Lösungsblatt V - nano

Werbung
Physik I für Chemiker,
WS 2016/17
Lösungsblatt V
Published: 29.11.16
1 Reibungskraft I
Ein 50kg schwerer Block ist zunächst auf einer horizontalen Fläche in Ruhe. Es ist eine horizontale Kraft von 150 N nötig um den Block in Bewegung zu setzten, danach ist eine horizontale
Kraft von 120 N nötig um den Block auf konstanter Geschwindigkeit zu halten.
Es ist schwerer etwas in Bewegung zu bringen, als es in Bewegung zu halten. Reibung allgemein
ist eine Kraft, die es zwei Objekten erschwert sich gegenseitig zu verschieben. Haftreibung ist
die Reibung, die zwischen einem ruhendem Objekt und der Oberfläche, auf dem es sich befindet
wirkt. Sobald sich dieses Objekt bewegt wirkt die Gleitreibung. Das ist die Kraft zwischen zwei
Objekten, die sich relativ zueinander bewegen. Da Gleitreibung nicht so stark wie Haftreibung
ist, ist es leichter ein sich bewegendes Objekt in Bewegung zu halten. Mit dieser Überlegung
im Kopf definiert man die Haft und Gleitreibung als
Fs = µs N
und
Fk = µk N.
dabei ist N die Normalkraft (d.h. N = mg). Die einzigen Kräfte, die auf den Block wirken
ist die die externe Kraft von 150 N und die Haftreibung. Da das Objekt in ruhe ist, ist die
Beschleunigung null (die zwei Kräfte heben sich auf). Somit ist die maximale Haftreibung FH =
150 N. Wenn der Block in Bewegung ist, ist es ähnlich. Da er sich mit konstanter Geschwindigkeit
bewegt heben sich die externe Kraft und die Gleitreibungskraft genau auf (d.h. Fk = 120 N).
Setzt man dies in die oberen Formeln ein erhält man µs = 0.306 und µk = 0.245.
2 Reibungskraft II
Ein Objekt der Masse 2m befindet sich auf einer rauen horizontalen Fläche. Es ist mit einem
masselosen Seil über eine masselose Umlenkrolle mit einem weiteren Objekt der Masse m verbunden, wie in Abbildung 1 zu sehen ist. Eine Kraft mit Betrag F und einem Winkel θ zur
horizontalen wird auf den Block der Masse 2m ausgeübt. Aufgrund dieser Kraft bewegt sich
das Objekt nach rechts. Der Gleitreibungskoeffizient zwischen Objekt und Fläche ist µk .
(a) Die Kräfte, die auf die einzelnen Blöcke wirken sind in Abbildung 1 dargestellt. Die angewandte Kraft F~ hat x- und y- Komponenten (F cos θ und F sin θ entsprechend). Da
die beiden Objekte mit eine Seil verbunden sind, ist die x- Komponente der Beschleunigung des Blocks und die y- Komponente der Beschleunigung des Balls gleich (sagen wir
a). Nehmen Sie an, der Block der Masse 2m bewegt sich nach rechts und wenden Sie
Newtons II Axiom an
1/8
Physik I für Chemiker,
WS 2016/17
Lösungsblatt V
X
Fx = F cos θ − Fk − T = 2ma
X
Fy = N + F sin θ − 2mg = 0.
Published: 29.11.16
und
Ähnlich wird bei dem Ball mit Masse m verfahren:
X
Fy = T − mg = ma.
Aus der zweiten Gleichung kann man sehen, dass
N = 2mg − F sin θ.
benutzt man nun die Gleichung für Gleitreibung Fk = µk N , kann man schreiben
Fk = µk (2mg − F sin θ).
Durch einsetzen dieses Ausdrucks und lösen des Gleichungssystem (bestehend aus der xKomponente des Block der Masse 2m und der y- Komponente des Masse m) erhält man
a=
F (cos θ + µk sin θ) − (m + µk 2m)g
.
3m
(b) Die Richtung der Beschleunigung des Blocks mit Masse 2m hängt vom Vorzeichen des
Zählers in der Gleichung für a ab. Wenn F (cos θ + µk sin θ) > (m + µk 2m)g ist die
Beschleunigung des Blocks nach rechts. Gilt das Umgekehrte ist die Beschleunigung nach
links.
Abbildung 1: Externe Kräfte wirken auf ein Objekt auf einer rauen Oberfläche, welches mit
einem anderen Objekt mit einer Schnur über eine reibungsfreie Umlenkrolle verbunden ist.
2/8
Physik I für Chemiker,
WS 2016/17
Lösungsblatt V
Published: 29.11.16
3 Bewegung entlang eines horizontalen Kreises
(a) Ein Ball der Masse m hängt an einem Seil der Länge L und rotiert mit einer konstanten
Geschwindigkeit v auf einem horizontalen Kreis mit Radius r, wie in Abbildung 2 (a)
gezeigt ist. Das Seil bildet zur vertikalen den Winkel θ.
Alle Kräfte, die auf den Ball wirken sind in der Abbildung gezeigt. Die Kraft T~ , welche
durch das Seil ausgeübt wird, wird in eine vertikale und horizontale Komponente zerlegt
(T cos θ und T sin θ entsprechend). Man nutzt den Fakt, dass es keine Beschleunigung
entlang der y- Richtung gibt und Newtons II Axiom und erhält
X
Fy = T cos θ − mg = 0
und
X
Fx = T sin θ = maz .
Benutzt man die Gleichung für die Zentripetalbeschleunigung (az = v 2 /r) und löst obere
Gleichungen erhält man
tan θ =
v2
.
rg
√
und somit v = rg tan θ. Es ist möglich den Radius r in Abhängigkeit von L und θ als
√
r = L sin θ zu schreiben. Damit nimmt v folgende Form an v = Lg sin θ tan θ. Beachten
Sie, dass die Geschwindigkeit unabhängig von der Masse des Balls ist.
(b) Betrachten Sie einen Ball der Masse 0.4kg, der an ein Seil der Länge r= 2 m gebunden
ist. Der Ball wird in einem horizontalen Kreis herumgewirbelt (vgl. Abbildung 2 (b)).
Da der Ball sich auf einer Kreisbahn bewegt, ist es möglich die Bewegung mit einem
Teilchen in gleichmäßiger Kreisbewegung zu beschrieben. Benutzt man die Gleichung für
die Zentripetalbeschleunigung und Newtons II Axiom findet man
T =
mv 2
r
oder
r
v=
Tr
.
m
Aus obere Gleichung wird deutlich, dass die maximale Geschwindigkeit mit der maximalen
Zugkraft des Seils zusammenhängt. Somit
r
vmax =
3/8
Tmax r
.
m
Physik I für Chemiker,
WS 2016/17
Lösungsblatt V
Published: 29.11.16
Einsetzen der Werte ergibt vmax ' 22.36 m/ s.
Was ist der Einfluss einer Erhöhung des Radius bei konstantem v? Der größere Radius
bedeutet, dass die Änderung der Richtung der Geschwindigkeit in einem gegebenen Zeitintervall kleiner wird. Somit ist die Beschleunigung kleiner und die Zugkraft im Seil ist
kleiner. Es ist also unwahrscheinlicher, dass das Seil reißt.
Abbildung 2: (a) Ein konisches Pendel. Der Weg des Balls ist entlang eines horizontalen Kreises.
(b) Draufsicht eines Ball, des sich entlang eines Kreises in der horizontalen Ebene
bewegt.
4 Bewegung entlang eines vertikalen Kreises
(a) Ein Pilot der Masse m= 100kg fliegt immer wieder einen Looping, sodass es sich auf
einem vertikalen Kreis mit Radius 4km und mit einer konstanten Geschwindigkeit von
400 m/ s bewegt (vgl. Abbildung 3 (a)).
Es sind wieder alle Kräfte in der Abbildung dargestellt. Unten im Looping wirkt die
Gravitationskraft nach unten F~g = m~g und die Kraft, die der Sitz auf den Piloten ausübt
nach oben N~u . Die netto Kraft nach oben kommt durch die Zentripetalkraft. Nun wendet
man wieder Newtons II Axiom an
X
F = Nu − mg =
mv 2
,
r
Die Kraft, die der Sitz auf den Piloten ausübt ist also
mv 2
v2
Nu = mg +
= mg 1 +
.
r
rg
Einsetzen der entsprechenden Werte ergibt Nu = 5000 N.
Oben im Looping wirkt die Gravitationskraft und die Kraft, die der Sitz ausübt Nb nach
unten. Wieder wendet man die Gleichung für die Zentripetalbeschleunigung und Newtons
II Axiom an und erhält
X
F = Nb + mg =
4/8
mv 2
r
Physik I für Chemiker,
WS 2016/17
Published: 29.11.16
Lösungsblatt V
oder
Nb = mg
v2
−1 .
rg
Einsetzen ergibt Nb ' 3000 N.
(b) Ein Ball der Masse m ist an einem Seil der Länge R befestigt und bewegt sich auf einer
vertikalen Kreisbahn um den Punkt O, wie in Abbildung 3 (b) zu sehen ist.
Die wirkenden Kräfte sind wieder in der Abbildung zu sehen. Die einzigen Kräfte sind die
Gravitationskraft F~g = m~g nach unten durch die Erde und die Kraft nach oben T~ durch
das Seil. Anwenden Newtons II Axioms für die tangentiale und radiale Komponente:
X
Ft = mg sin θ = mat ,
ergibt
at = g sin θ.
und
X
Fr = T − mg cos θ = m
v2
R
führt zu
v2
T = mg
+ cos θ .
Rg
Beachten Sie, das unten im Looping (θ = 0°) T die dem T aus Teilaufgabe (a) entspricht.
5/8
Physik I für Chemiker,
WS 2016/17
Lösungsblatt V
Published: 29.11.16
Abbildung 3: (a) Ein Flugzeug bewegt sich mit konstanter Geschwindigkeit auf einer vertikalen
Kreisbahn. (b) Ein Ball ist an einem Seil der Länge R befestigt und rotiert auf
einem vertikalen Kreis, der um O zentriert ist.
5 Steilkurve
In einer normalen (nicht Steilkurve) Kurve wird die Zentripetalbeschleunigung durch die Haftreibung zwischen Auto und Straße bewirkt. Wenn die Kurve um einen Winkel θ geneigt ist,
~ eine horizontale Komponente in Richtung der Innenseite der Kurve. Da
hat die Normalkraft N
die Straße so designed ist, dass die Haftreibung gleich null ist, bewirkt nur die Komponente
Nx = N cos θ eine Zentripetalbeschleunigung.
Newtons II Axiom ergibt
X
Fx = N sin θ =
mv 2
r
und
X
Fy = N cos θ − mg = 0.
Auflösen nach θ ergibt
tan θ =
v2
.
rg
Einsetzen der entsprechenden Werte ergibt θ ' 43.83°.
6/8
Physik I für Chemiker,
WS 2016/17
Lösungsblatt V
Published: 29.11.16
Abbildung 4: Ein Auto in einer Steilkurve.
6 Bewegung in beschleunigten Bezugssystemen
(a) Ein Ball der Masse m hängt an einem Faden von der Decke eines Zuges, der nach nach
rechts beschleunigt (Abbildung 5).
Für den Beobachter außerhalb des Zugs, kann der Ball als Teilchen unter einer netto Kraft
in der horizontalen und einem Teilchen im Gleichgewichtszustand in der horizontalen betrachtet werden. Für den Beobachter im Zug, erscheint der Ball im Gleichgewichtszustand
somit ist eine der Kräfte eine Scheinkraft.
Beobachter außerhalb der Zuges: Die Kräfte auf den Ball ist die Zugkraft T~ vom Seil und
die Gravitationskraft F~g von der Erde. Dieser Beobachter kann auch sehen, dass die die
Beschleunigung des Balls die gleiche wie die des Zuges ist. Diese Beschleunigung ist durch
die horizontale Komponente von T~ gegeben. Newtons II Axiom:
X
Fx = T sin θ = ma
und
X
Fy = T cos θ − mg = 0.
Beobachter im Zug: Auch dieser Beobachter sieht, dass der Faden einen Winkel zur Vertikalen einschließt. Aber für ihn ist der Ball in Ruhe (also keine Beschleunigung). Also
führt er eine Scheinkraft ein, die die horizontale Komponente von T~ erklärt. Newtons II
Axiom:
X
Fx0 = T sin θ − Ffict = 0
X
Fy0 = T cos θ − mg = 0.
und
7/8
Physik I für Chemiker,
WS 2016/17
Lösungsblatt V
Published: 29.11.16
Lösen der Gleichungen (und Vergleichen mit denen des anderen Beobachters) ergibt
Ffict = ma, wobei a die Beschleunigung des Zuges laut dem außenstehenden Beobachters ist. Beachten sie, dass die physikalische Interpretation der Auslenkung des Balls in
den zwei Bezugssystem verschieden ist.
(b) Benutzt man die Gleichungen, die für den außenstehenden Beobachter hergeleitet wurden,
sieht man, dass a = g tan θ. Die Beschleunigung kann also nur durch messen des Auslenkwinkels bestimmt werden. Das bedeutet auch, dass ein einfaches Pendel zum messen von
Beschleunigung verwendet werden kann.
Abbildung 5: Ein kleiner an der Decke aufgehängter Ball in einem beschleunigendem Zug (vom
ruhenden Bezugssystem aus betrachtet).
8/8
Herunterladen