektiven Radien, haben, folgt
aus dem Virialsatz, bei Vergleich mit der Gesamthelligkeit, dass Kugelsternhaufen von
Sternen dominiert sind, während dSphs ein Masse-Licht-Verhältnis von ∼ 100 M
L haben
und somit stark von Dunkler Materie dominiert sind. Das genaue Masse-Licht-Verhältnis
variiert von Galaxie zu Galaxie. [5]
12
3 Eigenschaften spheroidaler Zwerggalaxien
3.2.1 Die kollisionsfreie sphärische Jeans-Gleichung
Um ein Dichteprofil der dSphs zu erstellen verwendet man meistens die kollisionsfreie,
radiale, sphärische Jeans-Gleichung. Diese lässt sich aus der kollisionsfreien BoltzmannGleichung [18]
6
X
∂f
∂f
+
ω̇α
∂t α=1 ∂ωα
= 0
(3.7)
herleiten, wobei f (~x, ~v , t) die Phasenraumdichte und w = (~x, ~v ) = (ω1 , ..., ω6 ) ein Punkt
im Phasenraum ist. f (~x, ~v , t) d3 ~xd3~v gibt die Anzahl der Sterne an, die im Volumen d3 ~x
um ~x eine
haben, die im Bereich d3~v um ~v liegt. Die Ableitung von
Geschwindigkeit
w ist ẇ= ~x˙ , ~v˙ = (~v , −∇Φ). In Kugelkoordinaten lautet die kollisionsfreie BoltzmannGleichung [19]:
vφ ∂f
∂f
∂f
vθ ∂f
+ vr
+
+
+
∂t
∂r
r ∂θ
r sin θ ∂φ
vφ2 cot θ − vr vθ
1 ∂Φ
−
+
r
r ∂θ
!
∂f
−
∂vθ
vθ2 + vφ2
∂Φ
−
r
∂r
!
∂f
∂vr
vφ vr + vφ vθ cot θ
1 ∂Φ
+
r
r sin θ ∂φ
(3.8)
∂f
= 0,
∂vφ
mit vr = ṙ, vθ = rθ̇ und vφ = r sin θφ̇. Multipliziert man Gleichung (3.8) mit vr und
integriert dann über alle Geschwindigkeiten, so erhält man, mit der Teilchendichte
ˆ
ν ≡ f d3~v ,
(3.9)
der mittleren Geschwindigkeit
ˆ
v̄i ≡
vi f d3~v
(3.10)
ˆ
und
vi vj ≡
2
vi vj f d3~v = σij
+ v̄i v̄j ,
1 ∂ ∂ (ν v̄r )
∂ 2
2
+
νσrr + ν v̄r2 +
νσrθ
+ ν v̄r v̄θ
∂t
∂r
r ∂θ
1 1
∂ 2
2
2
+
νσrφ + ν v̄r v̄φ − ν σθθ
+ σφφ
+ v̄θ2 + v̄φ2
r sin θ ∂φ
r
1
1
∂Φ
2
2
+2 ν σrr
+ v̄r2 + ν cot θ σrθ
+ v̄r2 v̄θ2 = −ν
.
r
r
∂r
(3.11)
(3.12)
2 ist der Geschwindigkeitsdispersionstensor. Integriert man Gleichung (3.8) lediglich
σij
über alle Geschwindigkeiten, so erhält man
∂ν
∂ (ν v̄r ) 1 ∂ (ν v̄θ )
1 ∂ (ν v̄φ ) 2
1
+
+
+
+ ν v̄r + ν v̄θ cot θ = 0 .
∂t
∂r
r ∂θ
r sin θ ∂φ
r
r
13
(3.13)
3 Eigenschaften spheroidaler Zwerggalaxien
Subtrahiert man nun v̄r mal Gleichung (3.13) von Gleichung (3.12), so ergibt sich schließlich die radiale Jeansgleichung [19]:
v̄φ ∂v̄r
∂v̄r
∂v̄r
v̄θ ∂v̄r
+ ν v̄r
+
+
∂t
∂r
r ∂θ
r sin θ ∂φ
ν
1
+
r sin θ
2
∂ νσrφ
∂φ
2
2
∂ νσrr
1 ∂ νσrθ
+
∂r
r ∂θ
+
(3.14)
i
∂Φ
νh 2
2
2
2
2σrr − σθθ
+ σφφ
+ v̄θ2 + v̄φ2 + σrθ
cot θ = −ν
+
.
r
∂r
Analog kann man die beiden anderen Jeansgleichungen bestimmen, indem man bei der
obigen Berechnung mit v̄θ bzw. v̄φ statt mit v̄r multipliziert. Für ein stationäres hy∂
= 0, v̄r = 0 , sphärische Symmetrie (v̄θ = v̄φ = 0,
drodynamisches Gleichgewicht ∂t
2
2
2
2
2
2 ≡ σ 2 und eine einheitliche Sternenmasse
σrθ = σrφ = σθφ = 0, σθθ = σφφ ≡ σθ2 ), σrr
r
ν → ρ? wird Gleichung (3.14) zu [10, 19]
β
σr2 − σθ2
1 ∂ ∂Φ
GM (r)
1 ∂ 2
ρ? σr + 2
ρ? σr2 + σr2 = −
,(3.15)
=
=−
ρ? ∂r
r
ρ? ∂r
r
∂r
r2
mit
β ≡ 1−
σθ2 (r)
σr2 (r)
(3.16)
der Anisotropie der Geschwindigkeitsdispersion. Sie vereinfacht sich für eine isotrope
Geschwindigkeitsdispersion zu [20]
1 ∂ ∂Φ
GM (r)
ρ? σ 2
= −
=−
.
ρ? ∂r
∂r
r2
(3.17)
Hierbei ist ρ? das dreidimensionale stellare Dichteprofil, Φ das Gravitationspotential,
M (r) die Masse innerhalb von r und σr , σθ und σ die Geschwindigkeitsdispersion in
radialer, tangentialer bzw. beliebiger Richtung. ρ? lässt sich aus der projektierten Sternverteilung I? (R) bestimmen, wobei R der auf die Himmelsebene projektierte Radius ist
(siehe 3.2.2) [10, 17, 18, 19].
Da jedoch nur die Sichtliniengeschwindigkeitsdispersion gemessen werden kann, muss
über die Lösung der Jeans-Gleichung integriert werden, um eine messbare Größe zu
erhalten:
!
ˆ ∞
2
R2
ρ? σr2 r
2
σlos (R) =
1−β 2 √
dr .
(3.18)
I? (R) R
r
r 2 − R2
Für die beiden dazu senkrechten Richtungen in der Himmelsebene (R und t) ergeben
sich entsprechend
2
σR
(R) =
2
I? (R)
ˆ
∞
R
R2
1−β+β 2
r
14
!
√
ρ? σr2 r
dr
r 2 − R2
(3.19)
3 Eigenschaften spheroidaler Zwerggalaxien
und
σt2 (R) =
2
I? (R)
ˆ
∞
(1 − β) √
R
ρ? σr2 r
dr ,
r 2 − R2
(3.20)
welche jedoch aus oben genanntem Grund schlecht zu bestimmen sind, sodass β nicht
gemessen werden kann [5, 10].
Die sehr hellen dSphs haben eine etwa kugelsymmetrische Lichtverteilung und lassen
sich gut mit der sphärischen Jeans-Gleichung beschreiben. Die lichtschwachen dSphs sind
jedoch deutlich elliptischer und erfordern daher eine nicht-sphärische Jeans-Analyse, die
aber auf Grund von zu wenig Messdaten noch recht große Fehler bei den dynamischen
Massen ergibt [5].
3.2.2 Die stellare Dichte
Die Oberflächen-Helligkeitsprofile der dSphs werden im Allgemeinen mit einem KingProfil gefittet:

Iking (R) = k  1 +
R2
!−1/2
− 1+
rc2
2
rlim
rc2
!−1/2 2
(3.21)

Daraus resultiert die dreidimensionale stellare Dichte
ρking =
k
h
πrc 1 + (rlim /rc
i3/2
)2
z2
p
1
cos−1 z − 1 − z 2 ,
z
(3.22)
2 /r 2 , k einer Normierungskonstante, r dem Kernradius
mit z 2 = 1 + r2 /rc2 / 1 + rlim
c
c
und rlim der Roche-Grenze [9, 10].
Eine Alternative, die besonders für die meisten neu entdeckten dSphs eine gute Beschreibung darstellt, ist das Plummer-Profil
Ipl (R) =
ρ0 rpl
4
h
i
3 1 + (R/r )2 2
pl
(3.23)
mit dem Plummer-Radius rpl . Die entsprechenden Dichte ist
ρpl (r) =
ρ0
h
1 + (r/rpl )2
i5/2
(3.24)
Die Konstanten k und ρ0 spielen bei der Jeansanalyse keine Rolle [10].
3.2.3 Modellierung der Massenprofile
In Abbildung 3.2 sind Profile dargestellt, die von Walker et al. [17] anhand von mehreren tausend Sichtliniengeschwindigkeiten für 7 dSphs erstellt wurden. Dabei haben sie
zunächst für die einzelnen Sterne die Wahrscheinlichkeit der Zugehörigkeit zur Galaxie
15
3 Eigenschaften spheroidaler Zwerggalaxien
bestimmt. Die Sterne, die wahrscheinlich zur Galaxie gehören, haben sie dann zu Kugelschalen mit gleicher Gesamtzugehörigkeitswahrscheinlichkeit zusammengefasst, um dann
für jede Kugelschale mittels einer Gaußschen Methode der größten Wahrscheinlichkeit
die Geschwindigkeitsdispersion zu bestimmen [17].
Bei dieser Methode wird davon ausgegangen, dass die gemessenen Sichtliniengeschwindigkeiten der einzelnen Sterne vi (i = 1, ..., N ) um den Mittelwert hui der tatsächlichen
Geschwindigkeiten ui normalverteilt sind. Die gemeinsame Wahrscheinlichkeitsfunktion
p ({v1 , ..., vN }) =
N
Y
r
i=1

1
2π
σi2

1 (v − hui)2 
− i
exp
2 σ2 + σ2
2
+ σp
i
(3.25)
p
der vi ist das Produkt der einzelnen Wahrscheinlichkeitsdichten, wobei σi die Messunsicherheit von vi und σp die gesuchte Sichtliniengeschwindigkeitsdispersion ist. σp und hui
lassen sich dann numerisch als die Werte bestimmen für die ln (p) maximal ist [21].
Unter den Annahmen von Kugelsymmetrie, dynamischem Gleichgewicht, radial konstanter Geschwindigkeitsanisotropie (Gl. 3.16) und einer mit dem Radius exponentiell abnehmenden Oberflächenhelligkeit haben sie schließlich mit der Jeans-Gleichung
die projektierten Geschwindigkeitsdispersionsprofile, unter der Annahme eines NFWProfils, berechnet. Dabei waren die Geschwindigkeitsanisotropie β und die Virialmasse
Mvir (Masse innerhalb desVirialradius rvir , für den der Virialsatz gilt; im Allgemeinen
die Masse innerhalb des Radius, innerhalb dessen ρ > 200ρcrit gilt [5]) die einzigen
freien Parameter. Auf der linken Seite von Abbildung (3.2) sind die projektierten Geschwindigkeitsdispersionen, das am besten passende NFW-Profil (durchgezogen) und das
King-Profil (gepunktet), welches annimmt, dass die gesamte Masse aus sichtbarer Materie besteht, gegen den Radius aufgetragen. Die rechte Seite zeigt die aus den gefitteten
Profilen folgenden Dichte-, Masse- und M/L- Profile. Die durchgezogenen Linien folgen
dabei wieder aus dem NFW-Profil, während die gepunkteten Linien, mit den Annahmen
M/L=1 und einer exponentiell fallende Dichte für die Sternkomponente, die baryonischen
Dichten darstellen.
Man erkennt, dass Modelle, in denen die gesamte Materie aus sichtbarer Materie besteht, eine schlechte Beschreibung der Messdaten bieten. Außerdem lässt sich durch
Integration bestimmen, dass die Masse innerhalb von 600 pc für alle dSphs im Bereich
von (2 − 7) · 107 M liegt, obwohl die Helligkeiten um etwa eine Größenordnung schwanken. Die Masse innerhalb des Virialradius liegt im Bereich Mvir ∼ 108 − 109 M . Die
dSphs haben also alle etwa gleich große Dunkle Materie-Halos [17].
Auf ähnliche Weise erhalten Louis E. Strigari et al. [10] für fast alle dSphs eine einheitliche Masse von M300 ∼ 107 M innerhalb von 300 pc, trotz einer Streuung von fast 5
Größenordnungen bei den Leuchtkräften (siehe Abbildung 3.3) und eine zentrale Dichte
von ∼ 0.1M /pc3 . Dabei haben sie das Dichteprofil (2.2) für die Dunkle Materie und
das Dichteprofil (3.22) bzw. (3.24) für die stellare Materie verwendet. Außerdem haben
sie eine vom Radius abhängende Geschwindigkeitsanisotropie β benutzt. Der Dunkle
Materie-Anteil nimmt also mit abnehmender Leuchtkraft zu. Der Radius 300 pc wurde
gewählt, da er den ungefähren Mittelwert der stellaren Ausdehnung aller dSphs darstellt
[10].
16
3 Eigenschaften spheroidaler Zwerggalaxien
Abbildung 3.2: Links: Die projektierten Geschwindigkeitsdispersionen, mit den NFWProfilen (durchgezogene Linie) und den für King-Profile erwarteten Geschwindigkeitsdispersionsprofilen (gepunktet). Rechts: Die aus den Geschwindigkeitsdispersionen resultierenden Dichte- Massen- und M/LProfile. Die durchgezogenen Linien stellen wieder die NFW-Profile dar,
während die gepunkteten Profile die baryonischen Dichte- und Massenprofile darstellen. [17]
17
3 Eigenschaften spheroidaler Zwerggalaxien
Abbildung 3.3: Die Massen der dSphs innerhalb von 300pc in Vielfachen der Sonnenmasse gegen die Gesamtleuchtkraft in Vielfachen der Sonnenleuchtkraft
aufgetragen. Die roten Kreise sind SDSS-dSphs und die blauen Quadrate vor-SDSS-dSphs. Die Fehlerbalken entsprechen dem Wert bei dem
die Massen-Wahrscheinlichkeitsfunktion auf 60,6% des Maximalwerts
fällt.[10]
18
4 Implikationen der Eigenschaften der
spheroidalen Zwerggalaxien für die der
Dunklen Materie
4.1 Direkte Rückschlüsse
Da unterschiedliche Dunkle Materie-Teilchen unterschiedliche Strukturen auf kleinen
Skalen voraussagen kann man, indem man die beobachteten Eigenschaften der dSphs
mit den für die unterschiedlichen DM-Teilchen vorausgesagten Strukturen vergleicht, die
Eigenschaften der DM bestimmen oder zumindest gewisse Eigenschaften ausschließen.
Wegen des großen DM-Anteils kann man die Sterne als Testteilchen ansehen, die dem
Gravitationspotential der DM folgen und aus deren Geschwindigkeiten direkt die DMProfile ableiten, da die Einflüsse der baryonischen Materie gering sind [5].
4.1.1 Die Masse der dSphs
Da die minimale DM-Halomasse von der freien Strömungslänge der DM-Teilchen abhängt, kann man mit den beobachteten Halomassen die möglichen DM-Kandidaten einschränken. CDM-Teilchen wie WIMPs könnten Halos formen, die etwa in der Größenordnung der Erdmasse liegen (∼ 10−6 M ), während für WDM die minimale Halomasse
in der Größenordnung ∼ 108 M liegt [5].
Die einheitliche Masse der DM-Halos der dSphs in der Milchstraße innerhalb von 300
pc bietet verschiedene Interpretationsmöglichkeiten. Anhand von hochauflösenden CDMSimulationen kann man berechnen, welche Masse Mtotal die Halos der dSphs hatten,
bevor sie mit dem Halo der Milchstraße zusammengewachsen sind [10]:
M300 ≈ 107 M Mtotal /109 M
0.35
(4.1)
Da alle bislang gefundenen dSphs diese gemeinsame Masse haben, könnte dies eine charakteristische Größe sein, die für die Bildung von Galaxien und damit Sternen günstig
ist und unterhalb welcher die Bildung von Sternen unterdrückt wird [10].
Eine andere Interpretation wäre, dass dies die minimale Halomasse ist die existiert,
was große Einschränkungen für die Teilcheneigenschaften der Dunklen Materie mit sich
bringen würde. Es würden somit zum Einen Teilchenmodelle, die die Existenz kleinerer
Halos voraussagen, vor Schwierigkeiten gestellt und zum Anderen werden Teilchen definitiv ausgeschlossen, die größere minimale Halogrößen erfordern. Die beobachtete Masse
M ≈ 109 M wäre zum Beispiel im Einklang mit einem WDM-Teilchen mit einer Masse
von etwa 1 keV, wogegen solche mit geringerer Masse ausgeschlossen werden können [10].
19
4 Implikationen der Eigenschaften der spheroidalen Zwerggalaxien für die der Dunklen Materie
Die zentrale Dichte von ∼ 0.1M im Halo, die für Modelle mit hierarchischer Strukturbildung von der Zeit abhängt, zu der sich der Halo gebildet hat, lässt darauf schließen,
dass die dSphs etwa zu der Zeit der Reionisierung des Universums, also weniger als 100
Mio. Jahre nach dem Urknall, entstanden sind (z ? 12) [10].
4.1.2 Die Phasenraumdichte
Die grobkörnige (makroskopische) Phasenraumdichte ist als
Q ≡
ρ
σ3
(4.2)
definiert, wobei ρ die Dichte und σ die eindimensionale Geschwindigkeitsdispersion der
Dunkle Materie-Teilchen ist. Die Geschwindigkeitsdispersion der DM-Teilchen kann jedoch nicht gemessen werden, weshalb im Allgemeinen die Annahme gemacht wird, dass
sie der der Sterne entspricht, obwohl sie vermutlich größer ist [11].
Da das Liouville-Theorem impliziert, dass für kollisionsfreie DM-Teilchen die grobkörnige Phasenraumdichte immer kleiner sein muss, als die primordiale, feinkörnige,
kann man die Dunkle Materie-Kandidaten einschränken, indem man das System mit
der größten Phasenraumdichte sucht. Dies ist möglich, weil die feinkörnige Phasenraumdichte von den Eigenschaften des DM-Teilchens abhängt [8, 11]. Kalte Teilchen wie
WIMPs oder Axione haben große Phasenraumdichten, während wärmere Teilchen wie
sterile Neutrinos kleinere Phasenraumdichten haben. Für manche WIMPs liegt die Phasenraumdichte im Bereich Q ∼ 1015 M pc−3 (km/s)−3 [5], während diese für ein warmes
Teilchen so klein wie Q ∼ 10−5 M pc−3 (km/s)−3 [5] sein kann. Daher hätten DM-Halos
aus kalten Teilchen Dichteprofile, die zum Zentrum hin stark ansteigen, während warme
Teilchen Dichteprofile mit beobachtbaren, flachen Kernen erzeugen würden. Da jedoch
die DM-Dichteprofile der dSphs zum Zentrum hin durch die Sichtliniengeschwindigkeiten schlecht bestimmt sind, ist es bislang nicht möglich festzustellen, ob die Dichteprofile
Spitzen oder Kerne haben. Manche dSphs zeigen Indizien für Kernen, während andere
eher steile Spitzen haben könnten. Bislang können nur Kerne mit ∼ 1kpc ausgeschlossen
werden [5].
Da dSphs die größten bislang beobachteten Phasenraumdichten haben, konnten Simon und Geha [11] aus den Dichten und Geschwindigkeitsdispersionen einiger dSphs
eine untere Grenze Q ? 10−3 M pc−3 (km/s)−3 für die grobkörnige Phasenraumdichte bestimmen, was eine große Einschränkung für Modelle mit warmer Dunkler Materie
darstellt [11].
Würde man in anderen dSphs noch höhere Phasenraumdichten finden, so würde dies
die möglichen warmen DM-Kandidaten weiter einschränken, während das definitive Beobachten von flachen Kernen gegen WIMPs und Axione sprechen würde [5].
4.1.2.1 Untere Massengrenzen für sterile Neutrinos
Für sterile Neutrinos (SN) lassen sich aus verschiedenen Annahmen für die maximale
Phasenraumdichte minimale SN-Massen ableiten. Eine erste Methode basiert auf dem
Pauli-Prinzip, wonach die Phasenraumdichte der SN die eines entarteten Fermigases
20
4 Implikationen der Eigenschaften der spheroidalen Zwerggalaxien für die der Dunklen Materie
nicht übersteigen kann. Geht man nun von einem kugelsymmetrischen DM-Halo mit
Radius R und Masse M aus, so ergibt sich unter derpBedingung, dass die maximale
Fermi-Geschwindigkeit die Fluchtgeschwindigkeit v = 2GM/R nicht übersteigt, eine
minimale Masse
Mν
>
9π
√
4 2M R3/2 G3/2
1/4
.
(4.3)
Dies ist eine relativ schwache Beschränkung der Masse, da sie nicht von der tatsächlichen
ursprünglichen Phasenraumdichte abhängt. Mittels aktueller Daten von dSphs erhält
man auf diese Weise eine untere Massengrenze Mν > 0.4keV [5].
Eine andere Methode benutzt wieder die Eigenschaft, dass die aktuelle Phasenraumdichte die primordiale nicht übersteigen kann, wobei die Geschwindigkeitsdispersion der
SN mit einbezogen wird. Um dabei auf Annahmen zu verzichten, die eine Beziehung zwischen der Geschwindigkeitsdispersion der Sterne und der der SN herstellen, werden in [8]
zunächst die Dichteprofile der DM-Halos von 7 dSphs aus den Sichtliniengeschwindigkeitsdispersionen der Sterne bestimmt. Dann werden, unter der Annahme, dass sich die
SN im hydrostatischen Gleichgewicht befinden, mit Hilfe der Zustandsgleichung für ein
teilweise entartetes Neutrinogas, die Geschwindigkeitsdispersionen der SN in Abhängigkeit vom Radius ermittelt. Der aktuelle Maximalwert für die Phasenraumdichte
ist, für
−1.5
2
[8] und wird
Gauß-verteilte Geschwindigkeiten mit Dispersion σν , ρν (r) 2πσν (r)
Tremaine-Gunn-Grenze (TG) genannt. Die Autoren erhalten für diese Grenze schließlich
ρνs ,T G (r) = 215
mν
1ev/c2
4 σν (r)
c
3
M pc−3
(4.4)
und können damit, da bis auf die SN-Masse alle Werte bekannt sind, für die einzelnen
dSphs eine minimale SN-Masse bestimmen, indem sie diese Masse so variieren, dass die
TG-Grenze im Zentrum der Galaxie genau erreicht wird. Es ergibt sich eine minimale
SN-Masse von 270-280eV, die für alle betrachteten dSphs im Bereich einer Standardabweichung liegt, während die Werte für die einzelnen dSphs im Bereich von 160-460eV
liegen [8].
4.2 Indirekte Beobachtung
4.2.1 Motivation
Da in vielen Teilchenmodellen die DM-Teilchen in Standardmodell-Teilchen annihilieren,
könnte es möglich sein, die entstehenden Teilchen zu detektieren. Dies gilt insbesondere, wenn bei der Annihilation Gammastrahlen entstehen, deren Energiespektrum mit
aktuellen und zukünftigen Detektoren nachweisbar wäre [5].
Theoretisch gibt es mehrere mögliche Ziele bei denen man diese Annihilationssignale
messen könnte. Darunter sind jedoch die dSphs, im Gegensatz zum galaktischen Zentrum
oder der diffusen galaktischen oder extragalaktischen Emission, die vielversprechendsten, auch wenn die Gammastrahlenflussdichte vom galaktischen Zentrum in der Regel
21
4 Implikationen der Eigenschaften der spheroidalen Zwerggalaxien für die der Dunklen Materie
größer ist. Der Vorteil liegt dabei, neben dem großen Dunkle Materie-Anteil, was relativ
gut modellierte DM-Profile ermöglicht, im geringen HI-Gas-Gehalt, wodurch die intrinsische Emission von astrophysikalischen Gammastrahlenquellen vermutlich geringer ist
als beim galaktischen Zentrum [5]. Zudem befinden sich die dSphs in relativer Nähe der
Sonne und haben einen geringeren astrophysikalischen Gammastrahlenhintergrund, auf
Grund der hohen galaktischen Breiten- und Längengrade [9]. Der Hintergrund, der vermutlich überwiegend von diffuser extragalaktischer Emission mit einem Energiespektrum
dN/dE ∼ E −2.7 herrührt, sollte gleichmäßig sein und sich daher gut aus den Messwerten
herausrechnen lassen. Da die Dunkle Materie-Dichten im Zentrum für alle dSphs etwa
gleich groß sind, empfiehlt es sich die am nächsten gelegenen dSphs zu betrachten, da
deren Flussdichten am größten sind [5].
4.2.2 Bestimmung des erwarteten Annihilationsflusses
Der Gammastrahlenfluss kann als das Produkt von zwei Teilen geschrieben werden,
wobei der eine Teil (L) nur von der Dichteverteilung des Dunkle Materie-Halos und der
Entfernung zum Halo abhängt, während der andere Teil (P) nur von den Eigenschaften
des Dunkle Materie-Teilchens abhängt:
dNγ
dAdt
1
P [hσvi , Mχ , dNγ /dE] L (ρs , rs , D)
4π
=
ˆ
∆Ω ˆ
ρ [r (θ, D, s)] ds dΩ
(4.6)
los
0
ˆ
P
2
L =
(4.5)
Mχ
=
Eth
X dNγ,i hσvi
i
i
dE
Mχ2
dE
(4.7)
Hierbei ist hσvi der Wirkungsquerschnitt, Mχ die Masse des DM-Teilchens, Nγ die Anzahl der Photonen, E die Energie, ρs und rs die Skalierungsdichte, bzw. der Skalierungsradius des Dichteprofils (2.1) und Eth die Schwellenenergie. Das Integral von L
wird entlang der Sichtlinie über einen Raumwinkel ∆Ω = 2π (1 − cos θ) ausgeführt. Der
Index i bezeichnet die möglichen Endstadien der Annihilation [9].
Das Trennen von L und P ermöglicht es den L-Teil anhand der Geschwindigkeitsdispersionsprofile festzulegen, so dass man von den beobachteten Flussdichten mittels P
leichter auf die Teilcheneigenschaften der Dunklen Materie schließen kann. Die Masse
des DM-Teilchens lässt sich dann aus dem Energiespektrum ablesen [9].
Die Parameter γ und δ parametrisieren die innere und äußere Steigung von Gl. (2.1)
und sind durch Simulationen zu δ ≈ 3 und 0.7 > γ > 1.2 bestimmt, während ρs und rs
einen großen Wertebereich haben, mit denen sich die kinematischen Daten reproduzieren
lassen. Unter den Annahmen eines NFW-Profils (δ = 3 und γ = 1), für das 90% des
Flusses aus dem Inneren von rs stammt, D rs gilt und dass die Winkelausdehnung
22
4 Implikationen der Eigenschaften der spheroidalen Zwerggalaxien für die der Dunklen Materie
von rs kleiner als der interessante Raumwinkel ist, vereinfacht sich Gl. (4.6) nach ein
paar Rechenschritten zu
L (ρs , rs ) =
7π 2 3
ρ r .
6 s s
(4.8)
Änderungen von γ im oben angegebenen Bereich verkleinern, bzw. vergrößern diesen
Wert um einen Faktor ~6. Durch diese Umformung verringert sich der Faktor, um den
L, auf Grund des großen ρs − rs Wertebereichs, schwankt, deutlich [9].
Die obigen Gleichungen gelten für einen glatten DM-Halo. Es ist jedoch, auf Grund
der Simulationen von CDM Halos, zu erwarten, dass es in den Halos der dSphs, die Unterstrukturen des Milchstraßen-Halos sind, weitere Unterstrukturen gibt. Diese würden
zu einer Erhöhung von L führen, während P unverändert bleibt. Dies lässt sich mit einem
Boostfaktor B als
ˆ M
dN
L (M ) = [1 + B (M, m0 )] L̃ (M ) = L̃ (M ) +
L (m) dm
(4.9)
m0 dm
schreiben, wobei L̃ (M ) den glatten Halo mit Masse M beschreibt. Der Boostfaktor B
hängt
von der Masse M des glatten Halos und der minimalen Unterhalo-Masse mo ∼
−13
10
− 10−2 M ab, die wiederum von der freien Strömungslänge der CDM Teilchen
abhängt. Da numerische Simulationen noch weit davon entfernt sind CDM-Halos mit so
hoher Auflösung berechnen zu können, kann man den Boost nur abschätzen. Louis E.
Strigari et al. [9] erhalten unter der Annahme M = 108 M einen Wert B (M ) < 41 für
m0 = 10−13 M und B (M ) < 2 für m0 = 10−2 M [9].
Für das Beispiel des Supersymmetrischen Neutralinos erhalten sie für den P-Teil des
Gammastrahlen-Flusses, unter der Annahme der größtmöglichen Wirkungsquerschnitte für die einzelnen Annihilationsmöglichkeiten und einer Masse des Neutralinos von ~
46 GeV, einen maximalen Wert P ≈ 10−28 cm3 s−1 GeV −2 . Damit ergibt sich für einen
glatten Halo ein größtmöglicher Fluss von 3 · 10−11 cm−2 s−1 von der dSph Ursa Minor, innerhalb eines Radius von 0.1 Grad um das Zentrum, welcher an der Grenze des
Sensitivitätsbereichs aktueller und zukünftiger Detektoren wie GLAST liegt [9].
GLAST (Gamma-Ray Large Area Space Telescope) ist ein Hochenergie-Gammastrahlenteleskop, dass 2008 gestartet wurde. Es kann Gammastrahlen im Bereich von 20MeV
bis über 300GeV detektieren [22].
Um die Gammastrahlenflüsse genauer zu bestimmen, ist es somit wichtig, ein besseres
Verständnis für die Struktur der DM-Profile der dSphs zu erlangen. Die Geschwindigkeitsdispersionsprofile müssen also durch mehr Daten von weiteren Sternen verbessert,
und sowohl die innere Steigung, als auch die Unterstrukturen der DM-Halos durch höherauflösende Simulationen genauer festlegt werden [5, 9].
23
5 Zusammenfassung
Am Anfang dieser Arbeit wurden zunächst Eigenschaften der Dunklen Materie aufgeführt, die für die Betrachtung von DM-Halos wichtig sind und kurz mögliche Kandidaten
vorgestellt, die allgemein in Betracht gezogen werden. Im zweiten Teil wurden dann die
Eigenschaften der spheroidalen Zwerggalaxien betrachtet und dabei insbesondere die
Methoden zur Modellierung der Massen- und Dichteprofile. Die Betrachtung der Möglichkeiten mit denen man, anhand der Eigenschaften der dSphs, die Eigenschaften der
Dunklen Materie bestimmen kann, hat schließlich gezeigt, dass es sowohl direkte, als
auch indirekte Methoden gibt mit denen sich Rückschlüsse ziehen lassen. So lassen sich,
sowohl durch die beobachteten Massen der dSph, als auch durch ihre Dichteprofile und
Phasenraumdichten, die Teilcheneigenschaften der Dunklen Materie einschränken. Außerdem bietet sich dadurch, dass viele DM-Teilchen zu Photonen annihilieren können,
die Möglichkeit, die DM-Teilchen indirekt nachzuweisen.
Schwierigkeiten, die einer genaueren Bestimmung der Eigenschaften der Dunklen Materie im Weg stehen, sind inbesondere, dass im Allgemeinen nur die Sichtliniengeschwindigkeiten der Sterne in den Galaxien zur Verfügung stehen, jedoch nicht die Eigengeschwindigkeiten, und die für die kürzlich entdeckten dSphs häufig noch geringe Anzahl
an Messwerten. Dies führt insbesondere bei kleineren Radien zu großen Fehlern bei der
Bestimmung der dynamischen Massen. Bei der indirekten Beobachtung kommt noch
die mangelnde Sensitivität der aktuellen Detektoren und die sehr geringen Flussdichten
hinzu.
Durch die Sichtliniengeschwindigkeiten lassen sich jedoch die Massen innerhalb eines
gewissen Radius relativ gut bestimmen und über diese sind Rückschlüsse auf die freie
Strömungslänge der DM-Teilchen möglich. So können auf Grund der aktuellen Daten
schon warme DM-Teilchen mit einer Masse von unter 1keV ausgeschlossen werden. Es ist
daher zunächst wichtig alle dSphs im Halo der Milchstraße zu erfassen und ihre Massen
anhand einer möglichst großen Anzahl von Sichtliniengeschwindigkeiten zu bestimmen.
Um die Fehler, insbesondere bei den inneren Steigungen, der Dichteprofile zu verringern
ist es nötig die Eigengeschwindigkeiten einzelner Sterne aus ihrer geringen zeitlichen
Verschiebung gegenüber “unbewegten” Referenzpunkten, wie z.B. entfernten Quasaren,
zu bestimmen.
Abschließend kann gesagt werden, dass sich die Eigenschaften der Dunklen Materie,
mit Hilfe der Eigenschaften der spheroidalen Zwerggalaxien, herleiten, oder wenigstens
einschränken lassen. Es ist jedoch erforderlich weitere Messungen durchzuführen, um
verlässliche Ergebnisse zu erhalten.
24
Literaturverzeichnis
[1]
L. Papantonopoulos, The Invisible Universe: Dark Matter and Dark Energy, Lect.
Notes Phys. 720 (Springer Verlag, Berlin Heidelberg, 2007)
[2]
Barbara Ryden, Introduction to Cosmology, (Addison Wesley Verlag, San Francisco,
2003)
[3]
Radoje Belusevic, Relativity, Astrophysics and Cosmology Volume 1, (Wiley-VCH
Verlag, Weinheim, 2008)
[4]
C. Afonso et al., Limits on Galactic dark matter with 5 years of EROS SMC data,
2003, Astron.Astrophys. 400, 951–956, arXiv:astro-ph/0212176v2
[5]
Gianfranco Bertone, Particle Dark Matter: Observations, Model and Searches,
(Cambridge University Press, Cambridge, 2010)
[6]
Marco Taoso, Particle dark matter and astrophysical constraints, Doktorarbeit,
2009, http://paduaresearch.cab.unipd.it/1715/ (28.06.2011)
[7]
Hermann Kolanoski, Einführung in die Astroteilchenphysik, (Institut für Physik,
Humboldt-Universität zu Berlin, Vorlesung Wintersemester 2009/10),
http://www-zeuthen.desy.de/~kolanosk/astro0910/skripte/astro.pdf (20.09.2011)
[8]
Garry W. Angus, A lower limit on the dark particle mass from dSphs, 2010, JCAP
1003:026, arXiv:0907.1526v4 [astro-ph.CO]
[9]
Louis E. Strigari et al., Precise constraints on the dark matter content of Milky Way dwarf galaxies for gamma-ray experiments, 2007, Phys.Rev.D75:083526,
arXiv:astro-ph/0611925v2
[10] Louis E. Strigari et al., A common mass scale for satellite galaxies of the Milky
Way, 2008, Nature 454:1096-1097, arXiv:0808.3772v1 [astro-ph]
[11] J. D. Simon, M. Geha, The Kinematics of the Ultra-Faint Milky Way Satellites: Solving the Missing Satellite Problem, 2007, Astrophys.J.670:313-331, arXiv:0706.0516v2 [astro-ph]
[12] Linda S. Sparke, John S. Gallagher, Galaxies in the Universe: An Introduction,
(Cambridge University Press, Cambridge, 2000)
[13] E. Polisensky, M. Ricotti, Constraints on the Dark Matter Particle Mass from the
Number of Milky Way Satellites, 2011, Phys.Rev.D83:043506, arXiv:1004.1459v3
[astro-ph.CO]
25
Literaturverzeichnis
[14] http://www.sdss.org/includes/sideimages/fos_dr6_marked.html (25.09.2011)
[15] Evan N. Kirby et al., Uncovering Extremely Metal-Poor Stars in the Milky Way’S
Ultra-Faint Dwarf Spheroidal Satellite Galaxies, 2008, Astrophys.J.685:L43-L46, arXiv:0807.1925v4 [astro-ph]
[16] Ata Sarajedini, RR Lyrae Variables in M31 and M33, 2011, arXiv:1105.5116v1
[astro-ph.GA]
[17] Walker et al., Velocity Dispersion Profiles of Seven Dwarf Spheroidal Galaxies, 2007,
ApJ 667 L53, arXiv:0708.0010v1 [astro-ph]
[18] James Binney, Scott Tremaine, Galactic Dynamics, (Princeton University Press,
Princeton, New Jersey, 1994)
[19] Prof.
Paul
Schechter,
Astrophysics
II,
Vorlesung
Herbst
http://ocw.mit.edu/courses/physics/8-902-astrophysics-ii-fall-2004/lecturenotes/lec10.pdf (20.09.2011)
2001,
[20] James E. Taylor, Julio F. Navarro, The Phase-Space Density Profiles of Cold Dark
Matter Halos, 2001, Astrophys.J. 563 (2001) 483-488, arXiv:astro-ph/0104002v1
[21] Walker et al., Internal kinematics of the Fornax dwarf spheroidal galaxy, 2006,
Astron.J.131:2114-2139, arXiv:astro-ph/0511465v2
[22] http://www-glast.stanford.edu/ (27.10.2011)
26
Herunterladen