Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 18. Januar 2006 Data Mining - Wiederholung Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-) Regressionsfunktionen Entscheidungsbäume Domänenwissen und Transparenz der gelernten Beschreibungen Versionsraum Arten von Bias Beschreibungssprache, Suche, Überadaption Ethische Aspekte Data Mining - Wiederholung Eingabe: Konzepte, Instanzen, Attribute Eingabe: Konzepte, Instanzen, Attribute Konzepte Klassifikationen Assoziationen, Clustering, Nummerische Vorhersage Instanzen Eigenschaften einer instanz Multi-Instanz-Problem Rekursion Data Mining - Wiederholung Eingabe: Konzepte, Instanzen, Attribute Eingabe: Attribute Skalenniveaus Nominalskala Ordinalskala Intervallskala Verhältnisskala Semantik fehlender Werte Ungenaue Werte Data Mining - Wiederholung Ausgabe: Wissensrepräsentation Ausgabe: Wissensrepräsentation Entscheidungstabellen Entscheidungsbäume Nominale vs. nummerische Attribute Behandlung fehlender Werte Entscheidungsregeln Bäume ↔ Regeln Regelinterpretation: Konflikte, nicht abgedeckte Fälle Assoziationsregeln Unterstützung und Konfidenz Interpretation Regeln mit Ausnahmen: Struktur, Vorteile Regeln mit Relationen Data Mining - Wiederholung Ausgabe: Wissensrepräsentation Ausgabe: Wissensrepräsentation (Fortsetzung) Lineare Regression Bäume zur nummerischen Vorhersage Modellbaum Regressionsbaum Instanz-basierte Repräsentation Abstandsmetrik Prototypen/Rechteckige Generalisierungen Cluster: Repräsentation Data Mining - Wiederholung Algorithmen Algorithmen 1R Grundversion nummerische Attribute Überadaption Berücksichtigung aller Attribute Naiver Bayes Modifizierte Wahrscheinlichkeitsschätzer Fehlende Werte nummerische Werte: Wahrscheinlichkeitsdichte Entscheidungsbäume: ID3 Teile-und-herrsche-Ansatz Attributauswahl: Informationsgewinn Reinheitsmaß: Entropie Gewinnverhältnis Data Mining - Wiederholung Algorithmen Algorithmen (2) Abdeckungsalgorithmen einfacher Abdeckungsalgorithmus Auswahl einer Bedingung PRISM-Algorithmus Regeln vs. Entscheidungslisten Assoziationsregeln Unterstützung und Konfidenz einer Regel Gewinnung von Assoziationsregeln: Item sets Effiziente Generierung von Regeln Data Mining - Wiederholung Algorithmen Algorithmen (3) Lineare Modelle Minimierung des quadratischen Fehlers Klassifikation durch Regression logistische Regression Instanzbasiertes Lernen Methoden Distanzfunktion Normalisierung Data Mining - Wiederholung Evaluierung des Gelernten Evaluierung des Gelernten Aspekte: Training, Testen, Tuning Training, Validieren. Testen Resubstitutionsfehler Vorhersage der Qualität: Vertrauensintervalle Optimale Ausnutzung der Daten Holdout Kreuzvalidierung Leave-one-out Bootstrap Vergleich von Verfahren Signifikanztests: Hypothesen Paarweiser t-Test Unabhängige Stichproben Data Mining - Wiederholung Evaluierung des Gelernten Evaluierung des Gelernten(2) Schätzung von Wahrscheinlichkeiten Verlustfunktionen: quadratisch, informationell Kosten-basierte Maße Fallmatrix Steigerungsdiagramm ROC-Kurve kostensensitives Lernen Evaluierung nummerischer Vorhersagen Fehlermaße Korrelationskoeffizient Das Prinzip der minimalen Beschreibungslänge MDL MAP Bayessche Modell-Mittelung MDL und Clustering Data Mining - Wiederholung Bayessche Netzwerke Bayessche Netzwerke Aufbau Bayesscher Netze Berechnung der Klassenwahrscheinlichkeiten 1 2 Berechnung des Produktes von Wahrscheinlichkeiten pro Klasse Normalisierung Zugnundeliegende Annahme Data Mining - Wiederholung Implementierung Entscheidungsbäume Entscheidungsbäume Nummerische Attribute Mehrwege-Aufteilung Fehlende Werte Pruning Prepruning Postpruning: Ersetzen/Hochziehen von Teilbäumen Komplexität der Bauminduktion Von Bäumen zu Regeln Data Mining - Wiederholung Implementierung Klassifikationsregeln Klassifikationsregeln Auswahlkriterien für Bedingungen Fehlende Werte, nummerische Attribute Pruning von Regeln Signifikanzmaße inkrementelles vs. globales Pruning Incremental reduced-error pruning Pruning in PART Regeln mit Ausnahmen Generierung Data Mining - Wiederholung Implementierung Erweiterung der linearen Klassifikation Erweiterung der linearen Klassifikation Nichtlineare Klassengrenzen Supportvektor-Maschinen Hyperebene mit maximalem Abstand Supportvektoren Kernel-Funktionen Verrauschte Daten Spärliche Daten Data Mining - Wiederholung Implementierung Instanz-basiertes Lernen Instanz-basiertes Lernen Probleme des 1-NN-Verfahrens Lernen von Prototypen Beschleunigung und Bekämpfung von Rauschen Gewichtete Attribute Rechteckige Generalisierungen Data Mining - Wiederholung Implementierung Bäume für die nummerische Vorhersage Bäume für die nummerische Vorhersage Regressionsbäume Modellbäume Aufbau des Baumes Nominale Attribute Fehlende Werte M5-Algorithmus Lokal gewichtete Regression Entwurfsentscheidungen Gewichtungsfunktion Glättungsparameter zur Skalierung der Distanzfunktion Data Mining - Wiederholung Implementierung Clustern Clustern Grundlegende Methoden Hierarchisches Clustern k-means Inkrementelles Clustern Klassen-Nützlichkeit Nummerische Attribute Wahrscheinlichkeits-basiertes Clustern Mischungsmodell EM-Algorithmus Bayes’sches Clustern