Analysis und Lineare Algebra für Informatiker ¨Ubungsblatt 3 cos(t

Werbung
Analysis und Lineare Algebra für Informatiker
Übungsblatt 3
cos(t), sin(t), die Komplexen Zahlen
(i). sin(π) = ?
1. cos(t), sin(t).
(ii). cos(π) = ?
(iii). sin( π
2) = ?
(iv). cos(− 5π
3)=?
2. Frequenzen.
Jede der Funktionen y1, y2, y3 in dem Bild unten hat entweder die Form cos(nt)
oder die Form sin(nt), wobei n jeweils eine ganze Zahl ist.
(i). y1(t) = ?
(ii). y2(t) = ?
(iii). y3(t) = ?
y
−1.0
−0.5
0.0
0.5
1.0
y2
y1
0
y3
1
2
3
4
5
6
t
3. Grenzwerte.
(i). sin t/t
Welche Grenzwerte haben die folgenden Ausdrücke für t → 0?
(iii). (sin t − 2t)3/(6t(cos t − 1))
(ii). (1 − cos t)/t
z = ( 21 1 + 32 i). Welche Zahl der Zahlen (a, ..., h) ist
4. Komplexe Zahlen graphisch.
(i). z +
1
2?
(ii). z − i ?
(iii). z/3 ?
(iv). iz ?
(v). −z ?
z
a
e
b
2
−1
g
c
1
0
2
d
h
f
(vi). 1/z ?
(vii). z2 ?
5. Komplexe Zahlen geometrisch.
Der Betrag von z sei r und das Argument von z sei θ. Was
sind der Betrag und das Argument der folgenden Zahlen?
(i). z/3
(iii). −z
(ii). iz
6. Komplexe Zahlen algebraisch.
Form x + iy?
(i). z +
1
2?
(ii). z + i ?
z=
1
2
(iii). z/3 ?
+ 23 i. Wie schreibt man die folgenden Zahlen in der
(iv). iz ?
(v). −z ?
(vii). z2 ?
(vi). 1/z ?
1
a − bi
a − bi
1
=(
)(
)= 2
a + bi
a + bi a − bi
a + b2
Hinweis:
Wie schreibt man die folgenden Zahlen in der Form x + iy?
7. Euler-Formel.
(i) eiπ
(v). z2
(iv). 1/z
(ii) eiπ/2
(iii) eiπ/4
(v) ( √12 (1 + i))6
(iv) e2πi
√
3
π
cos =
6
2
π
π
1
cos = sin = √ .
4
4
2
Hinweis:
(vi) (
√
3
2
+ 21 i)6
sin
π
1
= .
6
2
Lösungen durcheinander:
A. (r/3, θ)
F. f
J. c
O. −1
S. b
X. 21 + 52 i
CC. 0
HH. − 12 − 23 i
B. − 32 + 21 i
G. (r, θ + π)
K. −1
P. √12 (1 + i)
T. d
Y. cos(t)
DD. 13
II. 61 + 21 i
C. cos(6t)
H. 0
L. a
Q. (1/r, −θ)
U. (r2, 2θ)
Z. 1
EE. 1
D. 15 − 53 i
I. sin(2t)
M. (r, θ + π/2)
R. 1
V. −i
AA. g
FF. i
E.
1
2
N. e
W. 1 + 23 i
BB. −1
GG. −2 + 32 i
Lösungen der Reihe nach:
1.(i) H
2.(i) C
3.(i) Z
4.(i) AA
5.(i) A
6.(i) W
7.(i) K
(ii) O
(ii) I
(ii) CC
(ii) J
(ii) M
(ii) X
(ii) FF
(iii) R
(iii) Y
(iii) DD
(iii) N
(iii) G
(iii) II
(iii) P
(iv) E
(iv) S
(iv) Q
(iv) B
(iv) EE
(v) F
(v) U
(v) HH
(v) V
(vi) T
(vii) L
(vi) D
(vi) BB
(vii) GG
Herunterladen