14.01.2013 Entwicklung der Sterne Entstehung und Entwicklung von Sternen Sterne entwickeln sich aus interstellaren Wolken Unter dem Einfluß von Gravitationskräften und Kräften, die bei der Rotation auftreten. Entwicklung der Sterne Infolge der Gravitation kommt es zur Kontraktion der interstellaren Wolke Potentielle Energie wandelt Die Weiterentwicklung eines Sterns kann in Abhängigkeit von den jeweiligen Bedingungen In unterschiedlicher Weise erfolgen sich um in innere Energie (Erhöhung der Temperatur) und elektromagnetische Strahlung. Entwicklung der Sterne Entwicklung der Sterne Bei ca. 5 000 000 K im inneren Bei Erschöpfung der Vorräte der Gaskugel: an Kernbrennstoff Kernfusion setzt ein. Kontraktion in den zentralen Stern ist stabil, wenn die im Bereichen; Hülle nur noch Inneren erzeugte Energie locker gebunden gleich der abgestrahlten Energie ist. langsame Kontraktion plötzliche Kontraktion 1 14.01.2013 Entstehung der Sterne Entwicklung der Sterne Die Entstehung und Entwicklung von Sternen und Planeten Interstellare Wolke langsame Kontraktion plötzliche Kontraktion Weißer Zwerg Supernova Kontraktion Starke Rotation Verflachung Doppel- oder Mehrfachsterne einzelner Stern Neutronenstern Planetensystem Entwicklung der Sterne Schwarzes Loch Sterne wiegen Weiterentwicklung eines Sterns Hauptreihenstern Das Gewicht eines Sterns wird bestimmt, indem amn seine Anziehungskraft auf einen anderen Gefährten misst und dann berechnet, wie viel Masse für diese Anziehungskraft nötig ist. Riese Supernova Weißer Zwerg Supernova Bei Doppelsternen, die für Teleskope zu weit weg sind, wird die Spektroskopie eingesetzt. Das Sternenlicht wird in die verschiedenen Farbbestandteile aufgespaltet, die die relative Geschwindigkeit und Rotationsperiode der Sterne verraten. Neutronenstern Schwarzes Loch 2 14.01.2013 Sterne wiegen Schwerkraft als Maßstab Zum Wiegen von Sternen wird die gleiche Schwerkraft benutzt, mit der wir Dinge auf der Erde wiegen. Die meisten Sterne sind Doppelsterne, die um einen gemeinsamen Schwerpunkt kreisen. Supernova Wenn einem Stern, mindestens 8-mal so groß wie die Sonne, der Brennstoff ausgeht, explodiert er zur Supernova - ein Ereignis von wahrlich verheerenden Ausmaß. Name Jahr Position Entfernung Krebs-Supernova 1054 Taurus 6.300 ly Die Rate hängt vom Abstand zueinander und der Masse ab. Brahesche Supernova 1572 Cassiopeia 10.000 ly Aus Abstand und und Rotationsperiode wird die gesamtmasse der Sterne bestimmt. Kelpersche Supernova 1604 Ohhiuchus 20.000 ly SN 1987 A 1987 Gr. Magellansche Wolke 179.000 ly Die relative Lichtabgabe zeigt dann, wie die Masse verteilt ist. SN 1997 1997 Coma Berenices 9 Mrd. ly Supernova Wenn ein sehr großer Stern fast keinen Wasserstoff mehr hat, verringert sich die Kernfusion in seinem Inneren so weit, dass er dem druck seiner eigenen Gravitation nicht mehtr standhalten kann – der Stern implodiert mit gewaltiger Energie Wein Teil der Masse des Sterns wird in einem winzigen, superdichten Neutronenstern gedrückt, nur ein paar Kilometer breit. Der Rest explodiert mit solcher Gewalt, dass Material im gesamten Universum herumfliegt – Bausteine für neue Sterne. Der Druck einer Supernova ist so gewaltig, dass Elemente schwerer als Eisen geschmiedet werden. Viele der Atome in unserem Körper wurden in Supernoven erzeugt. Weiße Zwerge Ein Weißer Zwerg ist ein superdichter Rest eines toten Sterns. Aufgrund seiner Restenergie leuchtet er noch eine Zeit lang, aber schließlich kühlt er ab, wird dunkel und unsichtbar. Stern Ort Scheinbare Helligkeit Sirius B Canis Major 8,5 40 Eri B Eridanus 9,7 Alpha Cmi Pisces 12,4 Feige 55 Canis Major 12,8 BB PSc Pisces 14,4 ESO 439-026 Hydra 20,5 3 14.01.2013 Weiße Zwerge Geht einem mittelgroßen Satern in Sonnengröße der Brennstoff aus, kann sein Todeskampf einen Zusammenbruch aufgrund der Schwerkraft auslösen. Das Restmaterial wird in Erdgröße zusammengepresst, extrem dicht – ein Weißer Zwerg. In einem Weißen Zwerg findet keine Kernreaktion statt, aber wegen der Dichte der Teilchen braucht die verbleibende Energie Milliarden Jahre, sich freizusetzen; er leuchtet weiter. Doch letztendlich kühlt ein Weißer Zwerg soweit ab, dass er keine Strahlung mehr abgibt und verblasst. Aber dass istv reine Theorie; Physiker rechnen, dass es hunderte Milliarden Jahre dauert, bis die gesamte Energie weg ist. Zu dieser Zeit könnte das Universum bereits nicht mehr existieren. Neutronensterne Bei einem gesunden Stern wirkt der Strahlungsdruck im Inneren des nuklearen Glutofens der enormen Gravitation entgegen. Neutronensterne Drückt eine Supernova-Explosion die Reste des Sterns zu einer stadtgroßen Kugel zusammen, passieren merkwürdige Dinge. Was übrig bleibt ist eine superdichte Neutronenkugel. Wieviel Materie passt in eine Tasse ? Objekt Eine Tasse davon wiegt Süßwasser 250 g Erde 1,375 kg Kern der Sonne 41 kg Weißer Zwerg 25 Tonnen Neutronenstern 25 Billionen Tonnen Neutronensterne Wenn der Brennstoff zu Neige geht, kollabiert der Stern. Ein Löffel dieses „Gebräus“ würde dem gewicht eines mittelgroßen Asteroiden entsprechen. Die Atome verlieren ihre Hüllen mit Elektronen, aber der Druck steigt weiter. Raum mit normaler Materie ist einfach nur Raum; in einem Neutronenstern gibt es keinen Raum. Aber bald verlieren die Atome durch den sogenannten Entartungsdruck ihre elementare Identität und ihre Kerne verbinden sichb in einem Gebräu von subatomaren Neutronen. Neutronen werden in ein einziges riesiges subatomares Teilchenn gepresst, das in seinem Kern noch dichter ist. 4 14.01.2013 Blaue Superriesen Blaue Superriesen Die mächtigsten Sterne im All, mindestens 10.000 Mal so hell wie die Sonne, sind die seltenen, aber spektakulären Blauen Superriesen – doch ihr Leben ist kurz und endet heftig. Kurzes Leben, heftiges Ende Das Leben eines Blauen Superriesen ist ein rennen zwischen dem Zusammenbruch aufgrund der Schwerkraft und den Kernreaktionen im Inneren,m die das abwehren. Auswahl an Blauen Riesen Name Lage Distanz Scheinbare Helligkeit Nu Scorpii Scorpius 440 ly -5,7 Zeta Orionis Orion 820 ly -5,9 Alpha Camelopardalis Camelopardalis 6.940 ly -6,2 Epsilon Orionis Orion 1.340 ly -6,2 Kappa Cassiopeiae Cassiopeia 4.130 ly -6,6 Die enorme Masse des Stern erzeugt im Kern ein Feuer, das ihn im Gleich gewicht hält. Doch der Brennstoff verbrennt schnell. Ist der Brennstoff aus, fällt die Masse des Sterns in den Kern. Die neue Druckwelle steigert die Kernreaktionen. Noch einmal wird das Material nach außen gedrückt und es entsteht ein Roter Superriese. Blaue Superriesen Dieser Rote Superriese ist größer, kühler und matter. Alpha Centauri-System Lange hielt man Alpha Centauri für den nächsten Stern an der Sonne, doch es stellte sich heraus, dassn er nicht alleine ist; Nahe bei ihm befinden sich zwei weitere Sterne. Der Stern kollabiert wieder und reißt sich selbst auseinander (Supernova), wobei enorme Energiemengen freigesetztv werden. Vielleicht wegen ihrer kurzen Lebensdauer – nurv eine Million Jahre – sind Blaue Superriesen sehr selten. Doch wegen ihrer unglaublichen helligkeit sind sie selbst in weit entfernten Galaxien jenseits der Milchstraße zu sehen. Farbe Spektraltyp Temperatur Masse Radius Helligkeit Sonne gelb G2 5.5000 K 1 1 1 Alpha Centauri A gelb G2 5.5000 K 1,09 1,2 1,54 Alpha Centauri B orange K1 5.000 K 0,9 0,8 0,44 Proxima Centauri rot M5 2.400 K 0,1 0,2 0,00006 5 14.01.2013 Alpha Centauri-System Alpha Centauri-System Ein dritter Stern Proxima Centauri, ein trüber Roter Zwerg, hat eine sehr elliptische Bahn, weiter weg von seinen Partnern. Gleich nebenan Alpha Centauri im Sternbild Centaurus erscheint als der dritthellste Stern am Himmel – und das ist nicht erstaunlich. Denn das Alphan Centauri-System ist das nächstgelegene Mehrfachsternsystem. Alpha Centauri ist kein einzelner Stern, sondern er besteht aus drei Sternen. Alpha Centauri A und B umkreisen einander in einer Distanz von rund 1,6 Mrd. km und brauchen dazu 80 Jahre. Betelgeuse Und damit ist er der Sonne am nächsten. Sowohl Alpha Centauri A und B sind unserer Sonne so ähnlich, dass beide erdähnliche Planeten beherbergen könnten. Doch wegen der komplexen planetarischen Orbits dürfte das Mehrfachsystem für die Entwickling von Leben nicht stabil genug sein. Da das Alpha Centauri-System mit 89.000 km/h auf uns zu kommt, könnten wir in etwa 50.000 Jahrenn Sonden dahin schicken. Betelgeuse Der Stern Betelgeuse, ein Roter Superriese, markiert die linke Schulter des Sternbildes Orion. In Sachen Helligkeit nimmt er die zehnte Position ein und ist hundert mal größer als die Sonne. Betelgeuse kommt aus dem Arabischen: lbt al Jauzah bedeutet „Achsel des Riesen“ Der Stern heißt auch Alpha Orions, weil er fälschlicherweise als hellster Stern in Orion galt. Name Sternname Sternart Lage Scheinbare Helligkeit Betelgeuse Alpha Orions Roter Superriese Rektaszension 5 h 55 Min Deklination +07° 24‘ 0,33 – 0,62 Oberflächentemperatur Absolute Helligkeit Entfernung Masse Durchmesser 3.300 K -5 427 ly 20 Sonnenmassen 800 Millionen km 1836 bewies John Herschel, das Betelgeuse ein variabler Stern ist, dessen helligkeit sich fast um einen Faktorv 2 über einen Zeitraum von grob 6 Jahrenn ändert, wobei es immer wieder plötzliche Lichtausbräuche gibt. Außerdemm pulsiert der Stern, sodass sein Durchmesser um bis zu 60 % variiert. 6 14.01.2013 Betelgeuse Betelgeuse hat die 600-fache Sonnengröße Er leuchtetb zwischen 7.600 und 14.000 Mal heller als die Sonne. Er hat nur die 20-fache Masse, das bedeutet er ist 10 Millionen Mal weniger dicht. 1995 bestätigte das Hubble-Weltraumteleskop einen „heißen Fleck“ auf Betelgeuse, als das erste direkte Bild seiner Oberfläche im UV-Lichtnereich aufgenommen wurde. Der Fleck war ca. 2.000 K heißer als die Umgebung 7