¨Ubung zur Plasmaphysik

Werbung
Übung zur Plasmaphysik
SS 2008
Larmor war von 1903 bis 1932 Professor auf dem Lucasischen Lehrstuhl für Mathematik am Trinity College der Universität Cambridge; sein Vorgänger in dieser Position war George Gabriel Stokes,
sein Nachfolger wurde Paul Dirac.
1897 veröffentlichte er als Erster die Lorentz-Transformation, zwei
Jahre vor Hendrik Antoon Lorentz und acht Jahre vor Albert
Einstein. Er sagte dabei den Effekt der Zeitdilatation voraus
und bestätigte die FitzGerald-Lorentzkontraktion, vorausgesetzt
die Moleküle werden durch elektromagnetische Kräfte zusammengehalten. Obwohl er die Relativitätstheorie für kurze Zeit befürwortete, lehnte er sie später ab, da er die Raumzeitkrümmung ablehnte
und meinte, dass die absolute Zeit für die Astronomie unverzichtbar
sei.
Larmor errechnete die Rate der Energiestrahlung eines beschleunigten Elektrons und er erklärte die Trennung der Spektrallinien in
einem magnetischen Feld durch die Oszillationen der Elektronen.
Übung 2
Sir Joseph Larmor
(1857 – 1942),
irischer Physiker.
Aufgabe 4: Larmor-Radius
Berechnen sie den Larmor-Radius rL für die folgenden Fälle, unter der Annahme dass vk ≈ 0:
• Ein 10 keV Elektron im Erdmagnetfeld (0.5 G).
• Ein Proton des Sonnenwinds mit Geschwindigkeit v = 300 km/s, B = 5 · 10−5 G.
• Ein 1 keV He+ - Ion in der Sonnenatmosphäre über einem Sonnenfleck, mit B = 500 G.
Aufgabe 5: Krümmungsdrift
Das Erdmagnetfeld habe auf dem Äquator eine Stärke von 0.3 G, und falle wie ein perfekter
magnetischer Dipol mit B(r) ∼ r13 ab. Es befinde sich eine isotrope Population von 1 eV
Protonen und 30 keV Elektronen in der Äquatorebene mit r = 5 · rErde . Beide Teilchenspezies
haben eine Dichte von n = 10 cm−3 .
(a) Berechnen sie die Proton- und Elektrondriftgeschwindigkeiten aufgrund von ∇B.
(b) Driften die Elektronen nach Westen oder nach Osten?
(c) Wie lange braucht ein Elektron, um die Erde zu umkreisen?
(d) Berechnen sie die Kreisstromdichte in A/cm2
=⇒
b.w.
Aufgabe 6: Magnetische Spiegel
Ein Proton aus der kosmischen Strahlung (Anfangsenergie W = 1 keV, anfänglicher Pitchwinkel
Θ = 45◦ ) ist zwischen zwei beweglichen magnetischen Spiegeln gefangen.
Die Spiegel haben jeweils ein Spiegelverhältnis Rm = BBm0 = 5 und bewegen sich vom anfänglichen Abstand L = 1010 km mit einer Geschwindigkeit vm = 10 km/s auf einander zu.
(a) Wieviel Energie gewinnt das Proton, bis es aus den magnetischen Spiegeln ausbricht? (Tipp:
benutzen sie die Verlustkegelformel und Invarianz von µ)
(b) Wie lange dauert es, bis das Proton diese Energie erreicht? (Tipp: Zeigen sie, dass das
Proton bei jeder Spiegelung 2vm an Geschwindigkeit gewinnt, berechnen sie die Anzahl der
nötigen Spiegelvorgänge und daraus die benötigte Zeit)
Herunterladen