AUSFÜLLHILFE: BEWEGEN SIE DEN MAUSZEIGER ÜBER DIE ÜBERSCHRIFTEN. AUSFÜHRLICHE HINWEISE: LEITFADEN MODULBESCHREIBUNG Data Warehousing and Business Intelligence Module code 1 2 3 Workload Credits/CP Semester 180 h 6 1 Module Teaching Language Frequency of module Winter Semester Contact hours Self-study Data Warehousing and Business English 4 SWS / 45 h Intelligence Learning outcomes After passing this module successfully, students are able to … 135 h Duration 1 Semester Class size 15 Knowledge (1) Differentiate the concepts of data warehousing and business intelligence Give an overview on important types of data warehouse architecture and BI functionality Describe the role of information and communication technology to meet the challengeces of international acting enterprizes Understanding (2) Understand process characteristics of data warehouse and BI systems Classify the relevant types of technological and business aspects and drivers Practice (3) Define business case for BI prototype Select and apply appropriate methodological and architectural needs to define business case and BI prototype Analysis (4) Analyse selected data warehouse and BI needs, described in a case studies (As-is and to-be concept, Excel prototype). Synthesis (5) Implementing business case concept by using Business Intelligence Software Evaluation (6) Evaluate opportunities and threads of BI usage and implementation Individual component content Introduction/Overview Data Warehousing Fundamentals (e.g.: ETL, OLAP, Data Mining) Application areas (e.g.: Controlling, marketing) The architecture of a Data Warehouse ROLAP and MOLAP SQL and Data Warehouse Semantic data models Data Warehouse-configurations Examples of configurations and software-tools Version 1.3 Erstellt von jr Freigabe (Datum/Kürzel) QM-Board 11.4.2012, 16.01.2013 04.06.2013/jr Gültig ab 04.06.2013 4 Applications for a Data Warehouse Business Intelligence (BI) Steps to Business Intelligence Data Warehouse and Operational Data Store (ODS) Development of integrated BI-Application-Systems BI project (Business case definition; as-is and to-be analysis; prototyping) Teaching methods Lectures style, exercises and practices (case study), presentations 5 Prerequisites 6 Basic principles in business administration and business information systems Basic principles in database systems Methods of assessment Final written exam, presentation, written term paper 7 Applicability of module Mandatory in Business Consulting Masters course 8 Person responsible for module/ lecturer Prof. Dr. Monika Frey-Luxemburger 9 Reading list Imhoff, C.; Galemmo, N.; Geiger, J. G.: Mastering Data Warehouse Design – Relational and Dimensional Techniques. New York 2003. Inmon, W. H.: Building the Data Warehouse. 4. Auflage, Indianapolis 2005. Inmon, W. H.: Building the Operational Data Store. 2. Auflage, New York u.a. 1999. Kimball, R.; Caserta, J.: The data warehouse ETL toolkit – Practical techniques for extracting, cleaning, conforming, and delivering data. Indianapolis 2004. Kimball, R.; Reeves, L.; Ross, M.; Thornthwaite, W.: The Data Warehouse Lifecycle Toolkit – Expert Methods for Designing, Developing, and Deploying Data Warehouses. New York u.a. 1998. Kimball, R.; Ross, M.: The data warehouse toolkit – The complete guide to dimensional modelling. New York u.a. 2002. Moss, L.; Atre, S.: Business Intelligence Roadmap – The Complete Project Lifecycle for Decision-Support Version 1.3 Erstellt von jr Freigabe (Datum/Kürzel) QM-Board 11.4.2012, 16.01.2013 04.06.2013/jr Gültig ab 04.06.2013 Applications. Boston u.a. 2003 Thomsen, E.: OLAP Solutions – Building Multidimensional Information Systems. 2. Auflage, New York u.a. 2002. Version 1.3 Erstellt von jr Freigabe (Datum/Kürzel) QM-Board 11.4.2012, 16.01.2013 04.06.2013/jr Gültig ab 04.06.2013